Former Tata Steelworks Site Pontarddulais

Walters Land Limited

Drainage Strategy

Rev -

October 2023

Document Control:

Project Number:	10373
Project:	Pontarddulais Steelworks
Client:	Walters Group
Document Title:	Drainage Strategy
Author:	James Phillips
Revision:	-
Status:	Planning
Control date:	16/10/2023

Record of Issue:

Rev.	Status	Author	Date	Check	Date	Authorised	Date
-	Preliminary	J Phillips	16.10.23	N Lewis	16.10.23	N Lewis	16.10.23

Contents

1. Introduction

- 1.1. Site Location
- 1.2. Current Land Use
- 1.3. Site Topography
- 1.4. Site Geology
- 1.5. Existing Drainage
- 1.6. Proposed Development

2. Flood Risk

2.1. Overview

3. Proposed Surface Water Drainage

- 3.1. Schedule 3 (Flood and Water Management Act 2010) and the Sustainable Drainage Approval Body (SAB)
- 3.2. S1 Surface Water runoff destination
- 3.3. S2 Surface Water runoff hydraulic control
- 3.4. S3 Water Quality
- 3.5. S4 Amenity
- 3.6. S5 Biodiversity
- 3.7. S6 Design of drainage for construction, operation, and maintenance

4. Proposed Foul Drainage

5. Summary

Appendices

Appendix ASite PlanAppendix BTopographical SurveyAppendix CExisting Drainage PlansAppendix DProposed Drainage StrategyAppendix ECalculations

1. Introduction

This Drainage Strategy report has been prepared by Phoenix Design Partnership Limited on behalf of Walters Land Limited to support an Outline planning application at the former steelworks, Pontarddulais for residential development of up to 150 homes.

The report provides a high-level overview of the site and the proposed drainage strategy. The scheme will need to comply with the Statutory Standards for Sustainable Drainage Systems produce by Welsh Government and the CIRIA SuDS Manual C753.

1.1. Site Location

The site is located along the North of High Street and West of Woodville Street in Pontarddulais. A National Grid Reference of SN 59031 04254 can be used to locate the site. The site excluding non-developable area is approximately 4ha. The development is bound by an existing railway line to the West, residential to the South and East and the industrial estate to the North. The site location can be seen below in Figure 1. A detailed plan can be seen in **Appendix A**.

Figure 1 – Site Location

1.2. Current Land Use

The site is currently unoccupied but is considered brownfield and was previously used as a steelworks.

1.3. Site Topography

Site levels fall generally from Northeast to Southwest with a range of 12.2m to 8.3m. Gradients vary across the site due to a large area of the site consisting of existing buildings. A topographical survey can be found in **Appendix B**.

1.4. Site Geology

Site investigation works have been carried out by Integral Geotechnique along with soakaway testing.

The site comprises a mix of surface materials including topsoil, made ground and various hardstanding's. Depths of made ground vary across the site from 0.6m to 3.2m which are underlain by sands and gravels.

Soakaway testing was carried out across the site with the most promising results coming from the undeveloped area to the North of the existing buildings. The permeability rates in the North ranged from 2.6x10⁻⁴ to 8.8x10⁻⁵.

In the central and Southern parts of the site the permeability rates varied between 0 and 3.08×10^{-5} .

The shallowest groundwater level was found to be near the South-West part of the site, at the transition between the underlying silty sandy gravelly clay soils above and gravelly sands below. The groundwater level at this part was found to be at approximately 5.7m AOD i.e. at approximately 2.2m depth below existing ground level.

Please refer to Integral Geotechnique report 14180/FG/23/SI for further information.

1.5. Existing Drainage

Welsh Water plans show an existing surface water sewer crossing the site in the Southern area from East to West which ultimately discharges through an existing culvert that outfalls on the opposite side of the railway line. At this stage the exact size and location of the sewer is unknown, but survey works can be carried out following demolition of the buildings and the required ground remediation. Assumptions made in detail design could then be confirmed following these survey works.

From site observations and existing services plans it has been confirmed that the surface water drainage that serves the existing buildings and hardstanding discharges into the culverted system that runs to the West under the existing railway line. There is also an existing pond located in dense vegetation at the Southern end of the site with a headwall that connects into the existing culvert. The proposed survey works above should also provide the necessary information regarding the interaction and connectivity between these existing drainage features.

The River Loughor is located approximately 140m to the West of the site. A site walkover has confirmed that once the culvert outfalls on the opposite side of the railway line a ditch system then conveys flows directly to the river.

A Welsh Water sewer plan and existing drainage plan can be seen in Appendix C.

2. Flood Risk

2.1. Overview

NRW development advice maps have classified areas of the site as being within Zone C1. Detailed flood modelling has been undertaken by JBA Consulting and a minimum ground level has been set for the development area of 9.03mAOD. For further information and recommendations please refer to JBA report JQE-JBAU-XX-XX-RP-Z-0001-S3-P01-Tata Steel Site FCA.

3. Proposed Surface Water Drainage

The proposed development will consist of circa 150 dwellings including infrastructure (carriageways, footpaths, car parking etc). Following legislation enforcing Schedule 3 in January 2019 the proposed surface water system will be designed in accordance with the requirements of the council SAB team and the CIRIA SuDS Manual.

3.1. Schedule 3 (Flood and Water Management Act 2010) and the Sustainable Drainage Approval Body (SAB)

Under Schedule 3 all developments in Wales over 100m² now require surface water drainage to be designed in accordance with the statutory standards for Sustainable Drainage Systems Standards for Wales produced by Welsh Government. It is the role of each council's SAB team to assess and approve the design proposals which are reviewed against these standards.

The standards aim to mimic the natural drainage characteristics of a site to help control the volume and rate of run off from the proposed development. This is achieved by managing the runoff at or close to the surface and as close to the sources as possible while also providing additional benefits such as biodiversity and amenity.

There are six standards that need to be met as follows.

- S1 Surface Water runoff destination
- S2 Surface Water runoff hydraulic control
- S3 Water Quality
- S4 Amenity
- S5 Biodiversity
- S6 Design of drainage for construction, operation, and maintenance

3.2. S1 – Surface Water Runoff Destination

The hierarchy of outfall solutions within the Welsh Government guideance is as follows;

- A. Surface water runoff is collected for use
- B. Surface water runoff is infiltrated to ground
- C. Surface water runoff is discharged to a surface water body
- D. Surface water runoff is discharged to a surface water sewer, highway drain or another drainage system
- E. Surface water runoff is discharged to a combined sewer

A. Runoff Collection for Use

Collecting runoff for re-use usually comes in the form of rainwater harvesting systems such as tanks. It is widely accepted that these systems are not commercially viable on residential projects due to their cost, reliability and future maintenance. It is therefore not proposed to install these systems.

B. Runoff Infiltrated to the Ground

As mentioned earlier in the report Integral Geotechnique have carried out soakaway testing which has shown an area in the North of the development would be suitable for permeable solutions however the remainder of the site would need to drain via other means.

C. Surface Run off Discharged to Water Body

Due to the distance and the existing railway line a direct outfall to the River Loughor is not considered feasible.

D. Surface Run off Discharged to a surface Water Sewer, highway drain or another drainage system.

The central and Southern areas of the site are proposed to drain out through the existing culvert which crosses underneath the existing railway as per the existing site drainage system.

3.3. S2 – Surface Water Runoff Hydraulic Control

Standard S2 requires that all developments look to control the rate of discharge off site. This is dependent on the site being classified as greenfield or brownfield. In this case the site is brownfield and therefore an initial proposal of a 30% betterment will be provided in line with the Welsh Government standards.

As the Northern area of the site is going to infiltrate this has been removed from both the existing run off calculations and the attenuation calculations.

The existing site run off is unrestricted into the existing culvert. FEH software has been used to determine the existing QBAR run off factoring in the urban extent within the existing site. The calculation shows an existing QMED flow rate of 20I/s which when converted to QBAR (via the FSSR 14 method i.e. x1.08) gives 21.6I/s. As we are to provide a 30% betterment a proposed flow rate of 15.1I/s has been used to estimate the attenuation requirement.

The attenuation calculation has used an assumption of 60% of the non-infiltrating area of the site to be hard standing and has used a climate change allowance of 40%. The estimated attenuation is circa 800m³ although detailed calculations with exact impermeable areas will need to be carried out at detailed design and will likely result in a lower volume.

The Welsh Government standards also require interception to be provided which can be defined as capturing the first 5mm of rainfall on site with no site run off. This is achieved using SuDS features and can be quantified through calculations. As the Northern area is infiltrating there will be no requirement to provide interception here but the remainder of the site that discharges to the existing culvert will be required to provide interception.

Plans showing the drainage areas can be seen in **Appendix C**. The QBAR and attenuation calculations can be seen in **Appendix E** and the proposed attenuation can be seen in **Appendix D**.

3.4. S3 – Water Quality

Standard S3 aims to ensure that hardstanding run off is treated prior to discharge off site to ensure pollution of downstream waterbodies is reduced or removed.

The 'Pollution Hazard Level' for each of the hardstanding surfaces (Roofs, driveways, shared surfaces & Roads) are categorised in Table 26.2 of the SuDS Manual. Once the areas are identified, Table 26.3 of the SuDS Manual is used to identify the pollutants removal along the drainage train.

It is proposed to use SuDS features such as rain gardens, permeable paving, swales, and basins to contribute to the removal of sediment, hydrocarbons, and metals.

3.5. S4 – Amenity

This standard will need to be considered as part of the detailed design by other disciplines within the project team. The Welsh Government standards require that amenity benefits across the site integrating SuDS features are maximised.

3.6. S5 – Biodiversity

This standard will need to be considered as part of the detailed design by other disciplines within the project team. The Welsh Government standards require that biodiversity benefits are incorporated throughout the site and SuDS features.

3.7. S6 – Design of drainage for construction, operation, and maintenance

Standard S6 aims to ensure that the whole site drainage system is designed with future maintenance and operation in mind. The proposed development will be subject to SAB adoption and therefore maintenance regimes will be in line with Swansea SAB requirements. Plans detailing access and maintenance operations will need to be provided at detailed design and commuted sums will be calculated based on these.

Construction management plans and documents will also be required to detail how surface water will be managed during the construction phase.

4. Proposed Foul Drainage

Discussions with Welsh Water are currently being undertaken. Existing flows from infiltration into the foul network along with the sites previous use have been estimated and put forward for review. It is proposed to utilise the existing connection onto the combined network in the Southwest corner of the site at the corner of Station Road and High Street.

5. Summary

• Site is located within Flood Zone C1, minimum ground level of 9.03mAOD has been set.

- Existing Welsh Water surface water sewer crosses through the South of the development.
- Existing site surface water drainage discharges through an existing culvert to the West through the railway line.
- Site investigation and soakaway testing has been carried out. Northern section of site will be able to infiltrate.
- Site drainage system will require SAB approval and adoption.
- Discharge into the existing culvert will be reduced as flows will be restricted to a calculated QBAR rate which considers existing urban extents. A 30% betterment will be required as per the Welsh Government standards.
- Foul drainage will discharge via existing connection into the combined sewer to the South.

Appendix A Site Plan

<u>GENERAL NOTES</u> 1. DO NOT SCALE FROM THIS DRAWING. 2. THIS DRAWING IS FOR INFORMATION PURPOSES ONLY. <u>KEY</u>

DEVELOPMENT BOUNDARY

Revision:
Project: Existing Steelworks Pontarddulais
Client:
WALTERS
CIVIL ENGINEERING · PLANT · DEVELOPMENT
Drawing: Site Plan
Scale: Date: Drawn by: 1:500 @ A0 July 2023 JM
Drawing No: 10373 - 100 Rev: -
PHOENIX DESIGN Partnership Ltd.
Unit 9, Westway Garage, Marksbury, Bath. BA2 9HN Business Parc, Uper Boat, Pontypridd,
tel. 01761 479950 CF37 5BE. tel. 029 2049 0771 email. enquiries@phoenixdp.co.uk www.phoenixdp.co.uk
This drawing is the convrigt of Phoenix Design Partnership Ltd. No liability will
be accepted for amendments by others to either the printed or digital format.
PLANNING

Appendix B

Topographical Survey

<u>GENERAL NOTES</u> 1. DO NOT SCALE FROM THIS DRAWING. 2. THIS DRAWING IS FOR INFORMATION PURPOSES ONLY. <u>KEY</u>

DEVELOPMENT BOUNDARY

Project:	Existing Steelworks Pontarddulais
Client:	WALTERS
Drawing:	Topographical Survey
Scale: 1:250 @ A0	Date: Drawn by: June 2023 JM
Drawing No:	10373 - 101 - 01 Rev: -
PF	
Unit 9, Westwa Marksbury, Batl tel. 01761 4 email.	y Garage, Suite 7, Unit Three, Melin Corrwg b. BA2 9HN Business Parc, Upper Boat, Pontypridd, I 79950 CF37 5BE. tel. 029 2049 0771 enquiries@phoenixdp.co.uk www.phoenixdp.co.uk
This drawing is th	e convright of Phoenix Design Partnership I to No lightlity will

PLANNING

Drg.Status:

<u>GENERAL NOTES</u> 1. DO NOT SCALE FROM THIS DRAWING. 2. THIS DRAWING IS FOR INFORMATION PURPOSES ONLY. KEY

DEVELOPMENT BOUNDARY

- Revision:			
Project:	Existing Ste Pontarddula	elworks iis	
Client:		TEF	RS
Drawing:	Topographi	cal Survey	
Scale: 1:250 @ A0	Date:	June 2023	Drawn by: JM
Drawing No:	10373 - 10)1 - 02	Rev:
Pf	IOEND	DESI Partne	IGN ership Ltd.
Unit 9, Westwa Marksbury, Batl tel. 01761 4 email.	ay Garage, n. BA2 9HN 179950 enquiries@phoenixdp	Suite 7, Unit Th Business Parc, Up CF37 5BE. te o.co.uk www.phoe	ree, Melin Corrwg per Boat, Pontypridd, 🗹 al. 029 2049 0771 anixdp.co.uk
This drawing is th be accepted for a	e copyright of Phoenix mendments by others	x Design Partnershi to either the printed	p Ltd. No liability will l or digital format.

PLANNING

Drg.Status:

Appendix C

Existing Drainage Plans

Appendix D

Proposed Drainage Strategy

<u>GENERAL NOTES</u> 1. DO NOT SCALE FROM THIS DRAWING. 2. THIS DRAWING IS FOR INFORMATION PURPOSES ONLY. KEY

TRIAL PIT LOCATIONS

DEVELOPMENT BOUNDARY TOTAL AREA = 39555m² INFILTRATION BOUNDARY AREA TOTAL AREA = 15975m²

Appendix E Calculations

UK Design Flood Estimation

Generated on Friday, May 12, 2023 10:47:53 AM by NickL Printed from the ReFH2 Flood Modelling software package, version 3.2.7650.24314

Summary of estimate using the Flood Estimation Handbook revitalised flood hydrograph method (ReFH2)

Site details

Checksum: FD38-201B

Site name: Pont Small Catchment Easting: 259500 Northing: 204050 Country: England, Wales or Northern Ireland Catchment Area (km²): 0.02 [0.55]* Using plot scale calculations: No Model: 2.2 (legacy) Site description: None

Model run: 2 year

Summary of results

Rainfall - FEH 2013 model (mm):	20.79	Total runoff (ML):	0.11
Total Rainfall (mm):	19.30	Total flow (ML):	0.19
Peak Rainfall (mm):	3.51	Peak flow (m ³ /s):	0.02

Parameters

Where the user has overriden a system-generated value, this original value is shown in square brackets after the value used.

* Indicates that the user locked the duration/timestep

Rainfall parameters (Rainfall - FEH 2013 model)

Name	Value	User-defined?
Duration (hh:mm:ss)	02:18:00	No
Timestep (hh:mm:ss)	00:06:00	No
SCF (Seasonal correction factor)	0.94	No
ARF (Areal reduction factor)	0.99	No
Seasonality	Summer [Winter]	Yes

Loss model parameters

Name	Value	User-defined?
Cini (mm)	71.73	No
Cmax (mm)	471.28	No
Use alpha correction factor	No	No
Alpha correction factor	n/a	No
Use seasonal CIni for equations	Yes	No

Routing model parameters

Name	Value	User-defined?
Tp (hr)	1	No
Up	0.65	No
Uk	0.8	No
Baseflow model parameters		
Name	Value	User-defined?
BF0 (m ³ /s)	0	No
BL (hr)	18.76	No
BR	1.85	No
Urbanisation parameters		
Name	Value	User-defined?
Urban area (km²)	0.01 [0.02]	Yes
Urbext 2000	0.3 [0.46]	Yes
Impervious runoff factor	0.7	No
Imperviousness factor	0.3	No
Tp scaling factor	0.5	No
Exporting drained area (km ²)	0.00	Yes
Sewer capacity (m ³ /s)	0.00	Yes

Time series data

Time (hh:mm:ss)	Rain (mm)	Sewer Loss (mm)	Net Rain (mm)	Runoff (m ³ /s)	Baseflow (m³/s)	Total Flow (m³/s)
00:00:00	0.192	0.000	0.044	0.000	0.001	0.001
00:06:00	0.230	0.000	0.053	0.000	0.001	0.001
00:12:00	0.278	0.000	0.064	0.000	0.001	0.001
00:18:00	0.338	0.000	0.078	0.000	0.001	0.001
00:24:00	0.414	0.000	0.095	0.001	0.001	0.001
00:30:00	0.510	0.000	0.118	0.001	0.001	0.002
00:36:00	0.637	0.000	0.148	0.001	0.001	0.002
00:42:00	0.806	0.000	0.189	0.002	0.001	0.003
00:48:00	1.043	0.000	0.246	0.002	0.001	0.003
00:54:00	1.400	0.000	0.333	0.003	0.001	0.004
01:00:00	2.046	0.000	0.493	0.004	0.001	0.005
01:06:00	3.511	0.000	0.864	0.006	0.001	0.006
01:12:00	2.046	0.000	0.514	0.008	0.001	0.008
01:18:00	1.400	0.000	0.356	0.010	0.001	0.011
01:24:00	1.043	0.000	0.268	0.013	0.001	0.014
01:30:00	0.806	0.000	0.208	0.015	0.001	0.016
01:36:00	0.637	0.000	0.165	0.017	0.001	0.018
01:42:00	0.510	0.000	0.133	0.019	0.001	0.020
01:48:00	0.414	0.000	0.108	0.019	0.001	0.020
01:54:00	0.338	0.000	0.089	0.019	0.001	0.020
02:00:00	0.278	0.000	0.073	0.018	0.001	0.019
02:06:00	0.230	0.000	0.061	0.017	0.001	0.018
02:12:00	0.192	0.000	0.051	0.016	0.001	0.017
02:18:00	0.000	0.000	0.000	0.015	0.001	0.016
02:24:00	0.000	0.000	0.000	0.014	0.001	0.015
02:30:00	0.000	0.000	0.000	0.012	0.001	0.014
02:36:00	0.000	0.000	0.000	0.011	0.001	0.012
02:42:00	0.000	0.000	0.000	0.010	0.001	0.011
02:48:00	0.000	0.000	0.000	0.008	0.001	0.010
02:54:00	0.000	0.000	0.000	0.007	0.002	0.009
03:00:00	0.000	0.000	0.000	0.006	0.002	0.008
03:06:00	0.000	0.000	0.000	0.005	0.002	0.007
03:12:00	0.000	0.000	0.000	0.004	0.002	0.006
03:18:00	0.000	0.000	0.000	0.004	0.002	0.006
03:24:00	0.000	0.000	0.000	0.003	0.002	0.005

Page 3 of 8

Time (hh:mm:ss)	Rain (mm)	Sewer Loss (mm)	Net Rain (mm)	Runoff (m ³ /s)	Baseflow (m³/s)	Total Flow (m³/s)
03:30:00	0.000	0.000	0.000	0.003	0.002	0.005
03:36:00	0.000	0.000	0.000	0.003	0.002	0.004
03:42:00	0.000	0.000	0.000	0.002	0.002	0.004
03:48:00	0.000	0.000	0.000	0.002	0.002	0.004
03:54:00	0.000	0.000	0.000	0.002	0.002	0.004
04:00:00	0.000	0.000	0.000	0.002	0.002	0.003
04:06:00	0.000	0.000	0.000	0.001	0.002	0.003
04:12:00	0.000	0.000	0.000	0.001	0.002	0.003
04:18:00	0.000	0.000	0.000	0.001	0.002	0.003
04:24:00	0.000	0.000	0.000	0.001	0.002	0.003
04:30:00	0.000	0.000	0.000	0.001	0.002	0.002
04:36:00	0.000	0.000	0.000	0.001	0.002	0.002
04:42:00	0.000	0.000	0.000	0.000	0.002	0.002
04:48:00	0.000	0.000	0.000	0.000	0.002	0.002
04:54:00	0.000	0.000	0.000	0.000	0.002	0.002
05:00:00	0.000	0.000	0.000	0.000	0.002	0.002
05:06:00	0.000	0.000	0.000	0.000	0.002	0.002
05:12:00	0.000	0.000	0.000	0.000	0.002	0.002
05:18:00	0.000	0.000	0.000	0.000	0.002	0.002
05:24:00	0.000	0.000	0.000	0.000	0.002	0.002
05:30:00	0.000	0.000	0.000	0.000	0.002	0.002
05:36:00	0.000	0.000	0.000	0.000	0.002	0.002
05:42:00	0.000	0.000	0.000	0.000	0.002	0.002
05:48:00	0.000	0.000	0.000	0.000	0.002	0.002
05:54:00	0.000	0.000	0.000	0.000	0.002	0.002
06:00:00	0.000	0.000	0.000	0.000	0.002	0.002
06:06:00	0.000	0.000	0.000	0.000	0.002	0.002
06:12:00	0.000	0.000	0.000	0.000	0.002	0.002
06:18:00	0.000	0.000	0.000	0.000	0.002	0.002
06:24:00	0.000	0.000	0.000	0.000	0.002	0.002
06:30:00	0.000	0.000	0.000	0.000	0.002	0.002
06:36:00	0.000	0.000	0.000	0.000	0.002	0.002
06:42:00	0.000	0.000	0.000	0.000	0.002	0.002
06:48:00	0.000	0.000	0.000	0.000	0.002	0.002
06:54:00	0.000	0.000	0.000	0.000	0.002	0.002
07:00:00	0.000	0.000	0.000	0.000	0.002	0.002

Time (hh:mm:ss)	Rain (mm)	Sewer Loss (mm)	Net Rain (mm)	Runoff (m ³ /s)	Baseflow (m³/s)	Total Flow (m³/s)
07:06:00	0.000	0.000	0.000	0.000	0.002	0.002
07:12:00	0.000	0.000	0.000	0.000	0.002	0.002
07:18:00	0.000	0.000	0.000	0.000	0.002	0.002
07:24:00	0.000	0.000	0.000	0.000	0.002	0.002
07:30:00	0.000	0.000	0.000	0.000	0.002	0.002
07:36:00	0.000	0.000	0.000	0.000	0.001	0.001
07:42:00	0.000	0.000	0.000	0.000	0.001	0.001
07:48:00	0.000	0.000	0.000	0.000	0.001	0.001
07:54:00	0.000	0.000	0.000	0.000	0.001	0.001
08:00:00	0.000	0.000	0.000	0.000	0.001	0.001
08:06:00	0.000	0.000	0.000	0.000	0.001	0.001
08:12:00	0.000	0.000	0.000	0.000	0.001	0.001
08:18:00	0.000	0.000	0.000	0.000	0.001	0.001
08:24:00	0.000	0.000	0.000	0.000	0.001	0.001
08:30:00	0.000	0.000	0.000	0.000	0.001	0.001
08:36:00	0.000	0.000	0.000	0.000	0.001	0.001
08:42:00	0.000	0.000	0.000	0.000	0.001	0.001
08:48:00	0.000	0.000	0.000	0.000	0.001	0.001
08:54:00	0.000	0.000	0.000	0.000	0.001	0.001
09:00:00	0.000	0.000	0.000	0.000	0.001	0.001
09:06:00	0.000	0.000	0.000	0.000	0.001	0.001
09:12:00	0.000	0.000	0.000	0.000	0.001	0.001
09:18:00	0.000	0.000	0.000	0.000	0.001	0.001
09:24:00	0.000	0.000	0.000	0.000	0.001	0.001
09:30:00	0.000	0.000	0.000	0.000	0.001	0.001
09:36:00	0.000	0.000	0.000	0.000	0.001	0.001
09:42:00	0.000	0.000	0.000	0.000	0.001	0.001
09:48:00	0.000	0.000	0.000	0.000	0.001	0.001
09:54:00	0.000	0.000	0.000	0.000	0.001	0.001
10:00:00	0.000	0.000	0.000	0.000	0.001	0.001
10:06:00	0.000	0.000	0.000	0.000	0.001	0.001
10:12:00	0.000	0.000	0.000	0.000	0.001	0.001
10:18:00	0.000	0.000	0.000	0.000	0.001	0.001
10:24:00	0.000	0.000	0.000	0.000	0.001	0.001
10:30:00	0.000	0.000	0.000	0.000	0.001	0.001
10:36:00	0.000	0.000	0.000	0.000	0.001	0.001

Time (hh:mm:ss)	Rain (mm)	Sewer Loss (mm)	Net Rain (mm)	Runoff (m ³ /s)	Baseflow (m³/s)	Total Flow (m³/s)
10:42:00	0.000	0.000	0.000	0.000	0.001	0.001
10:48:00	0.000	0.000	0.000	0.000	0.001	0.001
10:54:00	0.000	0.000	0.000	0.000	0.001	0.001
11:00:00	0.000	0.000	0.000	0.000	0.001	0.001
11:06:00	0.000	0.000	0.000	0.000	0.001	0.001
11:12:00	0.000	0.000	0.000	0.000	0.001	0.001
11:18:00	0.000	0.000	0.000	0.000	0.001	0.001
11:24:00	0.000	0.000	0.000	0.000	0.001	0.001
11:30:00	0.000	0.000	0.000	0.000	0.001	0.001
11:36:00	0.000	0.000	0.000	0.000	0.001	0.001
11:42:00	0.000	0.000	0.000	0.000	0.001	0.001
11:48:00	0.000	0.000	0.000	0.000	0.001	0.001
11:54:00	0.000	0.000	0.000	0.000	0.001	0.001
12:00:00	0.000	0.000	0.000	0.000	0.001	0.001
12:06:00	0.000	0.000	0.000	0.000	0.001	0.001
12:12:00	0.000	0.000	0.000	0.000	0.001	0.001
12:18:00	0.000	0.000	0.000	0.000	0.001	0.001
12:24:00	0.000	0.000	0.000	0.000	0.001	0.001
12:30:00	0.000	0.000	0.000	0.000	0.001	0.001
12:36:00	0.000	0.000	0.000	0.000	0.001	0.001
12:42:00	0.000	0.000	0.000	0.000	0.001	0.001
12:48:00	0.000	0.000	0.000	0.000	0.001	0.001
12:54:00	0.000	0.000	0.000	0.000	0.001	0.001
13:00:00	0.000	0.000	0.000	0.000	0.001	0.001
13:06:00	0.000	0.000	0.000	0.000	0.001	0.001
13:12:00	0.000	0.000	0.000	0.000	0.001	0.001
13:18:00	0.000	0.000	0.000	0.000	0.001	0.001
13:24:00	0.000	0.000	0.000	0.000	0.001	0.001
13:30:00	0.000	0.000	0.000	0.000	0.001	0.001
13:36:00	0.000	0.000	0.000	0.000	0.001	0.001
13:42:00	0.000	0.000	0.000	0.000	0.001	0.001
13:48:00	0.000	0.000	0.000	0.000	0.001	0.001
13:54:00	0.000	0.000	0.000	0.000	0.001	0.001
14:00:00	0.000	0.000	0.000	0.000	0.001	0.001
14:06:00	0.000	0.000	0.000	0.000	0.001	0.001
14:12:00	0.000	0.000	0.000	0.000	0.001	0.001

Time (hh:mm:ss)	Rain (mm)	Sewer Loss (mm)	Net Rain (mm)	Runoff (m ³ /s)	Baseflow (m³/s)	Total Flow (m³/s)
14:18:00	0.000	0.000	0.000	0.000	0.001	0.001
14:24:00	0.000	0.000	0.000	0.000	0.001	0.001
14:30:00	0.000	0.000	0.000	0.000	0.001	0.001
14:36:00	0.000	0.000	0.000	0.000	0.001	0.001
14:42:00	0.000	0.000	0.000	0.000	0.001	0.001
14:48:00	0.000	0.000	0.000	0.000	0.001	0.001
14:54:00	0.000	0.000	0.000	0.000	0.001	0.001
15:00:00	0.000	0.000	0.000	0.000	0.001	0.001
15:06:00	0.000	0.000	0.000	0.000	0.001	0.001
15:12:00	0.000	0.000	0.000	0.000	0.001	0.001
15:18:00	0.000	0.000	0.000	0.000	0.001	0.001
15:24:00	0.000	0.000	0.000	0.000	0.001	0.001
15:30:00	0.000	0.000	0.000	0.000	0.001	0.001
15:36:00	0.000	0.000	0.000	0.000	0.001	0.001
15:42:00	0.000	0.000	0.000	0.000	0.001	0.001
15:48:00	0.000	0.000	0.000	0.000	0.001	0.001
15:54:00	0.000	0.000	0.000	0.000	0.001	0.001
16:00:00	0.000	0.000	0.000	0.000	0.001	0.001
16:06:00	0.000	0.000	0.000	0.000	0.001	0.001
16:12:00	0.000	0.000	0.000	0.000	0.001	0.001
16:18:00	0.000	0.000	0.000	0.000	0.001	0.001
16:24:00	0.000	0.000	0.000	0.000	0.001	0.001
16:30:00	0.000	0.000	0.000	0.000	0.001	0.001
16:36:00	0.000	0.000	0.000	0.000	0.001	0.001

Appendix

Catchment descriptors *

Name	Value	User-defined value used?
Area (km²)	0.02 [0.55]	Yes
ALTBAR	45	No
ASPBAR	260	No
ASPVAR	0.74	No
BFIHOST	0.6	No
DPLBAR (km)	0.13 [0.73]	Yes
DPSBAR (mkm-1)	13.03 [77]	Yes
FARL	1	No
LDP	1.49	No
PROPWET (mm)	0.57	No
RMED1H	11.4	No
RMED1D	45.8	No
RMED2D	62.4	No
SAAR (mm)	1394	No
SAAR4170 (mm)	1349	No
SPRHOST	40	No
Urbext2000	0.3 [0.46]	Yes
Urbext1990	0.06	No
URBCONC	0.65	No
URBLOC	0.58	No
DDF parameter C	-0.03	No
DDF parameter D1	0.45	No
DDF parameter D2	0.38	No
DDF parameter D3	0.41	No
DDF parameter E	0.28	No
DDF parameter F	2.5	No
DDF parameter C (1km grid value)	-0.03	No
DDF parameter D1 (1km grid value)	0.45	No
DDF parameter D2 (1km grid value)	0.38	No
DDF parameter D3 (1km grid value)	0.41	No
DDF parameter E (1km grid value)	0.29	No
DDF parameter F (1km grid value)	2.5	No

Values in square brackets are the original values loaded from the FEH Web Service or FEH CD-ROM

Phoenix Design Part	nership Lt	d								Page 1
Unit 9 Westway Busi:	ness Centr	е								
Marksbury, Bath										and the second
Wiltshire, BA2 9HN										Micco
Date 01/06/2023 13:36 Designed by jamesp										
File ATTENUATION 15	.1LS.SRCX		Ched	ked	l bv					Digitig
Thursday			Sour		Cont	rol	2020	1		
111110 V J 20			boui		00110		2020	• -		
Summary	of Result	s fo	or 10	, OC	vear	Rei	turn P	eriod	(+40%))
	or nebure	5 10) <u> </u>	<u> </u>	cur	1.0		01104	(100)	<u></u>
	Storm	Мах	: м	ax	Max	ĸ	Max	Sta	tus	
	Event	Leve	l De	pth	Cont	rol	Volume			
		(m)	(m)	(1/:	5)	(m³)			
1 ⊑	min Summor	9 01	4 0	814	11	5 1	278 1		0 K	
30	min Summer	9 27	5 1	014	1	5.1	396 5		0 K	
60	min Summer	9.53	1 1.	331	1	5.1	528.4		ОК	
120	min Summer	9.67	0 1.	470	1!	5.1	606.7		ОК	
180	min Summer	9.73	91.	539	1	5.1	647.3	Flood	Risk	
240	min Summer	9.77	6 1.	576	1!	5.1	669.5	Flood	Risk	
360	min Summer	9.79	91.	599	1	5.1	683.4	Flood	Risk	
480	min Summer	9.79	3 1.	593	1	5.1	680.2	Flood	Risk	
600	min Summer	9.78	84 1.	584	1	5.1	674.3	Flood	Risk	
720	min Summer	9.77	2 1.	572	1!	5.1	667.2	Flood	Risk	
960	min Summer	9.74	8 1.	548	1!	5.1	652.5	Flood	Risk	
1440	min Summer	9.68	8 1.	488	1!	5.1	617.2		ΟK	
2160	min Summer	9.59	1 1.	391	1!	5.1	561.5		ОК	
2880	min Summer	9.49	0 1.	290	1!	5.1	506.1		ОК	
4320	min Summer	9.25	5 1.	055	1!	5.1	387.2		ОК	
5760	min Summer	8.99	·5 U.	/95	1	5.l	270.0		ОК	
/200	min Summer	0.01		100 100	1:	5.⊥ 5.1	151 1		O K	
3640	min Summer	0.00		400 205	11	5.L	110 0		OK	
15	min Winter	0.55	5 U.	295 897	1: 1:	5.0	110.0 314 0		0 K	
30	min Winter	9.37	9 1	179	11	5.1	448 0		0 K	
			•		1.		110.0		0 10	
				FLO	bebo	Die	charge	Time-	Peak	
	Storm	R	aın	PIC	Joueu		scharge		Cuit	
	Storm Event	(mn	ain n/hr)	Vo	lume	V	olume	(min	s)	

	Even	t	(mm/hr)	Volume	Volume	(mins)	
				(m³)	(m³)		
15	min	Summer	112.000	0.0	297.6	26	
30	min	Summer	80.080	0.0	425.8	40	
60	min	Summer	54.600	0.0	580.4	70	
120	min	Summer	33.180	0.0	705.9	126	
180	min	Summer	24.884	0.0	794.1	186	
240	min	Summer	20.300	0.0	863.3	244	
360	min	Summer	15.213	0.0	971.0	360	
480	min	Summer	12.380	0.0	1053.6	420	
600	min	Summer	10.547	0.0	1121.9	484	
720	min	Summer	9.252	0.0	1181.0	550	
960	min	Summer	7.525	0.0	1280.4	684	
1440	min	Summer	5.618	0.0	1433.6	966	
2160	min	Summer	4.207	0.0	1611.6	1384	
2880	min	Summer	3.442	0.0	1757.1	1792	
4320	min	Summer	2.609	0.0	1998.3	2600	
5760	min	Summer	2.167	0.0	2212.7	3280	
7200	min	Summer	1.900	0.0	2424.3	3968	
8640	min	Summer	1.720	0.0	2633.4	4664	
10080	min	Summer	1.591	0.0	2842.8	5344	
15	min	Winter	112.000	0.0	333.2	26	
30	min	Winter	80.080	0.0	477.1	40	
		©	1982-20	20 Innov	vyze		

Phoenix Design Part	nership Lt	d					Page 2
Unit 9 Westway Busi	ness Centr	e					
Marksbury, Bath							
Wiltshire BA2 9HN							
	26] '.			MICLO
Date 01/06/2023 13.	30	L	esigne	ea by Ja	amesp		Drainad
File ATTENUATION 15	.1LS.SRCX	C	Checkeo	d by			Braintar
Innovyze		5	Source	Contro	1 2020	.1	
Summary	of Result	s foi	c 100 ;	year Re	turn P	eriod (+40%)	
	Storm	Max	Max	Max	Max	Status	
	Event	Level	Depth	Control	Volume		
		(m)	(m)	(l/s)	(m³)		
60	min Winter	9.656	1,456	15.1	598.5	ОК	
120	min Winter	9.813	1.613	15.1	692.1	Flood Risk	
180	min Winter	9.895	1.695	15.1	743.8	Flood Risk	
240	min Winter	9.942	1.742	15.1	774.4	Flood Risk	
360	min Winter	9.982	1.782	15.1	800.7	Flood Risk	
480	min Winter	9.985	1.785	15.1	802.3	Flood Risk	
600	min Winter	9.969	1.769	15.1	792.1	Flood Risk	
720	min Winter	9.953	1.753	15.1	781.5	Flood Risk	
960	min Winter	9.919	1.719	15.1	759.1	Flood Risk	
1440	min Winter	9.828	1.628	15.1	701.5	Flood Risk	
2160	min Winter	9.672	1.472	15.1	607.9	O K	
2880	min Winter	9.506	1.306	15.1	514.5	O K	
4320	min Winter	9.042	0.842	15.1	290.0	O K	
5760	min Winter	8.679	0.479	15.1	147.8	O K	
7200	min Winter	8.478	0.278	14.7	80.7	O K	
8640	min Winter	8.374	0.174	13.9	48.9	O K	
10080	min Winter	8.317	0.117	13.1	32.2	O K	
	Storm	Ra	in Flo	ooded Dia	scharge	Time-Peak	
	Event	(mm/	'hr) Vo	lume V	olume	(mins)	
		• •	/ ···			(

Event		(mm/hr)	Volume	Volume	(mins)	
				(m³)	(m³)	
60	min	Winter	54.600	0.0	650.4	68
120	min	Winter	33.180	0.0	790.1	124
180	min	Winter	24.884	0.0	889.2	182
240	min	Winter	20.300	0.0	966.9	238
360	min	Winter	15.213	0.0	1087.2	352
480	min	Winter	12.380	0.0	1179.5	458
600	min	Winter	10.547	0.0	1256.1	554
720	min	Winter	9.252	0.0	1322.4	578
960	min	Winter	7.525	0.0	1434.2	734
1440	min	Winter	5.617	0.0	1605.9	1044
2160	min	Winter	4.207	0.0	1804.7	1496
2880	min	Winter	3.442	0.0	1968.3	1936
4320	min	Winter	2.609	0.0	2237.8	2684
5760	min	Winter	2.167	0.0	2478.0	3288
7200	min	Winter	1.900	0.0	2715.0	3896
8640	min	Winter	1.720	0.0	2949.2	4576
10080	min	Winter	1.591	0.0	3184.0	5240

Phoenix Design Partnership Ltd		Page 3
Unit 9 Westway Business Centre		
Marksbury, Bath		
Wiltshire, BA2 9HN		Micco
Date 01/06/2023 13:36	Designed by jamesp	
File ATTENUATION 15.1LS.SRCX	Checked by	Drainage
Innovyze	Source Control 2020.1	
Ra	infall Details	
Painfall Mode	-]	
Return Period (years	s) 100	
FEH Rainfall Versio	on 2013	
Site Locatio	on GB 259500 204050 SN 59500 04050	
Summer Storr	ns Yes	
Winter Storr	ns Yes	
Cv (Summer	c) 0.750	
Cv (Winter Shortest Storm (mins	c) 0.840 s) 15	
Longest Storm (mins	s) 10080	
Climate Change	° +40	
	me Area Diagram	
Tota	al Area (ha) 1.418	
Time (mins) Area Ti From: To: (ba) Fr	me (mins) Area Time (mins) Area	
0 4 0.473	4 8 0.4/3 8 12 0.4/3	
©198	32-2020 Innovyze	

Phoenix Design Partnership Ltd				Page 4
Unit 9 Westway Business Centre				
Marksbury, Bath				
Wiltshire, BA2 9HN				Micco
Date 01/06/2023 13:36	Designed by j	amesp		
File ATTENUATION 15.1LS.SRCX	Checked by			Diamaye
Innovyze	Source Contro	1 2020.1		
<u>I</u>	Model Details			
Storage is On	line Cover Level	(m) 10 000		
	on Dond Chryst	() 10.000		
	or pona struct	ure		
Inve	rt Level (m) 8.2	00		
Depth (m) Are	ea (m ²) Depth (m)	Area (m²)		
0.000	265.0 1.800	668.2		
Hydro-Brake®	Optimum Outfl	ow Control		
Unit	Reference MD-SH	E-0162-1510-	1900-1510	
Desig	n Head (m)		1.900	
Design	Flow (l/s) Flush-Flo™	C	15.1 alculated	
	Objective Mini	mise upstrea	m storage	
A	pplication		Surface	
Sump	Available		Yes	
Invert	Level (m)		8.100	
Minimum Outlet Pipe Dia	meter (mm)		225	
Suggested Manhole Dia	meter (mm)		1500	
Control Po	ints Head (m) Flow (1/8	3)	
Design Point (Ca	alculated) 1.9	00 15	.1	
E	Flush-Flo™ 0.5	57 15 67 12	.1	
Mean Flow over H	Head Range	- 13	.0 .2	
	5			
The hydrological calculations have b	peen based on the	Head/Discha	arge relati	onship for
than a Hydro-Brake Optimum as specific than a Hydro-Brake Optimum be util:	ised then these s	storage routi	ng calcula.	tions will be
invalidated		_	-	
Dopth (m) Eleve (1/2) Dopth (m) Elev	(1/a) Dooth (m)		Dopth (m)	\mathbf{F} low (1/g)
Depen (m) FIOW (I/S) Depen (m) FIOV	(1/5) Depth (M)	FIOW (1/S)	ען) עראליקר (m)	FIOW (1/8)
0.100 5.8 1.200	12.1 3.000	18.8	7.000	28.2
	13.1 3.500	20.2	7.500	29.1
0.400 14.8 1.800	14.7 4.500) 22.8	8,500	30.0
0.500 15.0 2.000	15.5 5.000	24.0	9.000	31.8
0.600 15.1 2.200	16.2 5.500	25.1	9.500	32.6
0.800 14.7 2.400	16.9 6.000	26.2		
1.000 13.8 2.600	17.5 6.500	27.2		
©198	32-2020 Innovy	ze		