Walters Land Limited

FORMER TATA STEEL SITE, HIGH STREET, PONTARDDULAIS

Site Investigation & Proposed Remediation/Reclamation Strategy Report

14180/FG/23/SI/RevA

CLIENT: Walters Land Limited

Former Tata Steel Site, High Street, PROJECT:

Pontarddulais

TITLE:

Site Investigation & Proposed Remediation/Reclamation Strategy Report

JOB NO: 14180

DOCUMENT REF: 14180/FG/23/SI/RevA

Revision	Purpose Description	Originated	Reviewed	Authorised	Date
0	Final	LS/LP/FG	RB	HP	April 2023
А	RevA Figure 3 Layout Update & Complete Gas Monitoring	LS/LP/FG	RB	HP	Oct 2023

Geotechnical Engineers:

Intégral Géotechnique (Wales) Limited Integral House 7 Beddau Way Castlegate Business Park Caerphilly CF83 2AX

Tel: 029 2080 7991

CONTENTS

1.0 INTRODUCTION

- 1.1 General
- 1.2 Proposed Development
- 1.3 Scope of Works
- 1.4 Limitations

2.0 THE SITE

- 2.1 Site Location and Description
- 2.2 Site Operations
- 2.3 Surrounding Land Use
- 2.4 Available Site Investigation Data
- 2.5 Consultations with Regulators

3.0 SITE HISTORY

4.0 SITE ENVIRONMENTAL SETTING

- 4.1 Physical Setting
- 4.2 Geology
- 4.3 Radon
- 4.4 Mining
- 4.5 Hydrology, Hydrogeology & Flood Risk
- 4.6 Landfill Sites
- 4.7 Potential Contamination
- 4.8 Other Environmental Issues

5.0 PRELIMINARY CONCEPTUAL SITE MODEL

- 5.1 Risk Assessment Framework
- 5.2 Conceptual Model Framework
- 5.3 Critical Sensitive Receptor Human Health
- 5.4 Critical Sensitive Receptor Controlled Waters
- 5.5 Potential Contaminant Sources
- 5.6 Potential Exposure Pathways
- 5.7 Summary of Conceptual Exposure Model

6.0 THE SITE INVESTIGATION

- 6.1 Fieldworks
- 6.2 Field Observations
- 6.3 Laboratory Chemical Testing
- 6.4 Laboratory Geotechnical Testing
- 6.5 Groundwater Monitoring
- 6.6 In-situ Gas Monitoring

CONTENTS (CONTINUED)

7.0 GROUND CONDITIONS

- 7.1 Northern Site Area
- 7.2 Southern Site Area
- 7.3 Deeper Ground Conditions
- 7.4 Stockpiles
- 7.5 Groundwater
- 7.6 Soil Infiltration Testing
- 7.7 Laboratory Geotechnical Testing

8.0 CONTAMINATION

- 8.1 Averaging Areas
- 8.2 Soil Contamination
- 8.3 Groundwater Contamination
- 8.4 Ground Gas

9.0 REVISED CONCEPTUAL EXPOSURE MODEL

10.0 RISK ASSESSMENT

- 10.1 Methodology
- 10.2 Source-Pathway-Receptor-Model
- 10.3 Human Health Risk Assessment
- 10.4 Risks to Vegetation
- 10.5 Controlled Waters Risk Assessment
- 10.6 Ground and Mine Gas Risk Assessment
- 10.7 Risks to Buildings and Materials Durability
- 10.8 Waste Disposal
- 10.9 Uncertainties

11.0 COAL MINING RISK ASSESSMENT

12.0 ENGINEERING CONSIDERATIONS & RECOMMENDATIONS

- 12.1 Details of Proposed Development
- 12.2 Site Preparation, Reclamation and Remediation
- 12.3 Foundations and Floor Slabs
- 12.4 Excavations and Formations
- 12.5 Access Roads and Car Parking Areas
- 12.6 Drainage
- 12.7 Certification/Validation Works

CONTENTS (CONTINUED)

APPENDICES

Appendix A	Envirocheck Report
Appendix B	Landmark Radon Information Map
Appendix C	Consultants Coal Mining report from The Coal Authority
Appendix D	Trial Pit Logs
Appendix E	Windowless Sample Borehole Logs
Appendix F	Shell and Auger Borehole Logs
Appendix G	Rotary Borehole Logs
Appendix H	Soil Infiltration Testing Results
Appendix I	Laboratory Chemical Test Results (Soils)
Appendix J	Laboratory Chemical Test Results (Water)
Appendix K	Laboratory Geotechnical Test Results
Appendix L	In-situ Ground Gas Monitoring Results
Appendix M	Groundwater Monitoring Results
Appendix N	Summary of Laboratory Chemical Test Results (Soils)
Appendix O	Summary of Laboratory Chemical Test Results (Water)
Appendix P	Metal Bioavailability Assessment Results

FIGURES

Figure 1	Site Location Plan
Figure 2	Existing Site Layout Site Plan
Figure 3	Site Proposed Layout Plan
Figure 4	Exploratory Hole Location Plan
Figure 5	Groundwater Contour Plot
Figure 6	Historical Extraction Pits Location Plan
Figure 7	Foundation Zone Plan

1.0 Introduction

1.1 GENERAL

Walters Land Limited are proposing to redevelop the former Tata site in Pontarddulais for residential end-use, see Figure 1.

The site comprises the former Corus Strip Products UK production facility with various buildings still present within the site. The site was used to manufacture aluminium coated steel strip for the automotive and other industries before closure of the site in 2009.

The site was decommissioned in 2009.

The site remained vacant and non-operational and was vacated in 2012. After this time the site was used as a warehouse/store.

The site was acquired by Walters Land Limited in 2023 for proposed residential redevelopment. The existing site layout is shown in Figure 2.

Intégral Géotechnique (Wales) Limited have been appointed as the Geotechnical Engineers to undertake a site investigation to enable a geotechnical and geoenvironmental appraisal of the site and provide a basis for design.

This report presents the findings of the site investigation and gives recommendations for the design of foundations, floor slabs and other geotechnical and geoenvironmental aspects of the project.

This report (including all appendices to it and any subsequent addendums or correspondence) has been prepared for the sole benefit, use and information of Walters Land Limited and no third party is entitled or permitted to rely on it. This report may not be used, reproduced or circulated (in whole or part) for any purpose without the written consent of Intégral Géotechnique (Wales) Limited. Intégral Géotechnique (Wales) Limited shall not be liable to any third party who does not have such express written permission to rely on the report for any losses they may suffer.

1.2 PROPOSED DEVELOPMENT

The proposed development will comprise the demolition of the existing Tata buildings and infrastructure and the construction of a new residential development. The development will comprise the construction of a number of housing units with associated carparking and access roads with additional areas proposed as play areas and public open space.

1.2 PROPOSED DEVELOPMENT (CONTINUED)

The current proposed site layout is provided in the Illustrative Masterplan by Hammond Architectural Ltd, drawing number IM-01 Revision A dated September 2023, see Figure 3.

1.3 SCOPE OF WORKS

The work instructed included a desk study of available information, site reconnaissance and intrusive investigation. This was followed by laboratory testing, on site monitoring and geotechnical and geoenvironmental reporting.

The desk study comprised a review of:

- An Envirocheck Report obtained for the site,
- Old Ordnance Survey maps covering the site, included within the Envirocheck Report,
- A Radon Information Map obtained from Landmark,
- A Consultants Coal Mining Report obtained from The Coal Authority,
- Geological maps of the area provided by the British Geological Survey,
- Natural Resources Wales groundwater vulnerability map and aquifer database for the area.
- Existing site investigation data (if available).

The desk study information was used to make an initial assessment of the site and to design an investigation to be carried out by Intégral Géotechnique. The site investigation was designed in accordance with BS 5930:2015+A1:2020, the Code of Practice for Site Investigations, BS10175:2011+A2:2017, the code of practice for investigation of potentially contaminated sites, and 'Development of Land Affected by Contamination: A Guide for Developers' prepared by Welsh Local Government Association (WLGA)/Natural Resources Wales (NRW) Land Contamination Working Group, 2017.

The site investigation included:

- An intrusive investigation carried out on 7th to 27th and 29th of March 2023, and 13th to 17th April 2023 comprising trial pits, soil infiltration testing, shell and auger boreholes, windowless sample boreholes and rotary probeholes,
- Sampling of soil/fill for laboratory chemical and geotechnical testing,
- Sampling of groundwater for laboratory chemical testing,
- Monitoring for concentrations of methane, carbon dioxide, oxygen, hydrocarbon vapours and gas flow.

1.4 LIMITATIONS

This document is intended to be a working document for further development in discussion with all concerned including the Local Planning Authority, Natural Resources Wales, and the NHBC as appropriate.

"Contamination" is taken throughout the report to mean the "presence of one or more potentially harmful substances as a result of human activity". The use of the term in this way does not imply that harm is being or might be caused by the contamination.

It should be noted that "contamination" can have different meanings under different regulatory regimes, for example, planning, building control and Part IIA of the Environmental Protection Act 1990. Naturally elevated concentrations of potentially harmful substances may also be of concern and the significance of any that have been found is also evaluated in this report.

It is important to recognise that there may be areas of contamination that have not been found, or that contaminants are present at concentrations above those that have been found. It is also important to recognise that contamination may be localised and that no investigation, however comprehensive, is capable of finding such occurrences other than by chance.

It should also be noted that vertical and lateral changes in ground conditions may be present between exploratory hole locations.

Access for the intrusive site investigation was limited at the time due to active and vacant buildings, areas of hardstanding and services.

2.0 THE SITE

2.1 SITE LOCATION AND DESCRIPTION

The site is located in Pontarddulais at a National Grid Reference of 259040, 204290, see Figure 1.

The site is irregular in shape and occupies an area of approximately 5.3 hectares. The boundaries of the site are defined by commercial buildings to the north, Woodville Street and residential buildings to the east, High Street to the south and a railway line to the west. A site plan is presented in Figure 2.

The majority of the site is relatively flat, sloping very gently towards the southwest from an approximate elevation of 14m AOD in the northeast, dropping to 10m AOD in the southwest. Much of the site has been reprofiled and levelled for its development throughout its history.

There are a number of buildings within the site boundary, including a main works building with six bays, detached office and amenities buildings, and two detached storage buildings.

The main building comprises a large factory building occupying much of the western site area. The northern half of the buildings looks to be older and constructed of brick. The rest of the buildings is a steel framed building with stone masonry extensions on the southeastern corner. A production line and overhead crane and gantry remain, specifically within the eastern side of the building. The western side of the building comprised a loading bay. The northern brick extension of the building is empty.

At the north-western corner of the main building an old brickwork structure is present, covered in sheet metal. This feature is considered to be a old fuel tank stand.

A two-storey masonry/stone building is present directly to the south of the main works building, with additional adjoining buildings. It is considered these comprised offices. An additional detached two-story square building was also present to the south of the main works building. An electrical substation is present in the northern part of the building, with exposed wires spread all throughout the interior flooring.

Two detached metal clad garages were present to the southeast, on the site boundary. The land surrounding these sheds is densely overgrown.

Additional lean-to open structures were present in the northern part of the site. These were bunded and signs indicated that these were used to store oils.

2.1 SITE LOCATION AND DESCRIPTION (CONTINUED)

The remaining site area is generally laid to both hardstanding and vegetation comprising exposed concrete foundations, bituminous material, grass and trees.

Generally, the hardstanding areas are limited to the southern and western portions of the site with the exception of the interior access road trending north south through the middle of the site. Areas laid to vegetation exist within the eastern, southeastern and northern portion of the site. Access into the site is afforded through the southwestern gate however two further, gates exist within the southeastern and eastern boundaries of the site. The northern portion of the site is accessed via an internal gate.

The northern portion of the site remains mostly undeveloped and had been cleared of vegetation at the time of the site works. A rectangular compound was present in the western part of this area that previously accommodated two gasometers.

Within the central site area of the site there are two disused water towers and exposed concrete foundations which previously housed nitrogen and hydrogen holding tanks. A water well was present to the south of the water towers. Along the eastern wall of the warehouse there is a large industrial ventilation shaft approximately 7m in diameter. Additionally, three large stockpiles exist within the eastern site area. The stockpiles contain various materials and are covered in dense vegetation and mature trees, suggesting they are relatively old in origin.

A pond was present in the southern area of the site, surrounded by palisade fencing and very dense vegetation.

At the time of the site investigation several areas of the site were undergoing vegetation clearance. Some internal stripping works of the factory building were ongoing.

2.2 SITE OPERATIONS

At the time of the fieldworks the site was vacant and not in operation.

2.3 SURROUNDING LAND USE

The surrounding areas are generally developed for industrial, commercial and residential usage. A railway line is present running northeast to southwest along the western boundary of the site.

2.4 AVAILABLE SITE INVESTIGATION DATA

A Land Condition Report Document Reference 778181-MLM-ZZ-XX-RP-J-0001 dated 20/12/2019 was prepared by MLM Consulting Engineers on behalf of Rosedale Property Holdings Limited and has been made available for review.

The report provided a detailed desk study of the site and provided recommendations for future intrusive works including targeted sampling and testing of soils and groundwater to reflect the historic land uses and appropriate monitoring for ground gas.

The Land Condition Report discussed additional available reports which are discussed below:

Corus UK Limited prepared a Surrender Site Condition Report which was prepared in May 2009 when manufacturing operations ceased. The report confirmed that permitting activities had stopped and that decommissioning was complete with pollution risks removed. The majority of process equipment and storage tanks were drained and removed off site. The concrete hardstanding was examined and confirmed to be in good condition. An intrusive investigation was undertaken at this time due to an issue with the bund within the oil and diesel storage area. Eight window sample boreholes were drilled within the area of the bund and twenty-three sample were scheduled for laboratory chemical analysis. The boreholes encountered concrete hardstanding up to 0.4m thick underlain by made ground up to 0.5m thick comprising brown to orange gravelly sands with slag, brick and coal. Insitu materials comprising brown to yellow sandy clays which were gravelly in places were proven down to 3.0m depth. The samples from the boreholes were tested for TPH concentrations. All the samples tested indicated concentrations below the limits of detection with the exception of one sample. However, this elevated concentration was considerably less than values recorded when the permit application was originally made. It was therefore concluded that the permitted activities had not impacted the land.

Tata Steel produced a Site Risk Management Plan in 2019 when the site was vacant and non-operational. The site was vacated in 2012 and then used as a store. Significant site hazards were identified in the plan included floor pits, guano, asbestos materials, machinery and invasive plant species. The report identified the sources of contamination as a substation and transformers, old stores, tanks, well, process lines and exhaust stack.

A Japanese Knotweed Survey was undertaken by MLM in 2019. Japanese Knotweed was identified throughout the site and Himalayan Balsam was recorded in the west along the railway line. It was recommended the management of the Japanese Knotweed would be required prior to development.

2.5 CONSULTATIONS WITH REGULATORS

The regulators have not been contacted at this stage.

3.0 SITE HISTORY

The recent history of the site has been traced with the aid of an Envirocheck Report, a copy of which is included in Appendix A. The Envirocheck Report includes the following scaled historical maps:

Map Scale	Dates
1:2,500	1879, 1889, 1906,1916, 1960, 1972-1974, 1978-1988, 1988-1992, 1992, 1993, 1993-1994, 1996, 2001(Aerial Photo)
1:10,560	1883, 1889, 1900-1901, 1907-1908, 1921, 1938-1953, 1938, 1952,
1:10,000	1964-1965, 1976, 1980-1988, 1988, 1991-1993, 1999, 2006, 2022

The earliest edition of the map dated 1879 indicated Glamorgan Works (Tin Plate) to be present within the south western area of the site. A Gasometer was located adjacent to Glamorgan Works within the southern area of the site. A railway track/tramway entered the site from the southwest corner to access all the works buildings and another ran along the western edge of the site. The northern and eastern areas of the site were undeveloped and mainly covered with rough grass and vegetation. Marsh land was indicated within the southwest area of the site and possibly included evidence of a pond feature. A gravel pit was present within the centre of the site to the north of Glamorgan Works and accessed via the railway track/tramway. The Llanelly, Llandilo and Section of the Great Western Railway formed the western boundary of the site. Beyond the road to the east of the site a residential development was indicated to be present. The River Loughor was present approximately 140m west of the site at the nearest point. A tin plate works called "Pontardulais Works" was indicated to be present approximately 70m south of the site. Four wells were indicated to be present between approximately 40m and 100m to the east and southeast of the site. A quarry was indicated approximately 150m east of the site boundary. The main development at this time was within Pontarddulais approximately 250m south of the site boundary. A further Gas Works was indicated to be present approximately 80m to the southwest beyond the railway.

The 1899 edition of the map indicated the buildings associated with Glamorgan Works had expanded and a well was indicated adjacent to the buildings on the western edge of the site. The railway which formed the western boundary of the site was now more extensive with additional tracks. The railway track had also been extended to now also access an Iron and Brass Foundry which had been constructed to the north of the original works buildings. There was no longer any evidence of the gravel pit within the site, but a mound of material was indicated to the east of the foundry building.

3.0 SITE HISTORY (CONTINUED)

The Gasometer within the southern area of the site were no longer indicated to be present. Rough grass and marshy ground was no longer indicated within the site, but additional potential pond features were noted within the south and southwest areas. The road which formed the southern boundary of the site was now known as High Street. Residential development continued to the east of the site with the road to the east now known as Woodfield Street. The Pontardulais Works to the south had been significantly extended and was now known as Clayton Works (Tin Plate). Teilo Works (Tin Plate) had also been constructed approximately 160m to the south of the site to the southeast of Clayton Works. These new works were accessed via a network of tracks which connected into the main railway to the west.

The edition of the map dated 1906 did not indicate significant changes to the site or the immediate surrounding areas.

The edition of the map dated 1916 indicated the works building had been extended slightly as had the foundry building. The spoil mound to the east of the foundry had increased in size. Residential development continued to the east of the site. The works buildings to the south of the site had also expanded.

The 1960 edition of the map indicated the Iron and Brass Foundry had been demolished. The other works building had been extended and new buildings constructed to the east of the main building and on the southern edge of the site. The potential pond features within the southwest area of the site were now labelled as "water". The railway to the west had expanded once more as additional tracks were constructed. The works buildings to the south of the site continued to expand and be operational.

By the 1972-1974 edition of the map the original works building had been extended and was now a Coated Metal Works with the building extending up to the western boundary. Additional tanks and associated structures were indicated in the vicinity of the main building. The tracks had been removed from site and the railway to the west was less extensive. A car park was now present within the centre of the site to the east of the main building. The spoil mound was no longer evident and likely to have been cleared/reprofiled in order to construct the car park. The northern area of the site remained undeveloped.

The works buildings to the south of the site had been reconfigured and now included a Tinplate Works, a Steel Works and an Engineering Equipment Works. A new Engineering Works had also been constructed to the north of the site.

3.0 SITE HISTORY (CONTINUED)

The edition of the map dated 1978-1988 indicated the site to have remained relatively unchanged apart from a slight expansion of the main building. The buildings to the north of the site were now indicated to be part of Pontarddulais Industrial Estate.

Minor changes occurred within the site over the subsequent years, but the main building remained. The aerial image dated 2001 indicated the southern, northern and eastern areas of the site to be covered in rough vegetation and trees. A new access track was also indicated across the site and with areas of hardstanding around the building.

The site remained relatively unchanged over the subsequent years. The works buildings to the south were mostly demolished by 2006 and completed demolished by 2010. The area was redeveloped for residential housing.

4.0 SITE ENVIRONMENTAL SETTING

4.1 PHYSICAL SETTING

The site is located om the northwest edge of Pontarddulais within a mixed residential and commercial setting. The site is gently sloping from an approximate maximum elevation of 14m AOD within the northern undeveloped area falling to an approximate minimum elevation of 10m AOD across the remaining site area. There are localised changes in height achieved by changes in hardstanding, concrete slab level and spoil stockpiles.

The site is located in an area of mixed use with residential properties to the, east, a railway line and open vegetated land to the west and commercial and industrial developments to the north and south. The River Loughor flows beyond the railway line to the west of the site.

4.2 GEOLOGY

The 1:50,000 and 1:10,560 (Sheet SN 50 SE) scale geological maps of the area indicate the eastern area of the site to be underlain by strata of the Swansea Member of the Carboniferous period. These rocks typically comprise green-grey Pennant sandstones with thin mudstone/siltstone and seatearth interbeds, and mainly thin coals. The southeast corner of the site is indicated to be underlain by strata of the Grovesend Formation, also of the Carboniferous period. These rocks typically comprise mudstones and siltstones, with well-developed coals and minor Pennant sandstones. The western area of the site is indicated to be underlain by the Hughes Member of the Carboniferous period. These rocks typically comprise green-grey Pennant sandstones, with thin mudstone/siltstone and seatearth interbeds, and mainly thin coals. The geology map indicates the dip of strata in the vicinity of the site to be approximately 12° to 15° in a southerly to south westerly direction. The north-south trending Grovesend Fault is located approximately through the centre of the site hence the variable solid geology between the western and eastern area of the site.

The conjectural outcrop of the Swansea Four Fee seam is indicated to terminate at the fault beneath the southeastern corner of the site. Due to the southerly strata dips this seam would be anticipated to underlie the southeast corner of the site at shallow depths The horizon of Cille No.1 seam is indicated to terminate at the fault at the north western boundary of the site. Due to the southerly strata dips this seam could underlie the western area of the site, to the west of the fault at shallow depths, with the seam deepening in a southerly direction.

4.2 GEOLOGY (CONTINUED)

Superficial Glaciofluvial Deposits of the Quaternary period are indicated to overlie the solid strata. These deposits would be typically poorly sorted and variable in nature comprising sands and gravel.

Due to the past developments within the site the superficial deposits would be anticipated to be overlain by a layer of made ground and/or reworked materials of unknown but variable thickness.

A summary of the anticipated geological succession is given below in Table 1.

	Table 1: Summary of Anticipated Site Geology			
Geological unit	Horizon	Description		
Recent	Made ground	Various materials		
Quaternary	Glaciofluvial Deposits	Poorly sorted and variable sands and gravel		
Carboniferous	Swansea Member Green-grey Pennant sandstones with the mudstone/siltstone and seatearth interbeth thin coals			
	Grovesend Formation (southeast corner)	Mudstones and siltstones, with well-developed coals and minor Pennant sandstones		
	Hughes Member (western area)	Green-grey Pennant sandstones with thin mudstone/siltstone and seatearth interbeds, and mainly thin coals		

4.3 RADON

Information with regard to Radon Protective Measures is provided within the Envirocheck Report and on the Landmark Radon Information Report Map as presented in Appendices A and B respectively. The report and the map indicate that the site is located within a low probability area, as less than 1% of properties are above action level, and that therefore no radon protective measures would be necessary in the construction of new buildings within the site.

4.4 MINING

The site is located within a coal mining reporting area and therefore a Consultants Coal Mining Report has been obtained from the Coal Authority and a copy is included in Appendix C.

The Coal Authority states that there is "no past mining recorded".

The Coal Authority state that probable unrecorded workings is "none". However, this does not mean that shallow unrecorded workings do not exist, but rather any information to support this has not come into the possession of the Coal Authority. However, it should be noted that according to The Coal Authority records there are two proven coal outcrops indicated in the vicinity of the site with the Swansea Four Feet seam (referred to as the Mynyddislwyn Lower Leaf by The Coal Authority) terminating at the fault beneath the southeast corner and the horizon of the Cille No. 1 (referred to as the Darren Ddu by The Coal Authority) terminating at the fault on the northwest boundary of the site. The risk of unrecorded workings within these seams beneath the southeast corner and northwest area of the site respectively should not be ruled out. The next seam below the Swansea Four Feet in the sequence is the Swansea Five feet seam, which is approximately 200ft (60m) further down and would therefore not underlie the site at shallow depths. The next seam below the Cille No. 1 in the sequence is the Hughes seam which is approximately 300ft (90m) further down and would also therefore not underlie the site at shallow depths.

The Coal Authority indicates that there are no mine entries recorded on site or within 100m of the site boundary.

The Coal Authority confirms that there is a fault recorded to cross the site. The geology maps indicate this to be the Grovesend Fault. The coal outcrops in the vicinity of the site terminate at the fault.

The Coal Authority states that with regards to mine gas, none has been recorded within 500m of the site boundary. However, due to the site being located within a coal mining reporting area, a mine gas risk assessment should always be undertaken within coal mining areas in order to satisfy the guidelines within CL:AIRE document Good Practice for Risk Assessment for Coal Mine Gas Emissions, dated October 2021. (See Section 10.6).

Based on the information provided by the geology maps and the general knowledge of the seams in the area, the risk of unrecorded shallow workings should not be ruled out. The risk would be localised to the southeast and northwest areas of the site.

4.4 MINING (CONTINUED)

The Coal Authority interactive map indicates that the site is located within a high-risk development area due to the horizon of Cille No.1/Darren Ddu Seam and the outcrop Swansea Four Feet/Mynyddislwyn Lower Leaf seam.

Due to the potential for unrecorded shallow mine workings beneath the site, the risk of ground subsidence arising from unrecorded shallow mine workings is uncertain. As such, intrusive works, in the form of rotary probeholes, would be required in order to confirm the depth, thickness and condition of any shallow seams, namely the Swansea Four Feet/ Mynyddislwyn Lower Leaf and the Cille No.1/Darren Ddu seams. This would enable the extent of the high-risk area to be confirmed. A watching brief is also recommended during site works for the presence of any unrecorded mine entries. Should any unrecorded shallow workings be encountered it is recommended that standpipes are installed, and a programme of gas monitoring is undertaken in order to assist in the mine gas risk assessment for the site.

4.5 HYDROLOGY, HYDROGEOLOGY AND FLOOD RISK

The Envirocheck Report indicates the nearest surface water feature to be located 33m to the southwest. The OS Water Network Lines map indicates this to be an unnamed inland river which flows west before joining the River Loughor located 153m west which flows south towards Carmarthen Bay.

The Natural Resources Wales groundwater vulnerability map and aquifer database classifies the bedrock beneath the site as a Secondary 'A' Aquifer. Secondary 'A' Aquifers are permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers. These are generally aquifers formerly classified as minor aquifers.

The Natural Resources Wales groundwater vulnerability map and aquifer database also classifies the superficial deposits beneath the site as a Secondary 'A' Aquifer.

A perched water body could be encountered within the made ground or within the more granular superficial deposits.

It is considered possible that the existing site drainage could act as a pathway for potential surface contaminants.

4.5 HYDROLOGY, HYDROGEOLOGY AND FLOOD RISK (CONTINUED)

There is one effective discharge consent recorded within 250m of the site boundary. The consent was registered 24m to the south for trade and other matter discharge operated by Corus UK Limited with the discharge received by the River Loughor.

The Envirocheck Report states that there are seven water abstractions registered on-site and operated by both Corus UK Ltd and Tata Steel UK Ltd. All the abstractions are single point groundwater abstractions from underground strata with the water used as metal process water. No additional water abstractions are recorded within 1km of the site boundary.

Tables 2 and 3 present a summary of the hydrological features and key hydrogeological nature of the site.

	Table 2: Summary of Site Hydrology					
Feature	Distance from site	Flow	Classification	Abstraction	Discharge	
Unnamed surface water feature	33m southwest	Western	Inland river	No	River Loughor	
River Loughor	153m west	Southern	Inland river	No	Carmarthen Bay	
Surface run- off	On site	Flows into site drainage	N/A	No	Not known	
Site Drainage	On site	Not known	N/A	No	Not known	

	Table 3: Summary of Site Hydrogeology				
Geological Unit	Aquifer Classification	Aquifer Characteristics	Source Protection Zone	Groundwater Abstractions	
Made ground	Not classified	Highly variable permeability and porosity. Perched water may be present with variable flow directions.	No	None	
Glaciofluvial Deposits	Secondary A Aquifer	Variable moderate permeability and porosity sands and gravels capable of supporting water supplies at a local rather than strategic scale	No	None	

4.5 HYDROLOGY, HYDROGEOLOGY AND FLOOD RISK (CONTINUED)

	Table 3: Summary of Site Hydrogeology (Continued)				
Geological Unit	Aquifer Classification	Aquifer Characteristics	Source Protection Zone	Groundwater Abstractions	
Swansea Member, Hughes Beds and Grovesend Formation	Secondary A Aquifer	Variable moderate permeability sandstones or mudstones/siltstones, with thin mudstone/siltstone or sandstone and thin to well-developed coals capable of supporting water supplies at a local rather than strategic scale	No	Yes	

The Groundwater Vulnerability map of the area as presented within the Envirocheck Report indicates the secondary superficial aquifer to have a high vulnerability. The pollutant speed is high with well-connected fractures.

The Natural Resources Wales Flood Risk map as presented within the Envirocheck Report indicates that the south and western area of the site is at risk of extreme flooding from rivers or sea without defences. It should be noted that the majority of the southwest area of the site is located within an area which is benefitting from flood defences.

The Natural Resources Wales Surface Water Flood Risk map as presented within the Envirocheck Report indicates that the majority of the site is not at a high-risk of surface water flooding. However, the map indicates that localised areas across the site, but generally in the vicinity of the buildings and the southern area of the site, are at a high-risk of surface water flooding (1 in 30-year flood extent).

The BGS Groundwater Flooding Susceptibility map as presented within the Envirocheck Report indicates the majority of the site has limited potential for groundwater flooding to occur. The southern area of the site is indicated to have potential for groundwater flooding to occur at surface and with the southwest corner having potential for groundwater flooding of property situated below ground level.

4.6 LANDFILL SITES

The Envirocheck Report indicates that there are no BGS recorded, historical or local authority recorded landfill sites or any licensed waste management facilities located within 250m of the site boundary. The nearest recorded historical landfill is located 445m to the southwest where deposited waste included inert, industrial and household waste and the last input date was 31st December 1985.

4.6 LANDFILL SITES (CONTINUED)

There are no records of potentially infilled land (non-water) within 250m of the site boundary.

There are ten areas of potentially infilled land (water) recorded both on-site and within 250m of the site boundary. The on-site feature was recorded within the southern area of the site at the location of a former pond. The other areas were recorded between 120m and 239m to the south, the west and the southeast of the site at the location of former ponds and surface water features.

4.7 POTENTIAL CONTAMINATION

Previous Uses

The various activities in the vicinity of the site which may have resulted in ground or water resource contamination on this site are listed below in Tables 4 and 5. Reference to Department of the Environment Industry Profiles has been made and a summary of the potential contaminants can be found in the tables.

Table 4: Potential Contaminants

Land Use: Tin Plate/Gasometer/Coated Metal Works/foundry from pre-1880's including tramways/rail tracks which crossed the site, and subsequent changes of site use

Material/Process	Contamination/Hazard	Evidence
Construction of buildings within the site pre-1880 to the 1990's including reconfiguration over the years and also construction of tramways/rail tracks which would have caused ground disturbance and may have utilised imported materials of unknown origin	Metals, semi metals, non- metals, PAH, asbestos	Historical maps
Various industrial uses of the buildings up to most recent years including a metal works, an iron and brass foundry and the localised use of the gasometer within the southern area of the site	Metals, semi metals, non- metals, PAH, asbestos, VPH/EPH, BTEX, PCB's, VOC, SVOC	Historical maps and D of E Industry Profiles
Use and maintenance of the tracks including potential spillages of fuels/oils	Petroleum hydrocarbons- fuels/oils	Anecdotal
Spoil mounds of unknown material.	Metals, semi metals, non- metals, PAH, asbestos	Historical maps

4.7 POTENTIAL CONTAMINATION (CONTINUED)

Table 4: Potential Contaminants (Continued)				
Material/Process	Contamination/Hazard	Evidence		
Localised potential infilling of former gravel pits within the site with the infill materials comprising imported materials of unknown origin	Metals, semi metals, non- metals, PAH, asbestos	Historical maps		
Northern area of the site remaining historically undeveloped	No potential contaminants	Historical maps		

Existing Uses

At the time of the fieldworks the site was undergoing early-stage remedial works comprising building stripping and vegetation clearance. The existing site uses would not add any additional contamination concerns.

Adjacent Site Uses

Table 5 : Potential Contaminants : Adjacent Site Uses				
Potential Contamination Source	Boundary	Associated Contaminants and Hazards		
Residential development	Eastern	No Potential Contaminants		
Railway	Western	No Potential Contaminants		
Commercial development	Northern	No Potential Contaminants		
Mixed commercial, residential and undeveloped land	Southern	No Potential Contaminants		

4.8 OTHER ENVIRONMENTAL ISSUES

The Envirocheck Report indicates that environmentally sensitive land has not been identified within 250m of the site boundary.

The Envirocheck Report indicates a Local Authority Integrated Pollution Prevention and Control permit is in place for the site associated with the production and processing of metals.

4.8 OTHER ENVIRONMENTAL ISSUES (CONTINUED)

The Envirocheck Report indicates that there have been no pollution incidents to controlled waters recorded on site but six recorded within 250m of the site boundary. The nearest incident was a Category 2-Significant Incident involving an unknown pollutant recorded 128m to the south of the site.

Two Category 3-Minor Incidents were recorded 191m to the southwest and 221m to the south involving an unknown pollutant and tip leachate respectively.

A further significant incident was recorded 232m and another minor incident was recorded 235m to the southwest involving an unknown pollutant. An additional significant incident involving mud/clay/soil was recorded 246m to the southwest.

There have been no substantiated pollution incidents registered on site or recorded within 1km of the site boundary.

There have been no prosecutions relating to controlled waters or to authorised processes recorded on site or recorded within 250m of the site boundary. The nearest prosecution relating to authorised processes was recorded 286m south of the site at Ace Autospares where the prosecution was for illegal storage and disposal of controlled waste. A guilty verdict was reached, and a fine was issued.

The on-site Contemporary Trade Directory entry for spraying paint and coating is no longer active. The nearest active entries are located within the commercial area to the north including a commercial vehicle servicing business located 11m to the north. Other active entries include a commercial cleaning service located 43m to the northeast, a garage located 205m to the southwest and a precision engineers located 241m to the northeast. Many of these entries are also listed as Points of Interest-Commercial Services.

There are a number of tanks located within the site and also the works buildings themselves are all registered as Points of Interest-Manufacturing and Production.

Vegetation is presented across much of the site area. It is advised that a full invasive/pest plant species survey is undertaken across the entire site area. A scheme for the eradication and removal of any identified invasive plant species will be required.

5.0 PRELIMINARY CONCEPTUAL SITE MODEL

5.1 RISK ASSESSMENT FRAMEWORK

In order to be consistent with current UK government policies and legislation, it is necessary to identify, assess, estimate, evaluate, and take appropriate action to deal with land contamination, in accordance with the procedures specified in the Environment Agency guidance Land Contamination Risk Management (LCRM) published in October 2020. This replaces the now withdrawn 'Model Procedures for the Management of Land Contamination CLR-11' (Environment Agency 2004).

The risk assessment process is designed to provide a reasoned, structured and pragmatic mechanism for the identification of any potential human health and controlled waters risks associated with land contamination and where necessary to develop a robust remediation strategy to ensure protection of the sensitive receptors (human health of future residents, controlled waters, etc).

In accordance with LCRM, the term 'land contamination' is defined as:

- All land affected by contamination land that might have contamination present which may, or may or may not, meet the statutory definition of contaminated land,
- Land determined as contaminated land under Part 2A of the Environmental Protection Act 1990.

LCRM provides a tiered approach to risk assessment, comprising a preliminary risk assessment (including the development of an initial conceptual site model), a generic quantitative risk assessment and a detailed quantitative risk assessment. For each tier of risk assessment, the following steps must be followed:

- 1. Identify the hazard establish contaminant sources,
- 2. Assess the hazard use a source-pathway-receptor linkage approach to determine if there is potential for unacceptable risk,
- Estimate the risk predict what degree of harm or pollution may result and how likely it is to occur, and
- 4. Evaluate the risk decide whether a risk is unacceptable.

LCRM also provides definitions of the following terms:

 Hazard – a property or situation that in particular circumstances could lead to harm or pollution,

5.1 RISK ASSESSMENT FRAMEWORK (CONTINUED)

- Risk a combination of the probability, or frequency of occurrence of a defined hazard and the magnitude of the consequences of the occurrence,
- Risk assessment the formal process of identifying, assessing and evaluating the health and environmental risks that may be associated with a hazard,
- Risk management the formal process to identify, assess and determine the risks, and to select and take action to mitigate them.

The three essential elements to any risk are defined by LCRM as follows:

- A contaminant, or pollutant, that is in, on, or under the land and that has the potential to cause harm, or pollution (Source)
- A route by which a receptor is, or could be affected by a contaminant (Pathway)
- A receptor, i.e. something that could be adversely affected by a contaminant, for example a person, controlled waters, an organism, an ecosystem, or Part 2A receptors such as buildings, crops or animals (Receptor).

In order for there to be a potential risk, all three of the above elements must be present. If there is a source of contamination and a receptor (for example a resident or site user), then there is only a potential risk if there is a pathway linking the two. Such an active pathway is known as a relevant pollutant linkage. It is possible for the same contaminant to be linked to a receptor via a number of pathways, and hence it is important that all relevant pollutant linkages, to both human health and controlled waters, are separately identified on a site in order that a comprehensive conceptual model can be formed and ultimately a robust remediation strategy designed.

Current practice during Generic Quantitative Risk Assessment of land affected by contamination is to use generic soil screening values based on the appropriate proposed end use. These usually comprise risk based Soil Guideline values (SGVs) or Generic Assessment Criteria (GACs) derived by the Environment Agency's Contaminated Land Exposure Assessment Model (CLEA). The SGVs and the supporting technical guidance were developed in order to assist in the assessment of long term risk to human health from the exposure to contaminated soils.

Revised Statutory Guidance, published in 2012, to support Part 2A of the Environmental Protection Act 1990, introduced a new four category system for classifying land under Part 2A. Category 1 includes land where the level of risk is clearly unacceptable and Category 4 includes land where the level of risk posed is considered to be acceptably low. Under Part 2A, land would be determined as contaminated if it falls within Categories 1 or 2.

5.1 RISK ASSESSMENT FRAMEWORK (CONTINUED)

The revised Part 2A Statutory Guidance was accompanied by an Impact Assessment that identified a role for new 'Category 4 Screening Levels' (C4SLs) that would provide a simple test for determining when land is suitable for use and definitely not contaminated land. A Policy Companion Document including the C4SLs was published in March 2014 (England) and May 2014 (Wales).

The C4SLs have been based on the CLEA methodology and derived using the CLEA model, with modified toxicological and exposure parameters. To date, C4SLs have been released for six substances (arsenic, cadmium, chromium (VI), lead, benzo(a)pyrene and benzene).

The C4SLs have been derived on the assumption that where they exist, they will be used as generic screening criteria within generic quantitative risk assessment.

Following publication of the C4SLs, Land Quality Management (LQM), in conjunction with the Chartered Institute for Environmental Health (CIEH) released Suitable 4 Use Levels (S4ULs) in January 2015.

The S4ULs have been derived in accordance with UK legislation, and using a modified version of the Environment Agency's CLEA software. As such, the S4ULs are based on the concept of minimal or tolerable risk as described in Human Health Toxicological Assessment of Contaminants in Soil (Science Report SR2, Environment Agency 2009a).

S4ULs have been derived for a wider number of substances.

In addition to the existing SGVs, C4SLs and S4ULs, Atkins ATRISK^{soil} also provide a set of Soil Screening Values. These are currently intended to be used in conjunction with SGVs, although they intend to update these values in line with the C4SLs in due course.

We have reviewed all sets of values and intend to use the most appropriate assessment criteria as Tier 1 screening values in the first instance. Where a published S4UL is available, and considered appropriate, this will be used in the first instance.

5.2 CONCEPTUAL MODEL FRAMEWORK

The preliminary stage of the risk assessment process is to develop and define a conceptual site model, based on the desk study and any existing site investigation data. This is used to establish any potential contaminant sources, identify existing and future receptors and assess if there are any potentially active pathways by which a potential risk may be present.

5.2 CONCEPTUAL MODEL FRAMEWORK (CONTINUED)

The preliminary conceptual site model will be developed and refined as site specific data is gathered, such as actual ground conditions and chemical data, resulting in a more robust conceptual understanding of the site.

5.3 CRITICAL SENSITIVE RECEPTOR – HUMAN HEALTH

The proposed redevelopment of the site is for a residential end use. Therefore, the critical sensitive receptor from a human health perspective is an on-site residential receptor.

In accordance with S4UL/C4SL and CLEA guidance for a standard residential with homegrown produce scenario, the critical sensitive receptor for a residential end use risk assessment is a female child, with exposure from 0 to 6 years.

The standard residential with homegrown produce end use conceptual model defined by S4UL/C4SL and CLEA is assumed to be suitable for the purposes of this assessment.

5.4 CRITICAL SENSITIVE RECEPTOR - CONTROLLED WATERS

Based on the proposed redevelopment of the site for a residential end use, and the findings of the desk study, the critical sensitive receptor from a controlled water perspective is groundwater within the Secondary 'A' Aquifer of the Glaciofluvial Deposits and the underlying Coal Measures strata.

By also considering surface water as the critical sensitive receptor for controlled waters, the groundwater/hydrogeological risk assessment will also be protective of the any nearby surface water features and the River Loughor to the west of the site.

5.5 POTENTIAL CONTAMINANT SOURCES

As identified in the desk study, the buildings within the site have been utilised for a number of industrial uses including a tin plate works with associated gasometer, an iron and brass foundry and coated metal works since pre-1880's. The buildings have been reconfigured and repurposed over the ears for the varying uses. Tramways/rail tracks associated with the works buildings have also been recorded on site. Buildings have remained on site up until the present day.

Considering the historical uses of the site, the potential types of contaminants of concern are listed below:

5.5 POTENTIAL CONTAMINANT SOURCES (CONTINUED)

- Metals, semi-metals, and inorganics within the shallow made ground/shallow groundwater,
- Polyaromatic hydrocarbons (PAH) within the shallow made ground/shallow groundwater,
- Petroleum Hydrocarbons (VPH/EPH) within the shallow made ground/shallow groundwater,
- Volatile and Semi Volatile Organic Compounds (VOC/SVOC) within the shallow made ground/shallow groundwater,
- BTEX compounds within shallow made ground/shallow groundwater,
- Polychlorinated Biphenyls (PCBs) within the shallow made ground in the vicinity of electrical transformers,
- Asbestos within the shallow made ground and within the building fabric.

Generation of ground and mine gases such as methane and carbon dioxide should also be considered due to the likely presence of made ground of unknown composition and thickness and the potential for unrecorded shallow mine workings where mine gases could be generated.

5.6 POTENTIAL EXPOSURE PATHWAYS

Potential exposure pathways for the critical receptors (both human health and controlled waters) are listed below:

- Dermal contact with soil and/or soil derived dust,
- Ingestion of soil and/or soil attached to home-grown produce,
- Ingestion of home-grown produce,
- Inhalation of soil derived dust.
- Inhalation of vapours indoor and outdoor air,
- Leaching of contaminants from made ground to groundwater,
- Transportation of contaminants within groundwater.

In addition, the following exposure pathways have also been considered:

- Ground gas generation and migration
- Building materials durability.

5.7 SUMMARY OF CONCEPTUAL EXPOSURE MODEL

A preliminary conceptual exposure model has been developed for the site. This is based on the findings of the desk study, historical review and site walk over and includes all potential sources, pathways and receptors that may be present on site. Those that have been identified as being potentially active require further investigation in the form of sampling and testing of soils and groundwater, followed by appropriate risk assessment.

The preliminary conceptual exposure model will be reviewed and refined following the completion of the site works and laboratory testing.

The preliminary conceptual exposure model is presented below in Table 6.

	Table 6: Prelimi	nary Concept	ual Exposure Model	
Source Origin Contaminant		Receptor	Pathway	Potentially Active Pathway?
Made Ground of unknown origin	Metals, semi-metals, non- metals, PAH, VPH/EPH,	Resident – human health	Dermal Contact with made ground/dust	✓
and historical land uses	BTEX, VOC, SVOC, asbestos		Ingestion of soil and/or soil attached to home-grown produce	✓
			Ingestion of home-grown produce	✓
			Inhalation of dust	✓
			Inhalation of vapours – indoor/outdoor	✓
	Metals, semi-metals, non- metals, PAH, VPH/EPH, BTEX, , VOC, SVOC	Groundwater quality	Leaching from made ground	✓
	Metals, semi-metals, non- metals, PAH, VPH/EPH, BTEX, VOC, SVOC	Surface water quality	Transportation within groundwater	✓
Polychlorinated Biphenyls (PCBs)	Polychlorinated Biphenyls (PCBs)	Resident – human health	Dermal Contact with made ground/dust	√
within the shallow ground in the vicinity of electrical			Ingestion of soil and/or soil attached to home-grown produce	✓
transformers			Ingestion of home-grown produce	✓
			Inhalation of dust	✓
			Inhalation of Vapours – indoor/outdoor	✓
	Polychlorinated Biphenyls (PCBs)	Groundwater quality	Hydrocarbon spillage	✓
	Polychlorinated Biphenyls (PCBs)	Surface water quality	Transportation within groundwater	✓

5.7 SUMMARY OF CONCEPTUAL EXPOSURE MODEL (CONTINUED)

Table 6: Preliminary Conceptual Exposure Model (Continued)				
Origin	Source Contaminant	Receptor	Pathway	Potentially Active Pathway?
Asbestos containing materials (ACM) within any residual building fabric	Asbestos containing material (ACM)	Human health	Inhalation of dust/fibres	✓
Made Ground of unknown origin and natural ground	pH and water soluble sulphate	Building Materials Durability	Direct contact	✓
Ground and Mine Gas – organic, gas producing materials	Methane, carbon dioxide	Human health	Accumulation of gases in confined spaces, and/or migration off site, leading to asphyxiation, or risk of explosion	✓

6.0 THE SITE INVESTIGATION

6.1 FIELDWORKS

A site investigation was designed in accordance with BS 5930:2015+A1:2020, the Code of Practice for Site Investigations, BS10175:2011+A2:2017, the Code of Practice for Investigation of Potentially Contaminated Sites, and 'Development of Land Affected by Contamination: A Guide for Developers' prepared by Welsh Local Government Association (WLGA)/Natural Resources Wales (NRW) Land Contamination Working Group, 2017.

The site investigation was also designed to provide information to support and refine the preliminary conceptual site model/conceptual exposure model.

The site investigation included:

- An intrusive investigation carried out in March 2023 through to early April 2023 comprised the excavation of 21No. machine excavated trial pits (TP01 to TP21) and indicative soil infiltration tests at 6 No. trial pit locations (TP01, TP06, TP08, TP11, TP14 and TP15), the drilling of 8 No. windowless sample boreholes (WS01 to WS08), the drilling of 6No. shell and auger boreholes with the installation of six combined ground gas and groundwater monitoring standpipes (BH01 to BH06) and the drilling of 4 No. rotary probeholes.
- Sampling of in-situ soil/fill for laboratory chemical testing
- · Sampling of stockpile materials for laboratory chemical testing
- Sampling of in-situ soil/fill for laboratory geotechnical testing
- Sampling of groundwater for laboratory chemical testing
- Monitoring for concentrations of methane, carbon dioxide, oxygen, hydrocarbon vapours and gas flow.

The exploratory hole locations were surveyed to national grid reference using a GPS. The accuracy is estimated to be nominally within 15mm.

The twenty-one trial pits were excavated utilising a 20-tonne tracked mechanical excavator and extended to depths of between 2.0m and 4.1m below existing ground level. Six of the trial pits (TP01, TP06, TP08, TP11, TP14 and TP15) were excavated for means of undertaking soil infiltration tests. Clean water was rapidly added to the six trial pits from an agricultural tanker, and the water level measured over an extended period of time.

Where there was a reasonable rate of infiltration, the test was repeated so that three repeat cycles were completed, in accordance with the requirements of BRE365.

6.1 FIELDWORKS (CONTINUED)

A total of six shell and auger boreholes (BH01 to BH06) were drilled on site. The boreholes were located across the site and drilled to a maximum depth of 10.0m below existing ground level.

The purpose of the shell and auger boreholes was to prove the deeper ground conditions, allow an assessment of the most appropriate foundation type for the proposed development and enable the installation of both groundwater and ground gas monitoring standpipes. Insitu strength testing (SPT/CPTs) was carried out in the boreholes. A chisel was also employed within the boreholes when encountering both man-made and natural obstructions. Combined ground gas and groundwater monitoring standpipes were installed within the boreholes to allow both ground gas and groundwater to be monitored, sampled and tested.

Following the installation of the standpipes, groundwater was sampled for laboratory chemical testing.

A programme of gas monitoring was commenced as soon as the site works were complete.

The eight windowless sample holes were drilled using a tracked competitor windowless sampling rig and located at readily accessible areas across the site and drilled to depths of between 0.4m and 5.0m below existing ground level. Several of the windowless sample holes refused prematurely on obstructions in the made ground or owing to the stiffness/density of the natural soils, if encountered. Locations WS01 to WS06 were situated within the existing works building where the concrete slab was cored prior to drilling. The purpose of the windowless sampling was to confirm the thickness of the concrete floor slab and prove the shallow ground conditions underlying the existing concrete slab. In-situ strength testing (SPT/CPTs) was carried out in the boreholes at 1.0m intervals to a maximum depth of 5.0m, where possible. Locations WS07 and WS08 were drilled to a depth of 1.0m below existing ground level within areas of potential past contaminative uses to acquire samples of the shallow soils/fill for laboratory chemical testing.

A Klemm 802 rotary drilling rig was used to drill the rotary probeholes. The rotary probeholes were advanced using open hole techniques with an air/water flush medium as appropriate to a maximum depth of 30m below existing ground level. The purpose of the rotary boreholes was to prove the shallow and deeper ground conditions and allow an assessment of potential shallow mine workings risk underlying the site.

6.1 FIELDWORKS (CONTINUED)

The fieldworks were supervised by a qualified Geotechnical Engineer from Intégral Géotechnique (Wales) Limited who also logged the trial pits, windowless sample holes and shell and auger boreholes and prepared their detailed engineering logs in accordance with the requirements of BS5930+A2: 2010. The engineering logs provide descriptions of the materials encountered in accordance with BSEN ISO 14688-1 (2002) and 14689-1 (2003) for soils and rocks respectively.

The approximate locations of the trial pits and respective soil infiltration tests, windowless sample holes, shell and auger boreholes and rotary probeholes, are shown on Figure 4.

The trial pit logs are presented in Appendix D. The windowless sample logs are presented in Appendix E, while the shell and auger borehole logs are presented in Appendix F. The rotary borehole logs and soil infiltration test results are provided in Appendices G and H respectively.

6.2 FIELD OBSERVATIONS

The made ground across the site is characterised by the presence of anthropogenic materials including brick, ash, clinker and various forms of slag.

Slight visual and olfactory evidence of potential hydrocarbon contamination was observed during the excavation of TP16 where black staining and a weak hydrocarbon odour was observed in the made ground. Representative samples were obtained for laboratory testing.

6.3 LABORATORY CHEMICAL TESTING

Representative soil samples were taken from the trial pits and windowless sample boreholes across the site, stored at the appropriate temperature and dispatched MCERTS and UKAS accredited laboratories of i2 Analytical for laboratory chemical testing within 24 hours.

The samples were tested for a range of contaminants that reflects the historical use of the site, the findings of the desk study and the preliminary conceptual site model/conceptual exposure model. A list of the soil testing carried out is given below:

6.3 LABORATORY CHEMICAL TESTING (CONTINUED)

Beryllium Cadmium

Total Chromium Hexavalent Chromium (VI)

Copper Lead
Mercury Nickel
Vanadium Zinc
Arsenic Boron

Selenium Elemental Sulphur Total Cyanide Total Sulphate

Sulphide Water Soluble Sulphate pH Monohydric Phenol

Polyaromatic Hydrocarbons (PAH) Petroleum Hydrocarbons (VPH/EPH)

All samples were also screened for asbestos.

In addition, selected soil samples from the trial pits and windowless sample holes were tested for VPH/EPH, BTEX compounds, volatile organic compounds (VOCs), semi volatile compounds (SVOCs) and polychlorinated biphenyls (PCBs) as congeners.

Upon completion of the shell and auger drilling works, groundwater was sampled from the six standpipes installed in the shell and auger boreholes. The samples were also dispatched to the laboratories of i2 Analytical and tested for metals, semi metals, inorganics, PAHs, VPH EPH and BTEX compounds.

The results of all the in-situ soil and groundwater testing are presented in Appendices I and J respectively.

A summary of the results of all the soil and groundwater testing are presented in Appendices N and O respectively.

6.4 LABORATORY GEOTECHNICAL TESTING

During the site investigation works representative soil samples of made ground and natural ground were also taken and dispatched to the laboratories of ATS and GSTL for laboratory geotechnical testing including pH, water soluble sulphate, Atterberg Limits particle size distribution (PSD) and optimum compaction testing (OMC).

The result of the geotechnical testing is presented in Appendix K.

6.5 GROUNDWATER MONITORING

During each groundwater monitoring round, the groundwater levels were checked and recorded. The boreholes were then purged of approximately three times the well volume using a pump.

Each well was monitored in situ during purging for groundwater parameters pH, temperature, conductivity, total dissolved solids, salinity, oxidation reduction potential and dissolved oxygen using a Hanna Multi Parameter Water Quality Meter. Representative samples of ground water were then collected and stored in the correct sample bottles during transportation to the laboratory.

The sampling equipment was cleaned between boreholes to prevent cross contamination between boreholes. Care was also taken to ensure the sampling equipment did not become contaminated at the ground surface.

Upon completion of the sampling, the rate of recovery of the groundwater level in the borehole was observed.

A copy of the groundwater monitoring results is presented in Appendix M.

6.6 IN-SITU GAS MONITORING

Gas monitoring standpipes were installed in six of the shell and auger boreholes and these have been monitored at fortnightly intervals following completion of the fieldworks.

The gas monitoring programme commenced on 12th April 2023.

The concentration levels of methane, carbon dioxide and oxygen were measured in the standpipes during each visit by using a GA5000 Landfill Gas Analyser. In addition, gas flow rate and the atmospheric pressure at the time of the field measurements were also recorded.

Gas monitoring was carried out over a range of atmospheric pressures to include at least one reading in low and/or falling pressure, in accordance with the recommendations made in CIRIA Report C665.

At the time of writing the programme of gas monitoring was on going. A complete set of ground gas monitoring results will be forwarded as a revision to this report upon completion of the monitoring programme.

6.6 IN-SITU GAS MONITORING (CONTINUED)

The results of the field gas monitoring are presented in Appendix L.

7.0 GROUND CONDITIONS

The ground conditions encountered below the site generally comprise a variable thickness of made ground overlying superficial deposits. The ground profile was modified by the industrial development since the 1870's and there is a variable thickness of fill over the site.

The industrial estate infrastructure remains. No buildings, foundations or slabs have currently been demolished or removed. However, there is evidence of the removal of storage tanks and gasometers on site. Additionally, the historical maps indicate a number of historical extraction/gravel pits within the site, now infilled, see Figure 6.

All trial pits and boreholes experienced a degree of instability throughout the excavation / drilling. Local instability was observed associated with cobble and boulder removal as well as widespread collapse of the trial pit/borehole walls owing to the granular nature or high saturation of the underlying soils.

7.1 NORTHERN SITE AREA

The northern site area is characterised by a gated area separated from the rest of the site and was previously covered in dense vegetation, which had been cleared at the time of the site works. Additionally, a small, gated compound within the northern area is located in the west, previously accommodating 2 gasometers/gas holders.

The ground conditions encountered beneath the norther site area typically comprised a thin layer of topsoil over in situ natural soils. Locally, a variable thickness of made ground was encountered.

It should be noted that a former gravel pit, now infilled, encroached into the central southern extent of the northern site area.

7.1.1 Topsoil

The topsoil was encountered across the majority of the northern site area and proven to a depth of between 0.1m and 0.2m depth. The topsoil comprised soft blackish brown and brown silty, sometimes gravelly organic clay with frequent roots and rootlets. When encountered, the gravel within the topsoil generally comprised fine to coarse sub-angular and sub-rounded sandstone, quartzite, and mudstone. Locally, a moderate cobble content of sub-rounded sandstone was recorded.

7.1 NORTHERN SITE AREA (CONTINUED)

7.1.2 Made Ground

Made ground was encountered from ground level locally within the northern site area. The made ground typically comprised soft blackish brown silty organic clay with frequent roots and rootlets near surface. Inclusions of plastic, glass and timber were noted within TP06.

Local to TP02, the ground was raised above the surrounding area and indicative of placed material. Here, the surface covering of made ground was proven to a depth of 0.8m bgl and comprised soft black silty gravelly clay with moderate cobble content of angular to subrounded blocky and platy sandstone, concrete and brick. The gravel comprised fine to coarse sub-angular and sub-rounded of sandstone and concrete.

TP04 was situated within the small, gated compound that previously accommodated two gasometers. A thin veneer of loose brown slightly silty clayey gravel was encountered at the surface typical of a hardcore material approximately 0.3m thick. The gravel comprised fine to coarse angular limestone.

Deeper made ground was encountered local to TP05 and extended to a depth of approximately 3.2m bgl. The made ground here comprised soft blackish brown silty organic clay with common roots and rootlets before grading into a loose to medium dense becoming dense black sandy silty gravel with a high cobble and boulder content of angular to subrounded brick, concrete, vitreous and vesicular slag. The gravel comprised fine to coarse angular to sub-rounded brick, concrete vesicular and vitreous slag, fine ash and clinker. Trial pit TP05 was located in the area of the infilled former gravel pit that extended into the northern site area.

7.1.3 Natural Soils

The natural soils were encountered underlying the topsoil and made ground from depths between 0.1m and 3.2m bgl. The superficial soils typically comprised an upper cohesive layer over granular soils. The base of the natural soils was not proven.

Locally, the natural soils generally comprised an upper mantle of soft to firm, firm orangish brown sometimes sandy sometimes gravelly clayey silt, locally with a low to high cobble content of sub-angular to sub-rounded sandstone, limestone and quartzite. Where encountered, the gravel comprised fine to coarse sub-angular to rounded sandstone, limestone, and quartzite.

7.1 NORTHERN SITE AREA (CONTINUED)

With depth the superficial deposits comprised medium dense to dense and medium dense becoming dense brown and orangish brown, grey silty sandy locally clayey gravel with low to high cobble and boulder content of sub-angular to rounded sandstone, limestone and quartzite. The gravel constituents comprised fine to coarse, sub-angular to rounded of sandstone, limestone and quartzite.

Uncorrected SPT N values derived from the superficial deposits recorded values between 9 and 50.

7.2 MAIN SITE AREA

The main site area comprises the bulk of the site and includes the former works buildings, offices, access roads and car parking areas.

The ground conditions beneath the main site area typically comprises a variable thickness of made ground over in situ natural soils. The made ground deposits typically deepen towards the southern end of the site. Encountered natural soils comprise medium dense to dense sands and gravels. It should be noted that a band of shallow soft silt/clay was encountered overlying the sand and gravel deposits within the central site area. This band may be representative of an old flood channel that once flowed through the site towards the River Loughor.

7.2.1 Surface Hardstanding

A surface covering of hardstanding material was recorded across portions of the site, primarily within locations situated within the existing works building and internal access roads.

The surface hardstanding across the site comprised concrete and bituminous material ranging in thicknesses of between 0.1m and 0.5m, with the thicker layers being associated with the more industrial areas of the works building.

7.2.2 Topsoil

A veneer of topsoil was encountered within areas of soft landscaping and vegetation located within the central and eastern site areas. The topsoil was encountered from ground level and proven to depths ranging between 0.1m and 0.4m below existing ground level.

The topsoil varied slightly in composition across the site but generally comprised soft blackish brown and brown silty gravelly organic clay with frequent roots and rootlets.

7.2 MAIN SITE AREA (CONTINUED)

The gravel constituents typically comprised fine to coarse sub-angular to sub-rounded sandstone and mudstone. Locally, inclusions of timber were also encountered.

7.2.3 Made Ground

Made ground was encountered across the majority of the site area encountered from 0.0m/0.5m to maximum depths of 0.6m to 3.2m below existing ground level. The made ground was reflective of the sites historical use and comprised variable layers of loose becoming medium dense and medium dense, becoming dense sometimes orange, black and grey sometimes clayey silty sandy gravel/ gravelly sand or soft and firm brown mottled yellow and black sometimes silty sandy gravelly clay/ silt.

Locally the made ground comprised loose grey fine to coarse sand, loose brown silty clayey gravel with frequent rootlets or loose to medium dense red and black ashy gravel.

The made ground was characterised by a low to high cobble and boulder content of angular to rounded sandstone, mudstone, concrete, brick, vitreous clay pipe, bituminous material, vesicular and vitreous slag. The gravel constituents also comprised angular to rounded sandstone, mudstone, concrete, brick, vitreous clay pipe, bituminous material, vesicular and vitreous slag, fine ash and clinker.

Throughout the made ground inclusions of anthropogenic materials were noted. The inclusions comprised plastic, glass, scrap metal, reinforcement bar, metal pipe, iron girder, rope, plastic cladding, timber and railways sleepers.

Uncorrected SPT N values derived from the made ground recorded values of between 8 and 55.

7.2.4 Superficial Deposits

Natural superficial soils were recorded underlying the topsoil and made ground across the site. The superficial soils were encountered from depths of between 0.1m and 3.2m and proven to depths of 20.9m/>30.0m. The superficial soils were representative of glaciofluvial deposits and generally comprised variable layers of soft to firm orangish brown and brown and grey silty sometimes sandy sometimes gravelly clay/silt, or loose to medium dense to dense brown silty/clayey sandy gravel, or loose to medium dense brown and orangish brown gravelly sand.

Low to high cobble and boulder content were recorded within the superficial deposits which generally comprised sub-angular to rounded sandstone, limestone and quartzite.

7.2 MAIN SITE AREA (CONTINUED)

The gravel constituents of the superficial soils comprised fine to coarse angular to rounded sandstone, limestone and quartzite.

Through the central site area a band of soft to firm orangish brown and brown and grey silty sometimes sandy sometimes gravelly clay/silt was encountered beneath the made ground at shallow depths trending east to west. It is considered that this band may be representative of a historical flood channel.

Uncorrected SPT N values derived from the superficial soils typically recorded values between 11/12 and 32/45, locally up to 50. Locally, within the central part of the site a band of soft clay was encountered with very low SPT N values.

7.3 DEEPER GROUND CONDITIONS

A series of rotary probeholes were drilled within the northern and southern site areas in order to investigate the deeper ground conditions underlying the site.

The ground conditions encountered by the rotary probeholes typically comprised made ground over superficial deposits extending to maximum depths of >30m and >35.2m. No bedrock was encountered during the drilling of the rotary probeholes.

It should be noted that these observations are based of the driller's descriptions taken at the time of drilling.

7.4 STOCKPILES

Several stockpiles were identified within the eastern site area. The stockpiles were poorly sorted and had a surface covering of sparse vegetation and mature trees indicating that the stockpiles were historic. The stockpiles generally comprised loose to medium dense blackish grey and black sometimes clayey, silty sandy gravel/ sand. The gravel constituents of the stockpiles typically comprised varying demolition materials including fine to coarse angular to rounded sandstone, limestone, fine ash, clinker, vesicular and vitreous slag, brick, reinforced and unreinforced concrete and bituminous material.

High cobble and boulder contents were recorded throughout the excavation of the stockpiles. The cobbles and boulders comprised angular to sub-rounded sandstone, vesicular slag, clinker, brick, reinforced and unreinforced concrete and bituminous material. Throughout the stockpiles inclusions of anthropogenic materials were also noted

7.4 STOCKPILES (CONTINUED)

The inclusions comprised plastic, glass, scrap metal, reinforcement bar, metal pipe, iron girder, rope, plastic cladding and timber.

7.5 GROUNDWATER

Groundwater was recorded across the central and southern site areas within the majority of exploratory hole locations. Additionally, an open well and existing excavation also showed standing groundwater.

The depth to groundwater has been converted to a groundwater level with respect to ordnance datum, and a summary provided below in Table 7. Check email

Table 7: Summary of Groundwater Levels							
Location ID	Depth to Groundwater (mbgl)	Approximate Ground Level (mAOD)	Approximate Groundwater Level (mAOD)				
TP08	2.0	10.0	8.0				
TP09	2.0	9.6	7.6				
TP10	2.0	9.8	7.8				
TP11	2.1	9.9	7.8				
TP12	1.4	8.9	7.5				
TP14	2.0	8.2	6.2				
TP15	1.8	8.4	6.6				
TP16	1.2	7.8	6.6				
TP17	1.7	9.9	8.2				
TP18	1.9	8.5	6.6				
TP19	2.6	10	7.5				
TP20	2.7	9.7	7.0				
BH01	2.2	7.9	5.7				
BH02	1.5	8.4	6.9				
BH03	3.9	9.9	6.0				
BH04	2.5	9.4	6.9				
BH05	3.0	11.2	8.2				
BH06	3.6	11.4	7.8				
Well	1.2	8.7	7.5				

7.5 GROUNDWATER (CONTINUED)

Table 7: Summary of Groundwater Levels (Continued)							
Location ID	Depth to Groundwater (mbgl)	Approximate Ground Level (mAOD)	Approximate Groundwater Level (mAOD)				
Open Excavation	0.5	7.9	7.4				
Pond	0.0	6.8	6.8				

The groundwater conditions are based on observations made at the time of the fieldwork. It should be noted that groundwater levels may vary due to seasonal and other effects.

Based on the groundwater level summary above, an approximate groundwater contour plot has been produced, as shown in Figure 5.

The contour plot indicates that groundwater flow is typically in a southwest direction, towards the River Loughor, and an approximate hydraulic gradient of 0.013 has been calculated.

7.6 SOIL INFILTRATION TESTING

Soakaway testing was carried out in 6 No. trial pits (TP01, TP06, TP08, TP11, TP14 and TP15).

The trial pits were rapidly filled with water from a tractor-towed agricultural bowser and the water level monitored over a period of time. Where infiltration and time allowed, repeat cycle tests were carried out in accordance with BRE365.

A positive infiltration rate was achieved within four trial pits (TP01, TP06, TP08). The measured soil infiltration rates were between 2.6x10⁻⁴m/sec and 8.8x10⁻⁵m/sec.

Within trial pit TP15 only a single test cycle could be completed. An infiltration rate of 3.1x10⁻⁵m/sec was recorded. However, it should be noted that the infiltration rate was extrapolated in order to derive the value and should be considered with caution.

The remaining pits showed insufficient infiltration to calculate a design infiltration rate.

It should also be noted that this initial testing should only be regarded as indicative. If it should be proposed to use soakaways for this site, then more extensive location and depth specific follow-up tests will be required and should fully comply with BRE 365, in order to confirm the suitability of the site and to satisfy the local authority.

7.6 SOIL INFILTRATION TESTING (CONTINUED)

Note that the test results are specific to the location and depth of the tests undertaken.

The results of the soakaway testing are summarised below in Table 8. The calculation sheets are presented in Appendix H.

Table 8: Summary of Soakaway Test Results								
Test	Test Depth	Soil Infiltration Rate (m/s)						
Location	(m bgl)	Test Cycle 1	Test Cycle 2	Test Cycle 3				
TP01	2.70	2.69x10 ⁻⁴	2.71x10 ⁻⁴	2.83x10 ⁻⁴				
TP06	2.60	9.11x10 ⁻⁵	8.88x10 ⁻⁵	9.30x10 ⁻⁵				
TP08	2.40	2.26x10 ⁻⁴	2.46x10 ⁻⁴	7.55x10 ⁻⁵				
TP11	3.50	Insufficient infiltration to calculate design infiltration rate						
TP14	2.50	Insufficient infiltration to calculate design infiltration rate						
TP15	2.40	3.1x10 ⁻⁵	-	-				

7.7 LABORATORY GEOTECHNICAL TESTING

Laboratory geotechnical testing was carried out on a number of bulk samples of made ground and superficial soils recovered from the trial pits and boreholes.

The results of the laboratory geotechnical testing are included within Appendix K.

A summary of the geotechnical test results for the made ground and natural soils is presented below in Table 9.

Table 9: Summary of Laboratory Geotechnical Testing								
Summary of Particle Distribution (Sample Portions %) – Made Ground								
Location	Boulders/Cobbles Gravel Sand Silt Clay							
BH03	3		51	35	35 11			
Summ	Summary of Dry Density/Optimum Moisture Content Relationship – Made Ground							
Location	Initial Water Content (%) Maximum Dry Density (Mg/m³) Optimum Moisture Content (%)							
BH03	23.7 1.78 14.7							
BH04	20.9	20.9 1.80 12.4						

7.7 LABORATORY GEOTECHNICAL TESTING (CONTINUED)

Т	Table 9: Summary of Laboratory Geotechnical Testing (Continued)								
	Summary of Atterberg Limit Testing – Natural Soils								
Location	Moisture Content (%)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	% Passin 425um	,	Volume Change Potential		
BH05	9.4	27	20	7	22	1.5	Negligible		
	Summary of Atterberg Limit Testing -Natural Soils (Continued)								
Location	Content Limit (%) Limit (%) Index Passing Plasticity Cha						Volume Change Potential		
TP01	29.7	27	16	11	89	9.8	Negligible		
TP13	25.6	0	0	0	87	0	Negligible		
TP15	24.7	27	18	9	0	0	Negligible		
TP16	28.5	32	20	12	78	9.4	Negligible		
,	Summary of Particle Distribution (Sample Portions %) – Natural Soils								
Location	Boulders/Cobbles Gravel Sand Silt Cla					Clay			
BH05	23 46 20 11								
TP14	0	0 1 27 72							

7.7.1 Slag Expansion Testing

A single sample of slag was tested for slag expansion testing. The result indicates that the material was non-expansive.

The results of the laboratory slag expansion testing are included within Appendix K.

8.0 CONTAMINATION

8.1 AVERAGING AREAS

In order to assess the laboratory test results reliably and in context, the data have been grouped into an averaging area. An averaging area (or area of interest) is that area of soil to which a receptor is exposed, or which otherwise contributes to the creation of hazardous conditions. This may be an area of historical industrial usage, a soil type, or a specific proposed end use.

In the case of this analysis, the averaging area has been determined according to the proposed residential end use.

8.2 SOIL CONTAMINATION

The Suitable 4 Use Levels (S4ULs) published by LQM have been adopted as critical concentrations against which soil contaminant concentrations can be compared. In the absence of additional published S4ULs, the Category 4 Screening Levels (C4SLs) derived by DEFRA and Soil Screening Values (SSVs) derived by Atkins ATRISKsoil for a residential with home grown produce end use have been adopted, where considered appropriate.

Since the results of the testing indicate total organic carbon content (TOC) in the range of 0.6% to 4.4%, the results have been compared to the respective guidelines, where applicable, for 1% soil organic matter content.

The soil test results for made ground, stockpiles and topsoil/natural soils have been summarised and are shown in Appendix N.

A total of 20 No. soil samples including topsoil, natural soils, made ground and stockpile materials were tested for contamination. A summary of the samples exceeding the respective S4UL threshold value based on a residential with home grown produce, is detailed below.

The results of the laboratory testing indicate that the majority of the analysed chemical elements or compounds are present at concentrations below the appropriate thresholds. However, the initial screening indicates exceedances of metals, several PAH compounds and a singular exceedance of petroleum hydrocarbon.

8.2.1 Made Ground

A total of 17 No. samples of the made ground were tested for contamination, including asbestos in accordance with the findings of the desk study.

Additionally, asbestos was also detected within half of the tested samples of made ground.

Arsenic was detected at elevated concentrations in five made ground samples recovered from locations TP13, TP15, TP16, TP18, and WS01 at depths of between 0.2m and 0.4m. The concentrations ranged between of 38mg/kg and 77mg/kg, exceeding the adopted S4UL threshold value of 37mg/kg.

Beryllium was detected at elevated concentrations in two made ground samples recovered from locations TP13 and TP18 at respective depths of 0.3m and 0.2m. The respective concentrations of 1.9mg/kg and 2.2mg/kg exceed the adopted S4UL threshold value of 1.7mg/kg.

Lead was detected at elevated concentrations in three made ground samples recovered from locations TP09, TP18 and TP21 at respective depths of 0.3m, 0.2m and 0.4m. The respective concentrations of 250mg/kg, 400mg/kg and 510mg/kg exceed the adopted S4UL threshold value of 200mg/kg.

A singular exceedance of nickel was detected at an elevated concentration in one sample recovered of made ground from location TP18 at a depth of 0.2m. The concentration of 860mg/kg exceeds the adopted S4UL threshold value of 130mg/kg.

Elevated concentrations of the PAH compounds benzo(a)pyrene, benzo(b)fluoranthene and dibenzo(ah)anthracene were also recorded within samples of made ground.

Benzo(a)pyrene, benzo(b)fluoranthene and dibenzo(ah)anthracene were detected at elevated concentrations within the made ground at TP21 at 0.4m depth only. In addition, benzo(b)fluoranthene was also detected at elevated concentrations in the made ground at TP02 and TP18.

A single elevated petroleum hydrocarbon concentration was recorded at TP16 at 0.7m depth. An elevated concentration of aromatic C12-C16 EPH was detected at a concentration of 320mg/kg, which exceeds the adopted S4UL threshold value of 140mg/kg. It should be noted that this corresponds to a visual observation of potential hydrocarbons at this location.

A number of semi-volatile organic compounds (SVOC) have been detected above the detection limit of the laboratory. The following compounds have been identified:

Aniline (TP04, TP17, TP18, TP20)

• 2,4-dimethylphenol (TP18)

• 2-methylnaphthalene (TP09, TP16, TP18, TP20, WS01, WS03)

Dibenzofuran (TP18)
 Carbazole (TP18)
 Anthraquinone (TP18)

Aniline is an aromatic organic compound comprising 6 carbon atoms in a benzene ring attached to an amino group (NH₂). There are no closely related substances for which soil screening criteria values are available. Although the maximum recorded concentration of aniline is only 0.9mg/kg, above the limit of detection of <0.1mg/kg, aniline is considered a contaminant of concern at this stage for further consideration.

2,4-methylphenol has been recorded at a maximum concentration of 0.4mg/kg. The EIC/AGS/CL:AIRE Generic Acceptance Criteria (GAC) value for a residential with homegrown produce end use is 19mk/kg. Therefore, based on this, 2,4-methylphenol is not considered to be present at elevated concentrations and is not considered further.

2-methylnaphthalene is a PAH compound closely related to naphthalene. 2-methylnaphthalene has the same structure as naphthalene but with an additional carbon atom and two additional hydrogen atoms. Therefore, for initial screening purposes the S4UL value for naphthalene of 2.3mg/kg has been used in the first instance. None of the recorded concentrations of 2-methylnaphthalene exceed this screening values and therefore, 2-methylnaphthalene is not considered a contaminant of concern.

Dibenzofuran and Carbazole are closely related compounds with 12 carbon atoms in two benzene rings. Carbazole is also closely related to the PAH compound Fluorene. There is no available soils screening criteria value for dibenzofuran or carbazole. However, when considering similarly structured PAH compounds such as fluorene and naphthalene, the recorded maximum concentrations of dibenzofuran and carbazole (which are just above laboratory detection limits) are significantly below these respective soil screening values. It is therefore considered that dibenzofuran and carbazole are not present at significantly elevated concentrations and are not considered further.

Anthraquinone is an aromatic organic compound, with 14 carbon atoms, and is closely related to the PAH compound anthracene. The maximum recorded concentration of anthraquinone is 0.8mg/kg which is significantly lower than the S4UL screening value for anthracene of 2,400mg/kg. On this basis, anthraquinone is not considered to be present at elevated concentrations and is not considered a contaminant of concern.

All PCB and VOC concentrations within samples recovered from the made ground were detected at concentrations below detectable limits of the laboratory.

Asbestos in soil was detected within the following made ground soil samples:

- TP09 (0.3m bgl) loose fibres of chrysotile were detected at <0.001% by weight.
- TP10 (0.4m bgl) loose fibres of chrysotile, were detected at <0.001% by weight.
- TP18 (0.2m bgl) loose fibres of chrysotile were detected at <0.001% by weight.
- WS01 (0.2m bgl) Loose fibres and loose fibrous debris of chrysotile and amosite were detected at 0.068% by weight.
- WS03 (0.6m bgl) Loose fibres of chrysotile were detected at <0.001% by weight.

8.2.2 Stockpiles

A total of 2 No. samples of the made ground obtained from the stockpiles on site were tested for contamination, including asbestos in accordance with the findings of the desk study.

Asbestos in the stockpiles was detected within the following stockpile soil samples:

• TP21 (0.4m bgl) – loose fibres of chrysotile were detected at <0.001% by weight.

Singular exceedances of Arsenic and Lead were detected within one stockpile soil sample recovered from TP21 at 0.4m depth. The respective concentrations of 42mg/kg and 510mg/kg exceed the respective S4UL threshold values of 37mg/kg and 200mg/kg.

Benzo(a)pyrene was detected at elevated concentrations in two stockpile samples recovered from locations TP11a and TP21 at respective depths of 0.0m and 0.4m. The respective concentrations of 3.0mg/kg and 5.1mg/kg exceed the adopted S4UL threshold value of 2.2mg/kg.

Benzo(b)fluoranthene was detected at elevated concentrations in two stockpile samples recovered from locations TP11a and TP21 at respective depths of 0.0m and 0.4m. The respective concentrations of 4.0mg/kg and 7.0mg/kg exceed the adopted S4UL threshold value of 2.6mg/kg.

Dibenzo(ah)anthracene was detected at elevated concentrations in two stockpile samples recovered from locations TP11a and TP21 at respective depths of 0.0m and 0.4m. The respective concentrations of 0.45mg/kg and 0.65mg/kg exceed the adopted S4UL threshold value of 0.24mg/kg.

Anthraquinone

A number of semi-volatile organic compounds (SVOC) have been detected above the detection limit of the laboratory. The following compounds have been identified:

Aniline (TP21)
2-methylnaphthalene (TP11a, TP21)
Dibenzofuran (TP11a, TP21)
Carbazole (TP11a, TP21)

As discussed above, 2-methylnaphthalene, dibenzofuran, carbazole and anthraquinone are not considered to be present at elevated concentrations and are not considered to be contaminants of concern.

(TP11a, TP21)

Aniline has been detected at a single location in one of the stockpiles in a sample from TP21, at a maximum concentration of 0.9mg/kg. For the purposes of this assessment, aniline is considered a contaminant of concern at this stage for further consideration.

All PCB and VOC concentrations within samples recovered from the made ground in stockpile were detected at concentrations below detectable limits of the laboratory.

8.2.3 Topsoil and Natural Soils

A total of 2 No. samples of the made ground were tested for contamination, including asbestos in accordance with the findings of the desk study.

No visual or olfactory evidence of contamination of the in-situ natural ground was identified during the fieldworks. However chemical analysis detected a singular exceedance of arsenic from TP03 at 0.1m depth. The concentration of 42mg/kg exceeds the respective S4UL threshold value of 37mg/kg.

No asbestos or further exceedances were detected within the tested samples of topsoil or natural soils.

8.3 GROUNDWATER CONTAMINATION

Groundwater samples were taken from six boreholes across the site (BH01 - BH06) and analysed at the laboratories of i2 Analytical for the same suite of elements and compounds as the soils but including nitrogen and excluding asbestos.

8.3 GROUNDWATER CONTAMINATION (CONTINUED)

A copy of the two rounds of groundwater test results is included in Appendix J. A further round of testing is to be completed in order to establish baseline conditions. This report will be revised once the additional results are available.

The results have been screened against MAC-EQS Inland Surface Water C1, based on a hardness of 100-<200mg/l CaCO3 UK Drinking Water Standards and Freshwater Environmental Quality Standards (EQS) based on a hardness of 150-200mg/l CaCO3 (Average water hardness across the site is 140mg/l CaCO3)

Most of the results of the laboratory testing indicate that all of the analysed chemical elements or compounds are present at concentrations below the appropriate thresholds.

All concentrations of polycyclic aromatic hydrocarbon compounds (PAH), petroleum hydrocarbons (VPH/EPH), volatile and semi volatile organic compounds (VOC and SVOC) and polychlorinated biphenyls (PCB's) were below the laboratory limit of detection.

8.3.1 Groundwater Testing Round 1

Within the first round of testing, elevated concentrations of copper, nickel and zinc have been identified.

Copper was identified at elevated concentrations of 2.6ug/l and 1.0ug/l in BH03 and BH06 respectively, both of which exceed the published Freshwater AA-EQS Inland Surface Water value of 1.0ug/l. The recorded values, are however, significantly below the published UK Drinking Water Standards value of 2000ug/l.

Nickel was identified at elevated concentrations in BH01 and BH04, with the recorded concentrations of 11.0ug/l and 4.9ug/l exceeding the published Freshwater AA-EQS Inland Surface Water value of 4.0ug/l. The recorded value is, however, significantly below the published MAC-EQS C4 and UK Drinking Water Standards of 34ug/l and 20ug/l respectively.

Zinc was identified at an elevated concentration of 15ug/l in BH01 exceeding the published Freshwater Environmental Quality Standard (EQS) of 10.9ug/l. The recorded values, are however, significantly below the published UK Drinking Water Standard of 5,000ug/l.

8.3.2 Groundwater Testing Round 2

Within the second round of testing, elevated concentrations of copper, nickel and zinc have been identified.

8.3 GROUNDWATER CONTAMINATION (CONTINUED)

Copper was identified at elevated concentrations of 1.5ug/l and 3.0ug/l in BH02 and BH03 respectively, both of which exceed the published Freshwater AA-EQS Inland Surface Water value of 1.0ug/l. The recorded values, are however, significantly below the published UK Drinking Water Standards of 2000ug/l.

Nickel was identified at elevated concentrations in BH01, and BH04 with recorded values of 14.0ug/l, and 8.3ug/l respectively exceeding the published Freshwater AA-EQS Inland Surface Water value of 4.0ug/l. The recorded value is, however, significantly below the published MAC-EQS C4 and UK Drinking Water Standards of 34ug/l and 20ug/l respectively.

Zinc was identified at elevated concentrations of 17ug/l in BH01 which exceeds the published Freshwater Environmental Quality Standard (EQS) of 10.9ug/l. The recorded values, are however, significantly below the published UK Drinking Water Standard of 5,000ug/l.

8.3.2 Groundwater Testing Round 3

Within the third round of testing, elevated concentrations of copper, nickel and zinc have been identified.

Copper was identified at elevated concentrations of 3.1ug/l, 3.4ug/l and 1.3ug/l in BH01, BH03 and BH04 respectively, all of which exceed the published Freshwater AA-EQS Inland Surface Water value of 1.0ug/l. The recorded values, are however, significantly below the published UK Drinking Water Standards of 2000ug/l.

Nickel was identified at an elevated concentration in BH01 only, with a recorded value of 13.0ug/l exceeding the published Freshwater AA-EQS Inland Surface Water value of 4.0ug/l. The recorded value is, however, significantly below the published MAC-EQS C4 and UK Drinking Water Standards of 34ug/l and 20ug/l respectively.

Zinc was identified at elevated concentrations of 13ug/l in BH01 which exceeds the published Freshwater Environmental Quality Standard (EQS) of 10.9ug/l. The recorded values, are however, significantly below the published UK Drinking Water Standard of 5,000ug/l.

8.3 GROUNDWATER CONTAMINATION (CONTINUED)

8.3.4 Metal Bioavailability Assessment

Based on the results of the three rounds of groundwater testing to date, site specific PNECs (Predicted No-Effect Concentrations) have been calculated for copper, nickel and zinc with the Water Framework Directive M-BAT (Metal Bioavailability) Tool (using a function of dissolved organic carbon (DOC), calcium and pH). The results of the M-Bat assessment are presented in Appendix P.

The M-BAT assessment results indicate that the majority of copper concentrations do not present a potential risk. Elevated bioavailable copper concentrations have been identified in two samples, in BH02 in the second round of testing and BH01 in the third round of testing.

The M-BAT assessment results indicate that the majority of zinc concentrations do not present a potential risk. Elevated bioavailable zinc concentrations have been identified in one sample only, in BH01 in the second round of testing.

The M-BAT assessment indicates that the results for nickel do not present a potential risk.

The results of the M-BAT assessment do indicate a potential significant risk to controlled waters. There is no trend to the data with concentrations varying between boreholes and fluctuating between monitoring rounds.

8.4 GROUND GAS

Ground gas was monitored on a fortnightly basis using a GA 5000 Gas Analyser. The results of the gas monitoring programme are included in Appendix L. A summary of the results is given in the following Table 10.

Table 10: Summary of Ground Gas Results								
Borehole	Maximum Methane Concentration (%)	Maximum Carbon Dioxide Concentration (%)	Minimum Oxygen Concentration (%)	Gas Flow Rate (l/hr)				
BH01	0.2	1.3	18.90	<0.3				
BH02	<0.5	<0.5	16.90	<0.3				
BH03	0.2	0.2	17.30	<0.3				
BH04	<0.5	4.4	16.10	<0.3				
BH05	<0.5	0.2	19.80	<0.3				
BH06	<0.5	2.9	17.30	<0.3				

8.4 GROUND GAS (CONTINUED)

The results show a maximum methane concentration of 0.2% and a maximum carbon dioxide concentration of 4.4%. A maximum gas flow rate of <0.3l/hr was measured during the gas monitoring programme.

It should be noted that locations BH02, BH03 and BH04 were also sampled and tested for the presence of Aniline vapours in order to inform the human health risk assessment. A copy of the results is presented in Appendix L.

The results of the gas vapour testing for aniline were all below the laboratory detection limit indicated that there are no elevated aniline vapours.

9.0 REVISED CONCEPTUAL EXPOSURE MODEL

The preliminary conceptual exposure model has been reviewed and revised to reflect the findings of the site investigation and the results of the laboratory testing of soils, soil leachate, groundwater and gas monitoring. Pathways identified as a relevant pollutant linkage require appropriate risk assessment or mitigation measures (see Section 10).

			onceptual Expe		· -	
S Origin	Contaminant	Receptor	Pathway	Preliminary Active Pathway? (see Sect. 5.7)	Relevant Pollutant Linkage	Justification/ Mitigation
Made Ground of unknown origin and	Metals, semi- metals, non- metals, PAH,	Resident – human health	Dermal Contact with made ground/dust	√	√	Elevated concentrations of metals,
uses	petroleum hydrocarbons, VOC, SVOC, Asbestos		Ingestion of soil and/or soil attached to home-grown produce	✓	√	PAH, petroleum hydrocarbon compounds identified within the
			Ingestion of home-grown produce	√	√	made ground and stockpiles
			Inhalation of dust	√	✓	Asbestos detected within made ground- risk assess.
			Inhalation of vapours – indoor/outdoor	√	~	Concentrations of aniline detected – Risk Assess
	Metals, semi- metals, inorganics, PAH, petroleum hydrocarbons, VOC/SVOC	Groundwater quality	Leaching from made ground	✓	√	No significantly elevated groundwater contamination identified.
	Metals, semi- metals, inorganics, PAH, petroleum hydrocarbons, VOC/SVOC	Surface water quality	Transportation within groundwater	·	~	No significantly elevated groundwater contamination identified.

9.0 REVISED CONCEPTUAL EXPOSURE MODEL (CONTINUED)

Table 11: Revised Conceptual Exposure Model (Continued)							
Source Origin Contaminant		Receptor	Pathway	Preliminary Active Pathway?	Relevant Pollutant Linkage	Justification/ Mitigation	
Polychlorinated Biphenyls (PCBs) within the shallow ground in the vicinity of electrical transformers	Polychlorinated Biphenyls (PCBs)	Resident – human health	Dermal Contact with made ground/dust	√	Х	No PCBs identified within soil or	
			Ingestion of soil and/or soil attached to home-grown produce	√	Х	groundwater samples.	
			Ingestion of home- grown produce	√	Х		
			Inhalation of dust	✓	Х		
			Inhalation of Vapours - indoor/outdoor	√	Х		
Bip	Polychlorinated Biphenyls (PCBs)	Groundwater quality	Migration to groundwater	~	Х		
	Polychlorinated Biphenyls (PCBs)	Surface water quality	Transportation within groundwater	√	Х		
Asbestos containing materials (ACM) within any residual building fabric	Asbestos containing material (ACM)	Human health	Inhalation of dust/fibres	✓	1	Suspect ACM in existing buildings to be removed.	
Made Ground of unknown origin and natural ground	pH and Water Soluble Sulphate	Building Materials Durability	Direct contact	1	√	Building materials will be in contact with made ground – Risk Assess	
Ground and Mine Gas – organic, gas producing materials	Methane, carbon dioxide	Human health	Accumulation of gases in confined spaces, and/or migration off site, leading to asphyxiation, or risk of explosion	1	√	Potential gas producing materials present. – Risk Assess	

10.0 RISK ASSESSMENT

10.1 METHODOLOGY

The risk of pollution, health effects or environmental harm occurring as a result of ground contamination is dependent upon three principal factors:

- The scale of the contamination sources;
- The presence of sensitive "receptors", eg Humans: health of the general public, site occupiers, redevelopment workers. Environment: flora, fauna, etc;
- The existence of migration pathways by which contaminants can reach the sensitive receptors.

This section assesses each of these factors in order to evaluate the overall level of risk and potential harm to receptors. The receptor may be human, a water resource, an eco-system or construction materials. Pathways connecting a perceived hazard to a receptor are referred to as exposure pathways.

The sources of contamination and the links connecting the hazards to the sensitive receptors will represent the basis for the risk assessment.

10.2 Source-Pathway-Receptor Model

The preliminary conceptual site model was based on the findings of the desk study. This was later reviewed and refined according to the findings of the site investigation, allowing for the ground conditions encountered and the results of laboratory testing of soil and groundwater. Any pathways considered to be inactive were removed from the model and all remaining potentially active pathways require risk assessment.

The pathways shown as potentially active in the Revised Conceptual Site Model in Section 9.0 above have been assessed below.

10.3 HUMAN HEALTH RISK ASSESSMENT

10.3.1 Site in its Present Condition

The site does not pose any risks to casual visitors or trespassers. The site is largely covered by tarmacadam or concrete and is secure.

10.3.2 Future Site Users

The contamination test results, and investigation observations show elevated concentration levels in the made ground and stockpiles of metals and several polyaromatic hydrocarbon compounds.

It should be noted that a single 'hotspot' of petroleum hydrocarbon was identified in TP16 only.

Aniline was detected at concentration above the laboratory limit of detection. Although there is no available soil screening value for aniline, following completion of the recommended site reclamation and capping of gardens and soft landscaped areas, the main risk driving pathway for aniline is considered to be the inhalation of vapours. As discussed above in Section 8.4, gas samples were taken from the gas monitoring standpipes and screened for aniline. The results of the gas vapour testing for aniline were all below the laboratory detection limit indicated that there are no elevated aniline vapours. Therefore, aniline is not considered to present a potential risk to end users.

Additionally, a sample of topsoil obtained from TP03 at 0.1m depth recorded an elevated concentration of Arsenic only.

Asbestos was detected within five made ground samples and one stockpile sample. All samples at their respective depths recorded loose Chrysotile fibres asbestos at <0.001% by weight, with the exception of WS03 at 0.4m depth which recorded Chrysotile and Amosite at 0.068% by weight.

No VOC or PCB contamination was detected in any sampled locations.

Given the elevated metals, PAH, petroleum hydrocarbon concentrations within the general made ground encountered across the site, as well as the detection of asbestos and SVOC compounds it is considered that a potential risk to human health may exist via the following relevant pollutant linkages:

- Dermal contact,
- Ingestion of soil or soil derived dust,
- Ingestion of soil attached to homegrown produce,
- Ingestion of homegrown produce,
- Inhalation of soil bourn dust.

The inhalation of vapours pathway is not considered to be active as no volatiles have been recorded.

The results of the gas vapour testing for aniline were all below the laboratory detection limit indicateing that there are no elevated aniline vapours. No VOCs or volatile petroleum hydrocarbon bands have been identified.

It is therefore considered necessary to protect end users from the elevated concentrations of contaminants in the shallow made ground. It is considered necessary to break the above listed relevant pollutant linkages in order to remove the potential risk.

As part of the site wide reclamation works, it is recommended that following demolition and site clearance, the made ground materials present at the site are excavated across the central and southern site area to a depth of typically 1.0m to 1.2m (locally 2.0m to 2.7m) below existing ground level (or 2m below underside of proposed raft foundations if this is deeper) or to the interface with undisturbed strata, if this is shallower. Across the northern site area made ground should be removed to typically 1.5m below existing ground level where encountered.

This will enable any buried residual obstructions to be broken out and removed and identify any pockets/hotspots of gross contamination.

Allowances should be made for encountering localised organic contamination hotspots, including the petroleum hydrocarbon hotspot identified at TP16, and for their bioremediation to acceptable levels.

Allowances should also be made for any occurrences of asbestos containing materials (ACM) to be hand picked by a suitably qualified asbestos awareness trained operative. Any identified ACM should be double bagged and disposed off site as hazardous waste.

Representative samples should be taken of the excavated materials and consigned for laboratory testing for the site contaminants of concern. Excavated materials should be screened of grossly contaminated materials and deleterious materials and crushed to a structural grade (typically 6f2) for reuse as structural fill.

Following placement and re-compaction of the acceptable made ground materials back up to the required level, it is recommended that a capping layer, of a minimum thickness of 600mm, of clean imported subsoil and topsoil is placed in all private gardens and areas of soft landscaping.

This would break all the above listed relevant pollutant linkages and removing the potential risk to future end users. A capping layer of 300mm could be used across the northern site area where made ground was generally absent, and subject to appropriate testing.

10.3.3 Construction Operatives

With future site development works involving the excavation and removal of the made ground, there would be a risk to workers from contaminants in the soils, including asbestos. Appropriate measures are therefore recommended for works involving the made ground materials which are known to be present beneath the site.

The following practical measures are required while excavating/re-using the excavated made ground.

- Excavations will need to be regularly damped down to prevent any dust that may contain asbestos becoming airborne
- Any excavated materials should be quarantined and regularly dampened down to prevent any dust that may contain asbestos becoming airborne
- Appropriate PPE/RPE to be worn by all workers, as necessary
- · Asbestos/dust/air monitoring
- All works to be carried out in accordance with an appropriate risk assessment and managed in accordance with the requirements of the Control of Asbestos Regulations 2012.

Additionally, a system should be established by which any 'unusual' materials that may be encountered are reported rapidly to the site management, so that the appropriate action may be taken, following specialist advice if necessary. An unusual material may be identified on site by colour, odour or physical nature. Routine visual checks should be made for the presence of any asbestos containing materials (ACM) and allowances made for handpicking these materials.

Any visual ACM should be handpicked by an appropriate qualified asbestos awareness trained operative. All picked ACMs will need to be double bagged and disposed off-site at a suitable licensed facility as hazardous waste.

Normal good hygiene practices should be adequate to protect the health and safety of redevelopment workers, and should include:

- Minimum handling of materials.
- Washing of hands prior to all meal breaks, which should be taken in a designated clean area.
- The use of standard protective clothing such as boots and overalls and gloves, where considered relevant.

In dry weather, inhalation of dust and gases should be avoided preferably by the use of dust suppression techniques to minimise fugitive emissions and minimisation of exposed materials at any particular time.

All excavations should be regularly checked for safe atmospheres.

Reference should be made to the Health and Safety Executive document "Protection of Workers and the General Public during the development of contaminated land" for detailed guidance on these matters.

10.4 RISKS TO VEGETATION

The concentrations of phytotoxic contaminants (copper, nickel and zinc) in the shallow made ground materials, indicate the potential for adverse effects to vegetation. Similarly, the physical nature of the existing made ground does not provide a suitable growing medium for vegetation. To ensure viable landscape areas by preventing upward migration of contaminants into the overlying soils, and in order to promote plant growth, any landscaped areas will require the provision of a minimum 600mm thick capping layer of clean, inert subsoil and topsoil materials. This can be reduced to 300mm within the northern area where made ground was generally absent.

10.5 CONTROLLED WATERS RISK ASSESSMENT

The results of the groundwater laboratory chemical testing indicate that the majority of the chemical concentrations do not exceed the respective threshold levels or predicated noeffect concentrations (PNEC).

Although two concentrations of copper and a single concentration of zinc have been found to exceed the bioavailability PNECs, there is not considered to be a consistent trend in the data with concentrations fluctuating between monitoring round and between borehole locations.

10.5 CONTROLLED WATERS RISK ASSESSMENT (CONTINUED)

Based on the results of the groundwater monitoring programme, the potential risk to controlled waters is considered to be low.

Considering the recommended re-engineering of the made ground, in the developed state the site will be covered by the building footprint, access roads and areas of soft landscaping which will be covered by a minimum 600mm thick capping layer of clean, inert subsoil and topsoil materials, placed over a high visibility separation geotextile membrane.

It is therefore considered that the potential for rainfall infiltration into the made ground, subsequent leachate generation from the made ground and the potential for vertical migration of unacceptable leachable concentrations to impact the underlying groundwater is considered to be low.

The proposed development is therefore not considered to present a potential risk to controlled waters.

10.6 GROUND AND MINE GAS RISK ASSESSMENT

10.6.1 Ground Gas

The results of the gas monitoring programme indicated a maximum methane concentration of 0.2% and a maximum carbon dioxide concentration of 4.4%. A maximum gas flow rate of <0.3l/hr was measured during the gas monitoring programme.

In accordance with CIRIA Report C665 a Gas Screening Value (GSV) of <0.0132l/hour has been calculated. This GSV corresponds to gas characteristic situation 1/green which does not require any special gas protective measures.

10.6.2 Radon

The site is located within a low Radon probability area, as less than 1% of properties are above action level, and that therefore no radon protective measures would be necessary in the construction of new buildings within the site.

10.6.3 Mine Gas Risk Assessment

Due to the location of the site, within a coal mining reporting area, a mine gas risk assessment should be undertaken.

10.6 GROUND AND MINE GAS RISK ASSESSMENT (CONTINUED)

A preliminary mine gas risk assessment has been carried out for the site, conducted in accordance with CL:AIRE document Good Practice for Risk Assessment for Coal Mine Gas Emissions, dated October 2021.

The site is located within a high-risk development area associated with the outcrops of the Swansea Four Feet seam and the Cille No.1 seams and therefore a mine gas risk assessment should be undertaken. The initial desk-based assessment of the site will be utilised in order to develop the level of mine gas risk within the site.

There are many sources of gas in mine workings including desorption of gas from coal and rocks, oxidation of coal, decomposition of old wood (such as pit props) and acidic mine drainage reacting with carbonate in the rocks around the seam or shaft. These gases, if produced within the old workings, would need a viable pathway to the surface such as a shaft or fractured rock above the workings.

The desk study shows that shallow coal workings are not recorded beneath the site, but the presence of unrecorded workings should not be ruled out.

There are no mine entries known to the Coal Authority within, or within 100 metres of the boundary of the property. It is therefore concluded that there are no viable pathways, via old shafts or adits, for any mine gas beneath, or within an influencing distance, of the site.

The Grovesend Fault is indicated to cross approximately through the centre of the site on a north to south orientation. If any shallow unrecorded workings are found during the recommended supplementary works, there could be a viable pathway to the surface via the potentially faulted bedrock.

Based on the desk-based research, the potential risk from coal mine gas emissions at the development site is considered below:

Figure 13.1 Decision Support Tool for Mine Gas Risk Assessment, included within CL:AIRE document Good Practice for Risk Assessment for Coal Mine Gas Emissions, dated October 2021 includes a flow chart to aid the risk assessment process and decision making.

Stage 1 of the flow chart asks if the site is located within a Coal Authority defined Coal Mining Reporting Area. Since the site is located within a Coal Authority defined Coal Mining Reporting Area the flow chart then asks if all of the following statements are true:

10.6 GROUND AND MINE GAS RISK ASSESSMENT (CONTINUED)

- Mine entries >50m from site boundary,
- Workings >150m depth,
- No faults or other potential pathways connecting surface to deeper unflooded workings,
- Outside area of past or probable shallow workings on Coal Authority viewer.

Based on the review of available information, there is considered to be no viable pathways via existing mine entries or recorded workings. However, due to the uncertainty of the presence of shallow unrecorded workings and the potential for the fault to provide a pathway for mine gas from any workings, rotary boreholes were drilled to confirm the deeper ground conditions.

Four rotary boreholes were drilled in the vicinity of the high-risk areas. Shallow workings were not encountered within any of the boreholes. Thick superficial deposits were recorded to extend beyond a depth proven to >30m below existing ground level.

It has therefore been concluded that the risk of mine gas generation is low with no unrecorded workings encountered and with no recorded workings present beneath the site. This risk of mine gas migrating to the surface is lowered further by the presence of a significant thickness of superficial deposits.

In addition to the above, the ground gas monitoring programme that has been carried out has not identified any elevated concentrations of methane or carbon dioxide gas.

It is considered that special gas protective measures for dealing with mine gas would not be required.

10.7 RISKS TO BUILDINGS AND MATERIALS DURABILITY

10.7.1 Concrete Classification

A summary of the laboratory chemical test results for the chemicals monohydric phenol, sulphur, total sulphate, water soluble sulphate, sulphide and pH, which may adversely affect the durability of building materials is presented in Appendix I.

Evidence to date does not indicate any specifically aggressive conditions, but it would be reasonable to expect a degree of sulphate and acidic aggressiveness from the made ground.

10.7 RISKS TO BUILDINGS AND MATERIALS DURABILITY (CONTINUED)

Made Ground

In accordance with BRE Digest SD1:2005 and adopting the assessment procedure specified therein for brownfield sites, the laboratory chemical test results indicate a characteristic value (taking the mean of the highest 20% of the test results) for water soluble sulphate within the made ground of 660mg/l.

Using Table C2 of BRE Digest SD1:2005, this characteristic value corresponds to Design Sulphate Class DS-2.

The groundwater regime of the site has been assessed as 'mobile' and a characteristic pH value within the made ground of 7.1 has been determined (adopting the mean of the lowest 20% of the test results). The Design Sulphate Class has been modified to give a site ACEC class of AC-2 for concrete structures constructed within the made ground.

Natural Soils

In accordance with BRE Digest SD1:2005 and adopting the assessment procedure specified therein for brownfield sites, the laboratory chemical test results indicate a characteristic value (taking the highest test result) for water soluble sulphate within the made ground of 8mg/l.

Using Table C2 of BRE Digest SD1:2005, this characteristic value corresponds to Design Sulphate Class DS-1.

The groundwater regime of the site has been assessed as 'mobile' and a characteristic pH value within the made ground of 7.6 has been determined (adopting the lowest test result). The Design Sulphate Class has been modified to give a site ACEC class of AC-1 for concrete structures constructed within the made ground.

10.7.2 Water Services

Water supply pipes will need to be protected from any contamination present within the ground. In particular, the presence of organic contaminants (such as PAH and TPH) should be addressed when selecting pipe materials. Measures to protect the pipes will include clean backfill to trenches and possibly alternative material selection.

10.7 RISKS TO BUILDINGS AND MATERIALS DURABILITY (CONTINUED)

Reference should be made to UKWIR Guidance for the Selection of Water Supply Pipes to be used in Brownfield Sites, document No. 10/WM/03/21. The final design and selection of the pipe and associated backfill should be agreed with the appropriate Regulator prior to installation.

In order to comply with the UKWIR guidance, specific sampling and testing along the actual line of the proposed water supply route may need to be carried out once this has been established.

10.8 WASTE DISPOSAL

Excavated materials generated by the development may be considered as waste and subject to waste controls. Any re-use of excavated materials on-site should be undertaken in accordance with current waste and environmental legislation and which may require the production of an approved Materials Management Plan (MMP) prepared in accordance with the CL:AIRE Code of Practice.

It is recommended that a sustainable development strategy is adopted which reduces to a practicable minimum the generation of waste materials and the need for disposal to a licensed tip. Emphasis should be on recovery and re-use rather than disposal.

However, any waste or surplus materials that are generated will need to be classified in accordance with current EC regulations and Environment Agency guidance prior to disposal. It is the responsibility of the waste producer to classify the waste.

Based on the data obtained from the site investigation works, any waste materials comprising the existing made ground are likely to be classified as hazardous waste. The existing natural ground are likely to be classified as non-hazardous waste.

Any asbestos containing materials (ACMs) will be classified as hazardous waste.

This classification is provisional and indicative of the likely waste classification based on the data obtained to date (including chemical composition, moisture content, etc.). It also assumes that the materials tested will be representative of future generated waste.

In order to minimise disposal, the materials generated should be segregated and examined, with appropriate testing as necessary, to enable the materials to be sorted or treated into lower classifications, with the resultant benefit of potentially generating re-use rather than disposal.

10.8 WASTE DISPOSAL (CONTINUED)

Once final waste sources and volumes are known, the waste stockpile to be disposed offsite will need to be classified in accordance with Environment Agency/Natural Resources Wales Waste Classification – Guidance on the Classification and Assessment of Waste Technical Guidance WM3 (2015). This is likely to require additional sampling and testing of the generated waste materials to provide an up to date current basis for classification.

Depending on the waste classification, waste acceptance criteria (WAC) testing may be required, in order to determine which class of landfill site the waste can be sent to.

It is recommended that the results of the waste classification and any WAC test results are sent to the intended licensed waste operator prior to disposal in order to confirm their classification and acceptance.

10.9 UNCERTAINTIES

It is important to recognise that there may be areas of contamination within the site that have not been found or that contaminants may be present at concentrations above those that have been found. It is also important to recognise that contamination may be localised and that no investigation, however comprehensive, is capable of finding such occurrences, other than by chance.

The near-surface drainage patterns have not been fully established.

11.0 MINING RISK ASSESSMENT

11.1 BACKGROUND

The site is located within a coal mining reporting area and therefore a Consultants Coal Mining Report has been obtained from the Coal Authority and a copy is included in Appendix C.

The Coal Authority states that there is "no past mining recorded".

The Coal Authority state that probable unrecorded workings is "none". However, this does not mean that shallow unrecorded workings do not exist, but rather any information to support this has not come into the possession of the Coal Authority.

As discussed previously, (See section 4.4) according to the Coal Authority records there are two proven coal outcrops indicated in the vicinity of the site with the Swansea Four Feet seam (referred to as the Mynyddislwyn Lower Leaf by The Coal Authority) terminating at the fault beneath the southeast corner and the horizon of the Cille No. 1 (referred to as the Darren Ddu by The Coal Authority) terminating at the fault on the northwest boundary of the site. The risk of unrecorded workings within these seams beneath the southeast corner and northwest area of the site respectively should not be ruled out.

The Coal Authority indicates that there are no mine entries recorded on site or within 100m of the site boundary.

The Coal Authority confirms that there is a fault recorded to cross the site. The geology maps indicate this to be the Grovesend Fault. The coal outcrops in the vicinity of the site terminate at the fault.

Therefore, due to the uncertainty over unrecorded shallow mine workings in the area combined with the identification of Coal Authority Development High Risk Areas within parts of the site, the risk of ground movement as a result of past coal mining is uncertain and required further investigation in the form of rotary open hole drilled boreholes.

11.2 FIELDWORK

Four rotary open hole boreholes were across the site, with two boreholes located within the Coal Authority defined Development High Risk Areas.

11.2 FIELDWORK (CONTINUED)

The boreholes encountered superficial deposits to depths in excess of >30m/>32m below ground level and no bedrock, coal seams of mine workings were encountered during the drilling.

No soft drill, loss of flush or voids/mine workings were encountered in the boreholes.

11.3 RISKS FROM ABANDONED SHALLOW MINE WORKINGS

None of the boreholes encountered any coal, soft ground, broken ground, loss of flush or abandoned underground mine workings within 30m/32m depth of drill from ground level. Additionally, none of the boreholes encountered bedrock.

Drift deposits are known to have a mitigating effect on crown hole migration to the surface, as very few examples of crown holing in South Wales have been found where the "chimney" has migrated up through more than 5.0m of drift cover.

It is therefore considered that the thickness of the superficial deposits encountered within the boreholes would prevent the migration of voids to surface level.

Based on this data, the risk of ground subsidence occurring as result of past shallow mine workings is considered to be low and no further works are required in this regard.

11.4 RISKS FROM ABANDONED MINE ENTRIES

No mine entries are recorded within, or within 20m of the site. Although the possibility that unrecorded mine entries might be present, cannot be completely ruled out, based on the confirmed thickness of superficial soils beneath the site, the presence of unrecorded mine entries is considered to be unlikely.

Should any unrecorded mine entries be encountered, they should be suitably investigated and assessed in order to determine what associated treatment/building exclusion zones are required.

12.0 Engineering Considerations and Recommendations

12.1 DETAILS OF PROPOSED DEVELOPMENT

The proposed development will comprise the demolition of the existing buildings and infrastructure and the construction of a new residential development. The development will comprise the construction of a number of open market and affordable housing units with associated carparking and access roads. Additional areas will be proposed as play areas and public open space.

The current proposed site layout is provided in the Illustrative Masterplan by Hammond Architectural Ltd, drawing number IM-01 Revision A dated September 2023, see Figure 3.

12.2 SITE PREPARATION, RECLAMATION AND REMEDIATION

The site is characterised by a history of former industrial land uses resulting in a variable thickness of made ground materials across the majority of the site, typically increasing in thickness moving from north to south with extensive areas of existing concrete hardstanding, retaining walls and standing infrastructure. Existing stockpiles comprising material derived from the historical activities also exist on site.

A band of soft clay/silt material also exists spanning the central site area in an east to west orientation underlying the shallow made ground.

Soil contamination has been identified in localised areas of the site, concordant with the former land use. The soil contamination is diverse, comprising metals, PAH and localised petroleum hydrocarbons. SVOC compounds were also detected above the laboratory detection limits. Asbestos has also been detected on site. Chemical testing and assessments undertaken on groundwater samples do not indicate a potential risk to controlled waters.

In order to provide a suitable development plateau, and ensure the site is reclaimed to a standard suitable for residential development, site wide reclamation and remediation works are required.

Invasive Plant Species

It has previously been noted that Invasive Plants, specifically Japanese Knotweed and Himalayan Balsam are present in localised parts of the site. It is recommended that a full pest plant survey is undertaken and should the existence of Invasive Plants be identified, a licenced and competent contractor is engaged to undertake an eradication programme.

12.2 SITE PREPARATION, RECLAMATION AND REMEDIATION (CONTINUED)

Services

Prior to any works commencing on site, any existing buried services, including any culverts, within the site area should be identified and either diverted or protected. Any diversion works should be carried out undertaken the supervision of, and to the specification of, the appropriate statutory authorities. The resulting excavations should be backfilled with suitable granular material.

Site Vegetation Strip

All trees, tree stumps and brash vegetation within the site should be stripped off and removed. Due to the variable nature of the underlying made ground, and the requirement to carry out a site wide reclamation and remediation earthworks operation in order to provide a suitable development surface for residential end use, it is imperative that all trees within the site boundary are removed and cleared.

There are mature trees/vegetation along the edges of the site. Allowances should therefore be made for the protection of any trees or vegetation which are to be retained. Where trees are to be removed this should include the removal of any associated roots that may become exposed in any nearby earthworks and foundation excavations.

The natural soils have been classed as negligible volume change potential in accordance with NHBC chapter 4.2. However, any such works should be conducted in accordance with the code of practice recommended by the NHBC.

Demolition and Site Clearance

Prior to demolition of the above ground structures, a Refurbishment/Demolition Survey should be carried out and any asbestos containing materials removed by an approved contractor. Building inventory and demolition strategies should be undertaken to ensure safe working methods and appropriate re-use and/or disposal of materials. It should be noted that suspected asbestos containing materials (ACM) were observed in the roof and wall structures within the older parts of the existing factory/works buildings. Special care needs to be taken during their removal prior to demolition in order to avoid cross contamination of the surroundings soils.

Prior to commencement of the reclamation works, boundary dust and asbestos air quality monitoring should be established. The data obtained should be reviewed regularly in order to inform the future/ongoing works and any additional precautionary measures required.

Strategies should be in place to prevent and minimise dust generation, including the retention of existing site roads for as long as is practicable, watering and regular sweeping of roads and hardstanding, minimising the height and grading the surface of stockpiles, and ensuring all skips and vehicles entering and leaving the site are covered.

A strategy should also be agreed in order to identify and deal with any contamination, including asbestos cement materials, encountered during the excavation works. A system should be in place to ensure any encountered contamination is reported to the site engineer and the appropriate action taken. In areas where significant contamination has been already identified, it is recommended that the excavation works are supervised by a qualified geotechnical/geoenvironmental engineer.

The site is covered by large areas by reinforced concrete/slabs, typically circa 200mm thick, but in places approximately 500mm thick. The existing concrete slabs and areas of hardstanding should be broken out and removed. All remnant foundations, structures, pits, basements, tanks, etc., associated with the former buildings should also be removed and chased out.

Tarmac/blacktop covers localised parts of the site, such as the car park area in the south of the site. This should be planed off and stockpiled for re-use as appropriate.

The excavated demolition materials should be crushed and screened to achieve a suitable grade (<125mm maximum particle size) and stockpiled on site for re-use as granular fill. Any unacceptable materials, such as reinforcing bar, timber, etc. will need to be removed. In addition, any occurrences of asbestos containing materials will also need to be assessed and removed from site. All unacceptable materials should be removed from site and disposed of at a suitable landfill facility.

Earthworks

The presence of variable fill materials to varying depths (as deep as 2.7m in the central part of the site) and the soft band of silt/clay highlights the requirement for a large proportion of the site to undergo a 'turn and compact' earthworks programme to provide an appropriate uniform reclaimed surface suitable for residential development.

In order to provide a suitably engineered formation free of obstructions and to minimise potential total and differential settlements, it is recommended that the existing made ground is excavated to typically 1.0m - 1.5m, locally 2.0m - 2.5m below underside of proposed raft foundations, or to natural ground, if shallower.

In addition to this, all residual buried obstructions are to be excavated and removed in their entirety to typically 2.0m below the development plateau.

Furthermore, it is recommended that 1.0m - 1.5m of soft silt/clay is removed from the central site area and replaced in well compacted layers in conjunction with suitable site won granular fill.

Any localised encountered soft spots and/or pockets of contaminated materials should also be removed for appropriate treatment and assessment.

The excavated materials should be sorted, processed and any unsuitable materials removed. Any residual obstructions and oversized materials encountered within he made ground should also be removed and crushed to a suitable grade (<125mm maximum particle size) and re-used as granular fill.

Consideration should be given to the clearance of deeper zones in order to accommodate the planned infrastructure drainage.

Any encountered contamination or hotspots, including the potential hydrocarbon hotspot at TP16, should be sampled and assessed by a qualified geotechnical engineer. Any gross organic contaminated materials should be segregated and stockpiled separately fur further assessment and treatment/disposal. The materials should be stockpiled on an impermeable membrane and covered to prevent unacceptable surface water run-off.

Should bioremediation be undertaken for organic contaminated materials, careful consideration should be given to the location of the bio-piles in order to minimise potential odour nuisance to local residents during creation and turning of the bio-piles.

The reduced formation should be brought back up to the required level (approx. 750mm below finished development level). with site-won acceptable materials, placed and well compacted in layers in accordance with the Department of Transport (DTp) Specification for Highways Works.

Reduced formations should be proof rolled, any soft spots/areas should be removed and then brought up to the required levels with either well compacted imported granular materials, or acceptable site won granular materials from the site.

Grading and reprofiling of the site from the north to south and west should be achieved to aid natural surface water run-off.

Consideration for the reuse of the excavated soft silt/clay within the attenuation basin in the southern site area, could be given.

An Earthworks Specification will be required to inform the earthworks.

Geotechnical laboratory testing, including optimum compaction testing and particle size distribution testing have been undertaken in order to provide typical characteristics of made ground, and natural ground and inform the earthworks contractor. (see Table 9).

Site won materials may need to be conditioned to achieve the required soil moisture content prior to replacement.

It is recommended that the placement of the re-engineered materials is monitored and validated by a qualified geotechnical engineer.

Following completion of the earthworks, a series of plate load tests and/or probes should be carried out across the completed surface to confirm the achieved compaction and have been placed in accordance with the Earthworks Specification.

In addition, the engineered fill should be sampled and tested during the works, and the final prepared surface should also be sampled and tested upon completion to demonstrate that no residual contamination remains and that the materials satisfy the remediation requirements.

Site Specific Target Levels (SSTLs) should be derived to inform the remedial works.

A materials management plan (MMP) will be required to control an appropriate material use strategy to ensure the maximum benefit from available materials whilst managing and controlling final mitigation measures.

Exposed formations

Given the nature much of the near surface soils, the exposed surface of the site will deteriorate in poor weather and due to trafficking of plant.

We therefore recommend that to minimise surface water management risks and minimise the generations of silt, softened materials and unsuitable arisings, a strategic earthworks materials management is required.

Areas of stripping should be minimised at all times. The exposed areas should be protected from damage in wet weather (for example using a layer of blinding concrete or layer of single size granular material). Designated access routes should be well maintained and suitably designed and maintained working platforms should be provided for construction plant.

Any soft spots/areas should be removed, and the reduced levels should be proof rolled and brought up to the required levels with either well compacted imported granular materials, or acceptable materials excavated from the site.

Unforeseen Contamination

A system should be established for identification and dealing with any unforeseen contamination, including asbestos containing/cement materials encountered during the site works and/or any grossly contaminated soils. Any contamination, or suspected contamination, should be reported to the site manager in the first instance, so that appropriate action may be taken, following specialist advice if necessary. Careful consideration of the re-use of made ground/potentially contaminated soils should be undertaken prior to undertaking any earthworks activities.

Workplace and boundary monitoring

Appropriate workplace exposure monitoring and boundary monitoring should be completed during reclamation in order to protect site workers and the public and surrounding land.

Validation

A validation report will be required upon completion of the site works in order to demonstrate that the works have been carried out in accordance with the earthworks specification and remediation strategy and to satisfy the requirements of the local planning authority, NRW and the NHBC as appropriate.

It is recommended that the site reclamation and engineering works are monitored, tested and validated by a qualified geotechnical engineer and allowances should be made for appropriate soil sampling, and field and laboratory geotechnical testing.

Garden Capping

Upon completion of the construction works, all garden and landscaped areas need to be capped by a minimum thickness of 600mm of clean, subsoil and topsoil. This could be reduced to 300mm in the northern part of the site where made ground was generally absent. The capping soils should be placed on top of a hi-vis geotextile separation/alert membrane in order to maintain the integrity of the capping layer.

12.3 FOUNDATIONS AND FLOOR SLABS

The ground conditions underlying the majority of the site comprise a variable thickness of made ground, typically thicker in the central and southern parts of the site, overlying superficial deposits of gravelly clay/silt, silty/clayey sandy gravel, or gravelly sand.

Within the northern site area, made ground was either absent or much thinner, with the exception of a localised pocket of deeper made ground within the vicinity of TP05, which may be associated with an infilled former gravel pit.

Additionally, the historical land uses at the site have resulted in various structures being present across the site which require removal.

Therefore, as described above in Section 12.2, a 'turn and compact' earthworks operation is proposed across the site in order to civilise the underlying materials and create a suitable development surface for proposed residential end use and also allow any areas of grossly contaminated soils to be identified and removed/treated.

Given the ground conditions and requirement for site wide earthworks operations, the following foundations recommendations are recommended for the site.

Reference should also be made to Figure 7 recommended foundation zoning plan.

Northern Site Area

Within the northern part of the site, it is recommended that the proposed residential development, comprising 2/3 storey residential dwellings, is founded by using traditional concrete strip/trench fill foundations.

Traditional mass concrete strip/trench fill foundations may be constructed within the medium dense silty sandy gravels or the firm becoming stiff slightly silty sandy gravelly clay deposits encountered beneath the northern site area. These deposits were typically encountered from depths of between approximately 0.1m and 1.4m bgl during the intrusive site investigation.

An allowable bearing pressure of 100kN/m² could be used for design purposes. At this intensity of loading, the total settlements should not exceed 25mm, and any angular distortions caused by differential movements should be less than 1:750.

Footings should be founded on similar strata throughout to reduce the risk of differential settlement. Any foundation bearing on a combination of differing bearing strata should be locally reinforced with mesh across the change in strata.

12.3 FOUNDATIONS AND FLOOR SLABS (CONTINUED)

Foundations should penetrate the founding strata by a minimum of 200mm and be at a minimum depth of 900mm below finished development levels to protect against the effects of frost heave and/or thermal shrinkage.

Foundations should fully penetrate any encountered made ground and any soft/loose deposits.

The results of the laboratory plasticity tests indicate that the soils underlying the site have a negligible volume change potential.

Contingencies should be allowed for deepening foundations to deal with any unforeseen disruption of the bearing strata from the former works foundations / basements / infrastructure.

Ground slabs should be constructed as suspended.

No radon protective measures would be necessary in the construction of new buildings within the site. The ground gas results indicate that no ground gas protective measures are required.

Main Site Area - Central and Southern Site Area

It is recommended that the proposed residential development, comprising 2/3 storey residential dwellings or apartments, is founded by using reinforced concrete raft type foundations/floor slabs, founded within well compacted granular materials over reengineered made ground.

Subject to the results of confirmatory plate load testing on prepared formations, the proposed reinforced rafts should be designed to a maximum applied pressure at any one point beneath the raft of 75kN/m².

At this intensity of loading, the total settlements should not exceed 30mm and any angular distortions caused by differential movements should be less than 1:750. Rafts should be designed to span a 1.0m soft spot and 1.0m cantilever at build corners.

To minimise the differential movements, it is recommended that beneath all reinforced concrete raft foundations there should be a minimum 300mm thick layer of well compacted imported granular fill throughout the plan area of the building. Department of Transport Type 1 Sub-base, or similar approved, could be used and should be compacted in layers in accordance with current DTp Specification for Highway Works.

12.3 FOUNDATIONS AND FLOOR SLABS (CONTINUED)

Validation testing (typically plate load tests and dynamic probing) should be carried out across the completed prepared plateaus beneath rafts, in order to ensure its performance.

Thickening of the raft is likely to be required beneath the load bearing walls/columns.

Radon protective measures or ground gas protective measures are not required at the site.

12.4 EXCAVATIONS AND FORMATIONS

The ground investigation was undertaken using a 20-tonne tracked excavator. Post reclamation works excavations should be possible with similar machinery to depths in the region of 4.0m.

Allowances should be made for the use of hydraulic breaking equipment during the removal of existing hardstanding and breaking out of obstructions.

Perched water/ groundwater occurrences were encountered at depths ranging from 1.4 to 3.9m below existing ground level within 21No. exploratory hole locations.

It should be feasible to deal with groundwater by conventional pumping techniques. The use of oil skimmers and/or fuel traps may be required if residual contamination is encountered within any perched waters, namely local to TP16 where a hydrocarbon hotspot was observed.

Instability of trial pit sides was frequently encountered throughout both made ground and cohesive and granular made ground deposits. Excavations should not be entered and the sides of excavations deeper than 1.0m should be fully supported by trench boxes, or temporarily battered at gradients of typically 30°.

Deep excavations will require suitable benching to maintain stability and reduce any rapid changes in ground level.

12.5 Access Roads and Car Parking Areas

For access roads and car parking formations within existing made ground and/or in situ natural soils, California Bearing Ratio (CBR) values of 2% should be used for design purposes.

12.5 ACCESS ROADS AND CAR PARKING AREAS (CONTINUED)

Following completion of the recommended earthworks, within the re-engineered made ground, California Bearing Ratio (CBR) values of >5% should be achievable and could be used for design purposes.

It will be necessary to confirm this performance and hence contingencies should be allowed for the removal of any 'soft spots/areas' and their replacement with well compacted imported granular materials, laid in well compacted layers in accordance with DTp Specifications for Highway Works. All formations should be proof rolled and inspected to ensure removal of obstructions that could potentially form hard spots.

12.6 DRAINAGE

Soakaway testing has been undertaken at 6 No. trial pit locations across the site (TP01, TP06, TP08, TP11, TP14 and TP15), as indicated on Figure 4. The results of soakaway tests are summarised in Section 7.6 above (see Table 8).

Note that the soakaway test results are specific to the locations and depths of the tests undertaken.

The soakaway results should be provided to a suitably qualified drainage engineer so that a soakaway design specific to the development can be completed and provided.

If soakaway drainage systems are to be utilised on site, then all soakaway chambers should be set away from the proposed buildings by a minimum of 5.0m.

A positive infiltration rate was achieved within four trial pits (TP01, TP06, TP08). The measured soil infiltration rates were between 2.6x10⁻⁴m/sec and 8.8x10⁻⁵m/sec.

Within trial pit TP15 only a single test cycle could be completed. An infiltration rate of 3.1x10⁻⁵m/sec was recorded. However, it should be noted that the infiltration rate was extrapolated in order to derive the value and should be considered with caution.

The remaining pits showed insufficient infiltration to calculate a design infiltration rate.

12.7 CERTIFICATION/VALIDATION WORKS

All site remediation and reclamation works will need to be carried out in accordance with an approved remediation and reclamation strategy and to an agreed Earthworks Specification.

12.7 CERTIFICATION/VALIDATION WORKS (CONTINUED)

The site remediation and reclamation works should be monitored by a qualified geotechnical engineer with appropriate geotechnical and geo-environmental testing of earthworks materials as the works progress.

Upon completion of the remediation and reclamation earthworks, the final reclaimed surface will need to be sampled, tested (geotechnically and geo-environmentally) and validated as being suitable for the proposed end use, in accordance with the remediation/reclamation strategy.

APPENDIX A

ENVIROCHECK REPORT

APPENDIX B

LANDMARK RADON INFORMATION MAP

APPENDIX C CONSULTANTS COAL MINING REPORT FROM THE COAL AUTHORITY

APPENDIX D

TRIAL PIT LOGS

APPENDIX E

WINDOWLESS SAMPLE BOREHOLE LOGS

APPENDIX F

SHELL AND AUGER BOREHOLE LOGS

APPENDIX G

ROTARY BOREHOLE LOGS

APPENDIX H

SOIL INFILTRATION TESTING RESULTS

APPENDIX I

LABORATORY CHEMICAL TEST RESULTS (SOILS)

APPENDIX J

LABORATORY CHEMICAL TEST RESULTS (WATER)

APPENDIX K

LABORATORY GEOTECHNICAL TESTING RESULTS

APPENDIX L

In-situ Ground Gas Monitoring Results

APPENDIX M

GROUNDWATER MONITORING RESULTS

APPENDIX N

SUMMARY OF LABORATORY CHEMICAL TEST RESULTS (SOILS)

APPENDIX O

SUMMARY OF LABORATORY CHEMICAL TEST RESULTS (WATER)

APPENDIX P

METAL BIOAVAILABILITY ASSESSMENT RESULTS

APPENDIX A

ENVIROCHECK REPORT

Envirocheck® Report:

Datasheet

Order Details:

Order Number:

308357480_1_1

Customer Reference:

14180/LP

National Grid Reference:

259040, 204290

Slice:

Α

Site Area (Ha):

5.3

Search Buffer (m):

1000

Site Details:

Former Tata Site Pontarddulais Swansea SA4 8SH

Client Details:

MR H Pritchard Integral Geotechnique Integral House 7 Beddau Way Castlegate Business Park Caerphilly CF83 2AX

Order Number: 308357480_1_1 Date: 09-Mar-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service

Report Section	Page Number
Summary	-
Agency & Hydrological	1
Waste	50
Hazardous Substances	-
Geological	54
Industrial Land Use	62
Sensitive Land Use	77
Data Currency	78
Data Suppliers	84
Useful Contacts	85

Introduction

The Environment Act 1995 has made site sensitivity a key issue, as the legislation pays as much attention to the pathways by which contamination could spread, and to the vulnerable targets of contamination, as it does the potential sources of contamination.

For this reason, Landmark's Site Sensitivity maps and Datasheet(s) place great emphasis on statutory data provided by the Environment Agency/Natural Resources

Wales and the Scottish Environment Protection Agency; it also incorporates data from Natural England (and the Scottish and Welsh equivalents) and Local Authorities; and highlights hydrogeological features required by environmental and geotechnical consultants. It does not include any information concerning past uses of land. The datasheet is produced by querying the Landmark database to a distance defined by the client from a site boundary provided by the client. In this datasheet the National Grid References (NGRs) are rounded to the nearest 10m in accordance with Landmark's agreements with a number of Data Suppliers.

Copyright Notice

© Landmark Information Group Limited 2023. The Copyright on the information and data and its format as contained in this Envirocheck® Report ("Report") is the property of Landmark Information Group Limited ("Landmark") and several other Data Providers, including (but not limited to) Ordnance Survey, British Geological Survey, the Environment Agency/Natural Resources Wales and Natural England, and must not be reproduced in whole or in part by photocopying or any other

method. The Report is supplied under Landmark's Terms and Conditions accepted by the Customer.

A copy of Landmark's Terms and Conditions can be found with the Index Map for this report. Additional copies of the Report may be obtained from Landmark, subject to Landmark's charges in force from time to time. The Copyright, design rights and any other intellectual rights shall remain the exclusive property of Landmark and /or other Data providers, whose Copyright material has been included in this Report.

© Environment Agency & United Kingdom Research and Innovation 2023. © Natural Resources Wales & United Kingdom Research and Innovation 2023.

Natural England Copyright Notice

Site of Special Scientific Interest, National Nature Reserve, Ramsar, Special Protection Area, Special Conservation Area, Marine Nature Reserve data (derived from Ordnance Survey 1:10000 raster) is provided by, and used with the permission of, Natural England who retain the copyright and Intellectual Property Rights for the

Scottish Natural Heritage Copyright

Contains SNH information licensed under the Open Government Licence v3.0.

Ove Arup Copyright Notice

The Mining Instability data was obtained on licence from Ove Arup & Partners Limited (for further information, contact mining.review@arup.com). No reproduction or further use of such Data is to be made without the prior written consent of Ove Arup & Partners Limited. The supplied Mining Instability data is derived from publicly available records and other third party sources and neither Ove Arup & Partners nor Landmark warrant the accuracy or completeness of such information or data.

Stantec Copyright Notice

The cavity data presented has been extracted from the PBA (now Stantec UK Ltd) enhanced version of the original DEFRA national cavity databases. Stantec UK Ltd retain the copyright & intellectual property rights in the data. Whilst all reasonable efforts are made to check that the information contained in the cavity databases is accurate we do not warrant that the data is complete or error free. The information is based upon our own researches and those collated from a number of external sources and is continually being augmented and updated by Stantec UK Ltd. In no event shall Stantec UK Ltd or Landmark be liable for any loss or damage including, without limitation, indirect or consequential loss or damage arising from the use of this data.

Radon Potential dataset Copyright Notice

Information supplied from a joint dataset compiled by The British Geological Survey and Public Health England.

Natural Resources Wales Copyright Notice

Contains Natural Resources Wales information © Natural Resources Wales and Database Right. All rights Reserved. Contains Ordnance Survey Data. Ordnance Survey Licence number 100019741. Crown Copyright and Database Right. Contains Natural Resources Wales information © Natural Resources Wales and Database Right. All rights Reserved. Some features of this information are based on digital spatial data licensed from the Centre for Ecology & Hydrology © NERC (CEH). Defra, Met Office and DARD Rivers Agency © Crown copyright. © Cranifield University. © James Hutton Institute. Contains OS data © Crown copyright and database right 2023. Land & Property Services © Crown copyright and database right.

Report Version v53.0

Data Type	Page Number	On Site	0 to 250m	251 to 500m	501 to 1000m (*up to 2000m)
Agency & Hydrological					
BGS Groundwater Flooding Susceptibility	pg 1	Yes	Yes	Yes	n/a
Contaminated Land Register Entries and Notices					
Discharge Consents	pg 3		2	7	29
Prosecutions Relating to Controlled Waters			n/a	n/a	n/a
Enforcement and Prohibition Notices					
Integrated Pollution Controls					
Integrated Pollution Prevention And Control					
Local Authority Integrated Pollution Prevention And Control	pg 12	1			
Local Authority Pollution Prevention and Controls	pg 12			1	
Local Authority Pollution Prevention and Control Enforcements	pg 13			1	
Nearest Surface Water Feature	pg 13		Yes		
Pollution Incidents to Controlled Waters	pg 13		6	11	15
Prosecutions Relating to Authorised Processes	pg 18			1	
Registered Radioactive Substances					
River Quality	pg 18		1		1
River Quality Biology Sampling Points					
River Quality Chemistry Sampling Points	pg 19			1	2
Substantiated Pollution Incident Register					
Water Abstractions	pg 21	7			(*6)
Water Industry Act Referrals					
Groundwater Vulnerability Map	pg 25	Yes	n/a	n/a	n/a
Bedrock Aquifer Designations	pg 25	Yes	n/a	n/a	n/a
Superficial Aquifer Designations	pg 25	Yes	n/a	n/a	n/a
Source Protection Zones					
Extreme Flooding from Rivers or Sea without Defences	pg 25	Yes	Yes	n/a	n/a
Flooding from Rivers or Sea without Defences	pg 26	Yes	Yes	n/a	n/a
Areas Benefiting from Flood Defences	pg 26	Yes	Yes	n/a	n/a
Flood Water Storage Areas				n/a	n/a
Flood Defences	pg 27		Yes	n/a	n/a
OS Water Network Lines	pg 27		9	37	154

Data Type	Page Number	On Site	0 to 250m	251 to 500m	501 to 1000m (*up to 2000m)
Waste					
BGS Recorded Landfill Sites					
Historical Landfill Sites	pg 50			1	
Integrated Pollution Control Registered Waste Sites					
Licensed Waste Management Facilities (Landfill Boundaries)					
Licensed Waste Management Facilities (Locations)	pg 50				2
Local Authority Landfill Coverage		1	n/a	n/a	n/a
Local Authority Recorded Landfill Sites					
Potentially Infilled Land (Non-Water)	pg 50			3	13
Potentially Infilled Land (Water)	pg 51	1	9	5	28
Registered Landfill Sites	pg 53			1	
Registered Waste Transfer Sites					
Registered Waste Treatment or Disposal Sites					
Hazardous Substances					
Control of Major Accident Hazards Sites (COMAH)					
Explosive Sites					
Notification of Installations Handling Hazardous Substances (NIHHS)					
Planning Hazardous Substance Consents					
Planning Hazardous Substance Enforcements					

Order Number: 308357480_1_1 Date: 09-Mar-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service

Data Type	Page Number	On Site	0 to 250m	251 to 500m	501 to 1000m (*up to 2000m)
Geological					
BGS 1:625,000 Solid Geology	pg 54	Yes	n/a	n/a	n/a
BGS Estimated Soil Chemistry	pg 54	Yes	Yes	Yes	Yes
BGS Recorded Mineral Sites	pg 56		1	3	14
BGS Urban Soil Chemistry					
BGS Urban Soil Chemistry Averages					
CBSCB Compensation District			n/a	n/a	n/a
Coal Mining Affected Areas	pg 59	Yes	n/a	n/a	n/a
Mining Instability	pg 60	Yes	n/a	n/a	n/a
Man-Made Mining Cavities					
Natural Cavities					
Non Coal Mining Areas of Great Britain				n/a	n/a
Potential for Collapsible Ground Stability Hazards	pg 60	Yes	Yes	n/a	n/a
Potential for Compressible Ground Stability Hazards	pg 60	Yes		n/a	n/a
Potential for Ground Dissolution Stability Hazards				n/a	n/a
Potential for Landslide Ground Stability Hazards	pg 60	Yes	Yes	n/a	n/a
Potential for Running Sand Ground Stability Hazards	pg 60	Yes	Yes	n/a	n/a
Potential for Shrinking or Swelling Clay Ground Stability Hazards	pg 60	Yes		n/a	n/a
Radon Potential - Radon Affected Areas			n/a	n/a	n/a
Radon Potential - Radon Protection Measures			n/a	n/a	n/a
Industrial Land Use					
Contemporary Trade Directory Entries	pg 62	1	21	28	21
Fuel Station Entries	pg 68			2	1
Points of Interest - Commercial Services	pg 68		7	13	9
Points of Interest - Education and Health					
Points of Interest - Manufacturing and Production	pg 71	12	13	2	15
Points of Interest - Public Infrastructure	pg 74		2	11	4
Points of Interest - Recreational and Environmental	pg 75			1	5
Gas Pipelines	pg 76				1
Underground Electrical Cables					

Data Type	Page Number	On Site	0 to 250m	251 to 500m	501 to 1000m (*up to 2000m)
Sensitive Land Use					
Ancient Woodland	pg 77			1	8
Areas of Adopted Green Belt					
Areas of Unadopted Green Belt					
Areas of Outstanding Natural Beauty					
Environmentally Sensitive Areas					
Forest Parks					
Local Nature Reserves					
Marine Nature Reserves					
National Nature Reserves					
National Parks					
Nitrate Sensitive Areas					
Nitrate Vulnerable Zones					
Ramsar Sites					
Sites of Special Scientific Interest					
Special Areas of Conservation					
Special Protection Areas					
World Heritage Sites					

Agency & Hydrological

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A13SE (E)	0	1	259038 204289
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A13SW (W)	0	1	258950 204289
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding to Occur at Surface	A13SE (S)	0	1	259038 204200
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	A13SW	0	1	258900
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding to Occur at Surface	(SW)	12	1	259038
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	(N) A13NE	28	1	204450 259200
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	(E) A13SW	40	1	204350 258850
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	(SW) A13SW	60	1	204200 258850
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A13SW	71	1	258950
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	(S) A13NW	86	1	258900 258900
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	(NW) A13SW	95	1	258800 258800
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding to Occur at Surface	(SW)	106	1	258800 258800
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding to Occur at Surface	(W) A13SW	138	1	204250 258750
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A13SW	138	1	258750 258750
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	(SW) A13SW (W)	152	1	204150 258750 204250
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A13SE (SE)	162	1	259250 204150
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A13NE (NE)	164	1	259250 204600
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding to Occur at Surface	A13SW (W)	172	1	258750 204289
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A13SW (W)	188	1	258700 204200
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A13SW (SW)	191	1	258700 204100
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A8NW (S)	202	1	258900 203900
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	A13NW (NW)	213	1	258900 258900 204600

Order Number: 308357480_1_1 Date: 09-Mar-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service

Agency & Hydrological

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A13SW (W)	217	1	258700 204289
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	A13SW (W)	238	1	258700 204300
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A12SE (W)	246	1	258650 204250
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding to Occur at Surface	A13NW	256	1	258850
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	(NW) A13NW	262	1	204600 258700
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	(W) A12SE	263	1	204350 258650
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	(W) A13NW	286	1	204289 258700
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding to Occur at Surface	(W) A18SW	324	1	204400 258800
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	(NW) A8NW	327	1	258850
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	(S) A12SE	329	1	258600 258600
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	(W) A12NE (W)	330	1	204300 258650 204400
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A8NE (S)	331	1	259050 203800
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A18SE	344	1	259350
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	(NE) A12NE	350	1	258600 258600
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	(W) A18SW (NW)	352	1	204350 258800 204700
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A12NE (NW)	377	1	258650 204500
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding to Occur at Surface	A18SW (NW)	393	1	258750 204700
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A12NE (W)	395	1	258550 204350
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	A18SE (N)	417	1	259038 204900
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding to Occur at Surface	A8NW (S)	421	1	258950 203700
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A12NE (NW)	421	1	258600 204500
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A14SW (E)	433	1	259550 204150

Order Number: 308357480_1_1 Date: 09-Mar-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service

Agency & Hydrological

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Groundwater I	Flooding Susceptibility				
	Flooding Type:	Limited Potential for Groundwater Flooding to Occur	A12NE (W)	442	1	258550 204450
	BGS Groundwater I	Flooding Susceptibility				
	Flooding Type:	Potential for Groundwater Flooding to Occur at Surface	A18SW (NW)	463	1	258700 204750
	BGS Groundwater I Flooding Type:	Flooding Susceptibility Limited Potential for Groundwater Flooding to Occur	A8NE	484	1	259100
	200 0	Flori Proc O consequence	(S)			203650
	Flooding Type:	Flooding Susceptibility Potential for Groundwater Flooding of Property Situated Below Ground Level	A19SW (NE)	484	1	259450 204850
	BGS Groundwater	Flooding Susceptibility	(112)			201000
	Flooding Type:	Limited Potential for Groundwater Flooding to Occur	A18SW (NW)	493	1	258700 204800
	BGS Groundwater I	Flooding Susceptibility	, ,			
	Flooding Type:	Potential for Groundwater Flooding of Property Situated Below Ground Level	A19SW (NE)	498	1	259400 204900
	Discharge Consent	s				
1		Corus Uk Ltd Not Supplied Alumin'D Products Corus Strip Pontd, Aluminised Products, Corus Strip Products Uk, Pontardulais, Swansea, Sa4 8sb Natural Resources Wales LOUGHOR - CONFLUENCE WITH AMAN TO TIDAL LIMIT BC0007701 2 24th May 1994 24th May 1994 Not Supplied Trade And Other Matter Discharge Freshwater Stream/River River Loughor Effective Located by supplier to within 100m	A13SW (SW)	24	2	258880 204180
1	,	British Steel Bssp Coated Metals (Corus Group) Metal Treatment, Bolts, Nuts Etc. Alumin'D Products Corus Strip Pontd, Aluminised Products, Corus Strip Products Uk, Pontardulais, Swansea, Sa4 8sb Natural Resources Wales River Loughor Bc0007701 1 16th December 1968 16th December 1968 23rd May 1994 Trade Effluent Not Supplied River Loughor Authorisation revoked Located by supplier to within 10m	A13SW (SW)	24	2	258880 204180
	Discharge Consent	s				
2	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Felinfoel Brewery Co Ltd Public Houses & Bars Red Lion Inn Hendy Natural Resources Wales Not Supplied Bm0023301 1 5th July 1982 5th July 1982 20th April 1990 Unspecified Not Supplied To Land New Consent (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995) Located by supplier to within 10m	A8NW (SW)	313	2	258720 203870

Order Number: 308357480_1_1 Date: 09-Mar-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 3 of 85

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
2	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Felinfoel Brewery Co Ltd Hotel Trade The Red Lion Hotel Hendy Natural Resources Wales River Loughor BP0161701 1 20th April 1990 20th April 1990 Not Supplied Miscellaneous Discharges - Surface Water Freshwater Stream/River The River Loughor New Consent, by Application (Water Resources Act 1991, Section 88) Located by supplier to within 100m	A8NW (SW)	314	2	258750 203850
2		Felinfoel Brewery Co Ltd Hotel Trade The Red Lion Hotel Hendy Natural Resources Wales LOUGHOR - CONFLUENCE WITH AMAN TO TIDAL LIMIT Bp0161701 1 20th April 1990 20th April 1990 Not Supplied Miscellaneous Discharges - Surface Water Freshwater Stream/River The River Loughor Effective Located by supplier to within 10m	A8NW (SW)	314	2	258750 203850
3	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Dwr Cymru Cyfyngedig Sewerage Network - Sewers - Water Company Swo. 60 Yards U/S Confluence D Natural Resources Wales DULAIS - HEADWATERS TO CONFLUENCE WITH LOUGHOR Bw2301901 2 8th September 2010 8th September 2010 Not Supplied Sewage Discharges - Stw Storm Overflow/Storm Tank - Water Company Freshwater Stream/River River Dulais Effective Located by supplier to within 100m	A8NW (SW)	339	2	258800 203800
3	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Dwr Cymru Cyfyngedig Sewerage Network - Sewers - Water Company Swo. 60 Yards U/S Confluence D Natural Resources Wales DULAIS - HEADWATERS TO CONFLUENCE WITH LOUGHOR Bw2301901 2 8th September 2010 8th September 2010 Not Supplied Sewage Discharges - Stw Storm Overflow/Storm Tank - Water Company Freshwater Stream/River River Dulais Effective Located by supplier to within 100m	A8NW (SW)	339	2	258800 203800

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
3	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Type: Discharge Type: Status: Positional Accuracy:	Dwr Cymru Cyfyngedig Sewerage Network - Sewers - Water Company Swo. 60 Yards U/S Confluence D Natural Resources Wales River Loughor BW2301901 1 20th October 1989 20th October 1989 7th September 2010 Public Sewage: Storm Sewage Overflow Freshwater Stream/River River Dulais New Consent, by Application (Water Resources Act 1991, Section 88) Located by supplier to within 100m	A8NW (SW)	339	2	258800 203800
3	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Dwr Cymru Cyfyngedig Sewerage Network - Sewers - Water Company Rear Of No1 St Teilo St, Pontardulais, Nr The Gwyn Hotel, 2 St Teilo St, Pontarddulais, Swansea, Sa4 1th Natural Resources Wales DULAIS - HEADWATERS TO CONFLUENCE WITH LOUGHOR Bw2301901 3 24th September 2019 24th September 2019 Not Supplied Sewage Discharges - Stw Storm Overflow/Storm Tank - Water Company Freshwater Stream/River Dulais Effective Located by supplier to within 10m	A8NW (SW)	354	2	258799 203785
4	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Roberts L Recreational & Cultural Swimming Pool Glanffrwd Pontar Natural Resources Wales River Loughor Be0059301 1 17th August 1972 17th August 1972 17th March 1992 Unspecified Not Supplied Nant Camffrwd Consent expired Located by supplier to within 10m	A14NE (E)	629	2	259800 204380
4	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Type: Discharge Type: Status: Positional Accuracy:	Roberts L Recreational & Cultural Swimming Pool Glanffrwd Pontar Natural Resources Wales Not Supplied Be0059302 1 17th August 1972 17th August 1972 11th March 1992 Unspecified Not Supplied Nant Camffrwd Consent expired Located by supplier to within 10m	A14NE (E)	629	2	259800 204380

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
5	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Dwr Cymru Cyfyngedig Sewerage Network - Sewers - Water Company Ynys Tomenlle Cso Iscoed R'D Hendy, Iscoed Road, Carmarthenshire Natural Resources Wales River Loughor Bw2200501 2 1st April 2010 31st March 2005 30th March 2010 Public Sewage: Storm Sewage Overflow Freshwater Stream/River River Loughor New Consent (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995) Located by supplier to within 10m	A7NE (SW)	633	2	258450 203680
5	1	Dwr Cymru Cyfyngedig Sewerage Network - Sewers - Water Company Ynys Tomenlle Cso Iscoed R'D Hendy, Iscoed Road, Carmarthenshire Natural Resources Wales River Loughor BW2200501 1 27th September 1966 27th September 1966 30th March 2010 Public Sewage: Storm Sewage Overflow Freshwater Stream/River River Loughor New Consent, by Application (Water Resources Act 1991, Section 88) Located by supplier to within 100m	A7NE (SW)	633	2	258450 203680
6	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Dwr Cymru Cyfyngedig Sewerage Network - Sewers - Water Company Hendy Manhole No. 125 Natural Resources Wales River Loughor BC0003601 1 27th September 1966 27th September 1966 31st March 2010 Public Sewage: Storm Sewage Overflow Freshwater Stream/River River Loughor Revoked (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995) Located by supplier to within 100m	A7SE (SW)	693	2	258600 203500
7	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Dwr Cymru Cyfyngedig Sewerage Network - Sewers - Water Company Ynys Tomenlle Cso Iscoed R'D Hendy, Iscoed Road, Carmarthenshire Natural Resources Wales LOUGHOR - CONFLUENCE WITH AMAN TO TIDAL LIMIT Bw2200501 3 31st March 2010 5th February 2010 Not Supplied Sewage Discharges - Stw Storm Overflow/Storm Tank - Water Company Freshwater Stream/River River Loughor Effective Located by supplier to within 10m	A7SE (SW)	716	2	258547 203503

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
7	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Dwr Cymru Cyfyngedig Sewerage Network - Sewers - Water Company Ynys Tomenlle Cso Iscoed R'D Hendy, Iscoed Road, Carmarthenshire Natural Resources Wales LOUGHOR - CONFLUENCE WITH AMAN TO TIDAL LIMIT Bw2200501 3 31st March 2010 5th February 2010 Not Supplied Sewage Discharges - Stw Storm Overflow/Storm Tank - Water Company Freshwater Stream/River River Loughor Effective Located by supplier to within 10m	A7SE (SW)	716	2	258547 203503
7	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Dwr Cymru Cyfyngedig Sewerage Network - Sewers - Water Company Ynys Tomenlle Cso Iscoed R'D Hendy, Nr 78 Iscoed Rd, Llanelli, Sa4 0xd Natural Resources Wales LOUGHOR - CONFLUENCE WITH AMAN TO TIDAL LIMIT Bw2200501 4 1st May 2020 1st May 2020 Not Supplied Sewage Discharges - Stw Storm Overflow/Storm Tank - Water Company Freshwater Stream/River River Loughor Effective Located by supplier to within 10m	A7SE (SW)	734	2	258518 203499
8	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Dwr Cymru Cyfyngedig Sewerage Network - Pumping Staions Pontardulais Ps Emerg Natural Resources Wales Not Supplied Bo5111601 2 8th September 2010 8th September 2010 Not Supplied Sewage Discharges - Stw Storm Overflow/Storm Tank - Water Company Freshwater Stream/River Loughor Effective Located by supplier to within 100m	A8SW (S)	721	2	258900 203400
8	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Dwr Cymru Cyfyngedig Sewerage Network - Pumping Staions Pontardulais Ps Emerg Natural Resources Wales Not Supplied Bo5111601 2 8th September 2010 8th September 2010 Not Supplied Sewage Discharges - Stw Storm Overflow/Storm Tank - Water Company Freshwater Stream/River Loughor Effective Located by supplier to within 100m	A8SW (S)	721	2	258900 203400

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
8	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Dwr Cymru Cyfyngedig Sewerage Network - Pumping Station - Water Company Pontardulais Ps Emerg Natural Resources Wales River Loughor BO5111601 1 19th October 1989 19th October 1989 7th September 2010 Sewage Discharges - Stw Storm Overflow/Storm Tank - Water Company Freshwater Stream/River Loughor New Consent, by Application (Water Resources Act 1991, Section 88) Located by supplier to within 100m	A8SW (S)	721	2	258900 203400
9	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	S Scott A Undefined Or Other Former Glynhir Tinplate Works Natural Resources Wales Not Supplied Bc0020301 1 24th June 1964 24th June 1964 22nd December 1993 Unspecified Not Supplied River Camffrwd (Trib. Of Lough Consent expired Located by supplier to within 100m	A19NW (NE)	858	2	259600 205200
10	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Dwr Cymru Cyfyngedig Sewerage Network - Pumping Staions Cso And Eo At Pontarddulais Pumping Station, Access Off Llys Morfydd, Pontarddulais, Sa4 8tf Natural Resources Wales BURRY INLET INNER Bo5111601 3 25th March 2022 25th March 2022 Not Supplied Sewage Discharges - Stw Storm Overflow/Storm Tank - Water Company Freshwater Stream/River River Loughor Effective Located by supplier to within 10m	A3NW (S)	899	2	258700 203247
10	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Type: Discharge Type: Status: Positional Accuracy:	Dwr Cymru Cyfyngedig Sewerage Network - Pumping Staions Cso And Eo At Pontarddulais Pumping Station, Access Off Llys Morfydd, Pontarddulais, Sa4 8tf Natural Resources Wales BURRY INLET INNER Bo5111601 3 25th March 2022 25th March 2022 Not Supplied Sewage Discharges - Pumping Station - Water Company Freshwater Stream/River River Loughor Effective Located by supplier to within 10m	A3NW (S)	899	2	258700 203247

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
10	Discharge Consents Operator: Property Type: Location:	s Dwr Cymru Cyfyngedig Sewerage Network - Sewers - Water Company Cso .400 Yds D/S Cluence Dulai, Tidal Reach, Pontarddulais, Swansea, Sa4 8rp	A3NW (S)	900	2	258698 203246
		Natural Resources Wales BURRY INLET INNER Bw2302001 3 26th February 2020 26th February 2020 Not Supplied Sewage Discharges - Stw Storm Overflow/Storm Tank - Water Company Saline Estuary Afon Llwchwr Effective Located by supplier to within 10m				
10	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Dwr Cymru Cyfyngedig Sewerage Network - Sewers - Water Company Swo.400 Yds D/S C'Luence Dulai Natural Resources Wales BURRY INLET INNER Bw2302001 2 8th September 2010 8th September 2010 Not Supplied Sewage Discharges - Stw Storm Overflow/Storm Tank - Water Company Saline Estuary Loughor Estuary Effective Located by supplier to within 10m	A3NW (S)	901	2	258720 203240
10	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Type: Discharge Type: Status: Positional Accuracy:	Dwr Cymru Cyfyngedig Sewerage Network - Sewers - Water Company Swo.400 Yds D/S C'Luence Dulai Natural Resources Wales BURRY INLET INNER Bw2302001 2 8th September 2010 8th September 2010 Not Supplied Sewage Discharges - Stw Storm Overflow/Storm Tank - Water Company Saline Estuary Loughor Estuary Effective Located by supplier to within 10m	A3NW (S)	901	2	258720 203240
10	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Dwr Cymru Cyfyngedig Sewerage Network - Sewers - Water Company Swo.400 Yds D/S C'Luence Dulai Natural Resources Wales River Loughor BW2302001 1 20th October 1989 20th October 1989 20th October 1989 8th September 2010 Public Sewage: Storm Sewage Overflow Saline Estuary Loughor Estuary New Consent, by Application (Water Resources Act 1991, Section 88) Located by supplier to within 100m	A3NW (S)	901	2	258720 203240

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
11	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Dwr Cymru Cyfyngedig Sewerage Network - Sewers - Water Company Swo At Hendy On Left Bank Of R Natural Resources Wales BURRY INLET INNER BW2200701 1 27th September 1966 27th September 1966 Not Supplied Sewage Discharges - Stw Storm Overflow/Storm Tank - Water Company Freshwater Stream/River River Gwili Effective Located by supplier to within 100m	A7SW (SW)	958	2	258130 203550
11		Dwr Cymru Cyfyngedig Sewerage Network - Sewers - Water Company Swo At Hendy On Left Bank Of R Natural Resources Wales BURRY INLET INNER Bw2200701 1 27th September 1966 27th September 1966 Not Supplied Sewage Discharges - Stw Storm Overflow/Storm Tank - Water Company Freshwater Stream/River River Gwili Effective Located by supplier to within 10m	A7SW (SW)	958	2	258130 203550
12	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Dwr Cymru Cyfyngedig Sewerage Network - Sewers - Water Company Cso At Hendy On Left Bank Of River, Entrance To Hendy Ind Est, Isoced Rd, Pontarddulais, Sa4 0uu Natural Resources Wales BURRY INLET INNER Bw2200701 2 11th October 2019 11th October 2019 Not Supplied Sewage Discharges - Stw Storm Overflow/Storm Tank - Water Company Freshwater Stream/River River Gwili Effective Located by supplier to within 10m	A7SW (SW)	988	2	258062 203594
13	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Dwr Cymru Cyfyngedig Sewerage Network - Sewers - Water Company 270m D/S Road, 270m D/S Road Bridge, Hendy, Carmarthen, Carmarthenshire Natural Resources Wales Not Supplied Bp0323001 2 31st March 2010 31st March 2010 930th March 2010 Public Sewage: Storm Sewage Overflow Freshwater Stream/River River Gwili Modified (Water Resources Act 1991, Schedule 10 as amended by Environment Act 1995) Located by supplier to within 10m	A7SW (SW)	992	2	258160 203462

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Discharge Consent	s				
13	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status:	Dwr Cymru Cyfyngedig Sewerage Network - Sewers - Water Company 270m D/S Road, 270m D/S Road Bridge, Hendy, Carmarthen, Carmarthenshire Natural Resources Wales Not Supplied Bp0323001 1 31st March 2009 7th March 2005 30th March 2010 Public Sewage: Storm Sewage Overflow Freshwater Stream/River River Gwili New Consent (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995) Located by supplier to within 10m	A7SW (SW)	992	2	258160 203462
	Discharge Consent	\$				
13	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Type: Discharge Type: This on the control of the contr	Dwr Cymru Cyfyngedig Sewage Disposal Works - Water Company 280m D/S R'Dbridge Hendy Carms, 280m D/S Roadbridge, Hendy, Carmarthen, Carmarthenshire Natural Resources Wales Not Supplied Bp0323101 2 31st March 2010 31st March 2010 31st March 2010 Public Sewage: Storm Sewage Overflow Freshwater Stream/River River Gwili Revoked (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995) Located by supplier to within 10m	A7SW (SW)	993	2	258165 203455
	Discharge Consent	s				
13	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Dwr Cymru Cyfyngedig Sewage Disposal Works - Water Company 280m D/S R'Dbridge Hendy Carms, 280m D/S Roadbridge, Hendy, Carmarthen, Carmarthenshire Natural Resources Wales Not Supplied Bp0323101 1 31st March 2009 7th March 2005 30th March 2010 Public Sewage: Storm Sewage Overflow Freshwater Stream/River River Gwili New Consent (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995) Located by supplier to within 10m	A7SW (SW)	993	2	258165 203455
	Discharge Consent	,	+			
13	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status:	Dwr Cymru Cyfyngedig Sewerage Network - Sewers - Water Company Bryngwili Rd Cso, Hendy, Bryngwili Road, Swansea, Sa4 0xb Natural Resources Wales BURRY INLET INNER Bp0323001 4 8th August 2019 8th August 2019 Not Supplied Sewage Discharges - Stw Storm Overflow/Storm Tank - Water Company Freshwater Stream/River River Gwili Effective Located by supplier to within 10m	A7SW (SW)	995	2	258156 203462

Map ID		Details		Estimated Distance From Site	Contact	NGR
	Discharge Consent	s				
13	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Dwr Cymru Cyfyngedig Sewerage Network - Sewers - Water Company 270m D/S Road, 270m D/S Road Bridge, Hendy, Carmarthen, Carmarthenshire Natural Resources Wales BURRY INLET INNER Bp0323001 3 31st March 2010 4th March 2010 Not Supplied Sewage Discharges - Stw Storm Overflow/Storm Tank - Water Company Freshwater Stream/River River Gwili Effective Located by supplier to within 10m	A7SW (SW)	995	2	258156 203462
	Discharge Consent	s				
13	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Dwr Cymru Cyfyngedig Sewerage Network - Sewers - Water Company 270m D/S Road, 270m D/S Road Bridge, Hendy, Carmarthen, Carmarthenshire Natural Resources Wales BURRY INLET INNER Bp0323001 3 31st March 2010 4th March 2010 Not Supplied Sewage Discharges - Stw Storm Overflow/Storm Tank - Water Company Freshwater Stream/River River Gwili Effective Located by supplier to within 10m	A7SW (SW)	995	2	258156 203462
	Discharge Consent	S				
14	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Davies D H Undefined Or Other 1 Heol Y Felin Mill Lane Fforest He, Mill Lane Fforest Hendy Natural Resources Wales Not Supplied Bm0033301 1 9th December 1983 9th December 1983 2nd July 1994 Unspecified Not Supplied Underground Strata Consent expired Located by supplier to within 10m	A11NE (W)	999	2	258010 204620
	Local Authority Inte	grated Pollution Prevention And Control				
15	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status:	Aluminised Products (Corus) Corus Strip Products, Pontarddulais, Swansea, SA4 8SB City and County of Swansea, Environmental Health Department CCS IPPC A2 001/04 Not Supplied Production and Processing of Metals Coating of strip metal with molten aluminium Permit Issued Manually positioned to the address or location	A13NW (NW)	0	3	259012 204328
	Local Authority Pol	lution Prevention and Controls				
16	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status:	Pontarddulais Service Station 12 St Teilo Street, Pontardulais, SWANSEA, West Glamorgan, SA4 1TH City and County of Swansea, Environmental Health Department NOT GIVEN Not Supplied Local Authority Air Pollution Control PG1/14 Petrol filling station Authorised Automatically positioned to the address	A8NW (S)	265	3	258864 203860

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
17	Location: Type: Reference: Date Issued: Enforcement Date: Details:	Ition Prevention and Control Enforcements 12 St Teilo Street, Pontardulais, Swansea, West Glamorgan, Sa4 1th Air Pollution Control Enforcement Notice NOT GIVEN 19th September 2002 Not Supplied Not Supplied Manually positioned to the address or location	A8NW (S)	260	3	258864 203865
	Nearest Surface Water	er Feature	A13SW (SW)	33	-	258871 204181
18	Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	Water Company Sewage: Sewerage Location Description Not Available Environment Agency, Welsh Region Unknown Weather 22nd October 1994	A13SW (S)	128	4	259000 204000
19	Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	D Controlled Waters Not Given Pontarddulais Environment Agency, Welsh Region Unknown Not Supplied 2nd November 1991 1629 Not Given Not Given Unknown Category 3 - Minor Incident Located by supplier to within 100m	A13SW (SW)	191	4	258700 204100
20	Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	Other Under The Bridge Crossing, PONTARDULAIS Environment Agency, Welsh Region Miscellaneous - Tip Leachate Not Supplied 24th October 1995	A8NW (S)	221	4	258900 203900
21	Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	D Controlled Waters Not Given Pontarddulais Environment Agency, Welsh Region Unknown Not Supplied 23rd August 1994 20684 Not Given Not Given Unknown Category 2 - Significant Incident Located by supplier to within 100m	A13SW (SW)	232	4	258700 204000
21	Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	D Controlled Waters Not Given Bridge, PONTARDULAIS Environment Agency, Welsh Region Unknown Not Supplied 6th August 1994 20696 Not Given Not Given Unknown Category 3 - Minor Incident Located by supplier to within 100m	A13SW (SW)	235	4	258700 203995

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
22	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Not Given Location Description Not Available Environment Agency, Welsh Region Mud/Clay/Soil Not Supplied 9th August 1994 20700 Not Given Not Given Not Given Unknown Category 2 - Significant Incident Located by supplier to within 100m	A8NW (SW)	246	4	258800 203900
22	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Not Given Adjacent Road Bridge, At Street Teilo, PONTARDULAIS Environment Agency, Welsh Region Agricultural: Carcasses Not Supplied 30th April 1997 32237 Not Given Not Given Unknown Category 3 - Minor Incident Located by supplier to within 100m	A8NW (SW)	251	4	258800 203895
23	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Not Given Opposite Gwyn, PONTARDULAIS Environment Agency, Welsh Region Rubble/Litter Or Solids Not Supplied 14th June 1996 28740 Not Given Not Given Not Given Unknown Category 3 - Minor Incident Located by supplier to within 100m	A8NW (SW)	302	4	258700 203900
23	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Not Given Gwyn Hotel, PONTARDULAIS Environment Agency, Welsh Region Agricultural: Carcasses Not Supplied 20th October 1995 26835 Not Given Not Given Unknown Category 3 - Minor Incident Located by supplier to within 100m	A8NW (SW)	306	4	258700 203895
24	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Other Wine Bar, Main Street, PONTARDULAIS Environment Agency, Welsh Region Agricultural: Silage Liquor Deliberate Act 1st May 1991 693 Not Given Not Given Direct Discharge Category 2 - Significant Incident Located by supplier to within 100m	A8NW (S)	321	4	258900 203800
25	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Not Given Run-Off From, Wye Garage Environment Agency, Welsh Region Crude Sewage Poor Management Control 10th December 1996 30664 Not Given Not Given Runoff Category 3 - Minor Incident Located by supplier to within 100m	A8NW (S)	327	4	259000 203800

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
26	Pollution Incidents to Controlled Waters Property Type: Not Given Location: Dulais Near Loughor, Potardulais Authority: Environment Agency, Welsh Region Pollutant: Unknown Note: River Loughor Incident Date: 24th November 1997 Incident Reference: 34198 Catchment Area: Not Given Receiving Water: Not Given Cause of Incident: Unknown Incident Severity: Category 3 - Minor Incident Positional Accuracy: Located by supplier to within 100m	A8NW (SW)	376	4	258750 203780
27	Property Type: Waste Handling Facilities Location: Road Bridge, Up Stream Of Gwyn, PONTARDULAIS Authority: Environment Agency, Welsh Region Pollutant: Chlorinated Water Note: Poor Operational Practise Incident Date: 26th February 1996 Incident Reference: 27538 Catchment Area: Not Given Receiving Water: Not Given Cause of Incident: Spillage Incident Severity: Category 3 - Minor Incident Positional Accuracy: Located by supplier to within 100m	A8NW (SW)	382	4	258700 203800
27	Pollution Incidents to Controlled Waters Property Type: Not Given Location: Pontardulais Road Bridge, Upstream Of Footbridge, PONTAR Authority: Environment Agency, Welsh Region Pollutant: Chlorinated Water Note: Poor Operation (al Practise) Incident Date: 26th February 1996 Incident Reference: 27538 Catchment Area: Not Given Receiving Water: Not Given Cause of Incident: Spillage Incident Severity: Category 3 - Minor Incident Positional Accuracy: Located by supplier to within 100m	DULAIS (SW)	387	4	258700 203795
28	Pollution Incidents to Controlled Waters Property Type: Not Given Location: Below Pontardulais Road Bridge Authority: Environment Agency, Welsh Region Pollutant: Agricultural: Carcasses Note: Not Supplied Incident Date: 28th April 1997 Incident Reference: 32002 Catchment Area: Not Given Receiving Water: Not Given Cause of Incident: Unknown Incident Severity: Category 3 - Minor Incident Property Type: Not Given Cause of Incident: Unknown Category 3 - Minor Incident Unknown	A8NW (SW)	470	4	258700 203700
29	Pollution Incidents to Controlled Waters Property Type: Miscellaneous Premises: Surface Runoff Location: Water Street, Pontarddulais Authority: Environment Agency, Welsh Region Pollutant: Crude Sewage Note: Weather Incident Date: 18th July 1995 Incident Reference: 25093 Catchment Area: Not Given Receiving Water: Not Given Cause of Incident: Runoff Incident Severity: Category 3 - Minor Incident Positional Accuracy: Located by supplier to within 100m	A9NW (SE)	473	4	259400 203800
29	Pollution Incidents to Controlled Waters Property Type: Not Given Location: Caecerrig Bridge, PONTARDULAIS Authority: Environment Agency, Welsh Region Pollutant: Light Oil Note: Weather Incident Date: 15th October 1996 Incident Reference: 30238 Catchment Area: Not Given Receiving Water: Not Given Cause of Incident: Unknown Incident Severity: Category 3 - Minor Incident Positional Accuracy: Located by supplier to within 100m	A9NW (SE)	476	4	259400 203795

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
30	Pollution Incidents to Controlled Waters Property Type: Location: Authority: Pollutant: Note: Unknown; River Lough Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity: Positional Accuracy: Not Given Not Given Not Given Unknown Category 3 - Minor Incident Severity: Positional Accuracy: Not Given Category 3 - Minor Incident Incident Severity: Category 3 - Minor Incident Incident Severity: Positional Accuracy: Not Given Carcuracy: Agricultural: Carcasses Not Given Not Given Category 3 - Minor Incident Severity: Unknown Not Given Category 3 - Minor Incident Severity: Unknown	Velsh Region or	A17NE (NW)	780	4	258600 205100
31	Pollution Incidents to Controlled Waters Property Type: Not Given Location: 100 Yards Down Streat Authority: Environment Agency, V Pollutant: Crude Sewage Incident Date: Blockage Incident Date: 5th May 1997 Incident Reference: 32212 Catchment Area: Not Given Receiving Water: Not Given Cause of Incident: Incident Severity: Category 3 - Minor Incident Positional Accuracy: Located by supplier to	dent	A7NW (SW)	815	4	258200 203700
31	Pollution Incidents to Controlled Waters Property Type: Not Given Location: Main Road Bridge In, I- Authority: Environment Agency, V Pollutant: Crude Sewage Note: River Gwilli; Overflow Incident Date: 18th February 1998 Incident Reference: Catchment Area: Not Given Receiving Water: Cause of Incident: Incident Severity: Positional Accuracy: Located by supplier to	Velsh Region	A7NW (SW)	842	4	258200 203650
32	Pollution Incidents to Controlled Waters Property Type: Not Given Location: Upper Mill, Pontardulai Authority: Environment Agency, V Pollutant: Rubble/Litter Or Solids Note: Deliberate Incident Date: 6th June 1997 Incident Reference: 232569 Catchment Area: Not Given Receiving Water: Cause of Incident: Incident Severity: Positional Accuracy: Unknown		A9NE (SE)	857	4	259900 203900
32	Authority: Environment Agency, Note: Rubble/Litter Or Solids Note: Afon Dulais (Tributary of the June 1997) Incident Date: Otto Given Catchment Area: Not Given Receiving Water: Cause of Incident: Incident Severity: Positional Accuracy: Located by supplier to	Of River Loughor); Direct Introduction	A9NE (SE)	859	4	259900 203895
33	Pollution Incidents to Controlled Waters Property Type: Water Company Sewa: Location: Location Description N Authority: Environment Agency, V Pollutant: Oils - Diesel (Including Note: Blocked Sewer Incident Date: 1st February 1996 Incident Reference: 27330 Catchment Area: Not Given Receiving Water: Cause of Incident: Overflow Incident Severity: Category 3 - Minor Incident Severity: Located by supplier to	ot Available Velsh Region Agricultural) dent	A7SW (SW)	937	4	258200 203500

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
33	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Not Given Location Description Not Available Environment Agency, Welsh Region Oils - Diesel (Including Agricultural) Blocked Sewer 1st February 1996 27330 Not Given Not Given Overflow Category 3 - Minor Incident Located by supplier to within 100m	A7SW (SW)	941	4	258200 203495
34	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Council Premises Down Stream Of A4138 Road Bridge, HENDY Environment Agency, Welsh Region Sewage - Treated Effluent Blocked Sewer 10th August 1995 25429 Not Given Not Given Overflow Category 3 - Minor Incident Located by supplier to within 100m	A7SW (SW)	942	4	258300 203400
35	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Not Given 50 Yards From Bridge, Outflow Below Environment Agency, Welsh Region Farm Effluent/Slurry Blocked Sewer 20th February 1996 27432 Not Given Not Given Overflow Category 3 - Minor Incident Located by supplier to within 100m	A7SW (SW)	946	4	258105 203605
35	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Water Company Sewage: Storm Overflow 50 Yards From Bridge Environment Agency, Welsh Region Farm Effluent/Slurry Blocked Sewer 20th February 1996 27432 Not Given Not Given Overflow Category 3 - Minor Incident Located by supplier to within 100m	A7SW (SW)	949	4	258105 203600
35	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Not Given By Bridge, HENDY Environment Agency, Welsh Region Unknown Blocked Sewer 12th March 1996 27598 Not Given Not Given Overflow Category 3 - Minor Incident Located by supplier to within 100m	A7SW (SW)	950	4	258100 203605
35	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Water Company Sewage: Storm Overflow Bridge, Near Complex, HENDY Environment Agency, Welsh Region Unknown Blocked Sewer 12th March 1996 27598 Not Given Not Given Overflow Category 3 - Minor Incident Located by supplier to within 100m	A7SW (SW)	952	4	258105 203595

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
35	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Private Sewage (Non-PLC): Other Below Gwyn Hotel, PONTARDULAIS Environment Agency, Welsh Region Crude Sewage Not Supplied 6th June 1996 28643 Not Given Not Given Not Given Unknown Category 3 - Minor Incident Located by supplier to within 100m	A7SW (SW)	953	4	258100 203600
35	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity: Positional Accuracy:	to Controlled Waters Not Given By The Bridge Facing, The Cliff Hotel Environment Agency, Welsh Region Chemicals - Alkali Not Supplied 21st May 1996 28514 Not Given Not Given Not Given Unknown Category 3 - Minor Incident Located by supplier to within 100m to Controlled Waters	A7SW (SW)	954	4	258095 203605
35	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	Water Company Sewage: Storm Overflow Hendy Road Bridge, Iscoed Road Environment Agency, Welsh Region Crude Sewage Blocked Sewer 18th April 1995	A7SW (SW)	956	4	258100 203595
36	Location: Prosecution Text: Prosecution Act: Hearing Date: Verdict: Fine: Costs:	ing to Authorised Processes Ace Autospares, St Teilo Street, Pontarddulais, Swansea, Mid Glamorgan, Sa4 8 Illegal Storage And Disposal Of Controlled Waste Epa90 S33(1)(A) & S33(1)(B) 8th January 2004 Guilty 1000 500 Manually positioned to the road within the address or location	A8NW (S)	286	4	258916 203835
	River Quality Name: GQA Grade: Reach: Estimated Distance (km): Flow Rate: Flow Type: Year:	Loughor River Quality B Conf.Dulais - Conf. Camffrwd 3.6 Flow less than 10 cumecs River 2000	A12SE (W)	215	4	258672 204225
	River Quality Name: GQA Grade: Reach: Estimated Distance (km): Flow Rate: Flow Type: Year:	Not Supplied Unclassified Tidal River Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied 1995	A8NW (SW)	519	4	258703 203645

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	River Quality Chem	istry Sampling Points				
37	Name: Reach: Estimated Distance: Objective: Positional Accuracy: Year: GQA Grade: Compliance:	Loughor Confluence River Dulais To Confluence Camffrwd 3.60 Not Supplied Located by supplier to within 10m 1990 River Quality Chemistry GQA Grade B - Good Not Supplied 1993 River Quality Chemistry GQA Grade C - Fairly Good Not Supplied 1994 River Quality Chemistry GQA Grade C - Fairly Good Not Supplied 1995 River Quality Chemistry GQA Grade C - Fairly Good Not Supplied 1995 River Quality Chemistry GQA Grade C - Fairly Good Not Supplied 1996 River Quality Chemistry GQA Grade C - Fairly Good Not Supplied 1997 River Quality Chemistry GQA Grade C - Fairly Good Not Supplied 1997 River Quality Chemistry GQA Grade C - Fairly Good Not Supplied 1998 River Quality Chemistry GQA Grade C - Fairly Good Not Supplied 1999 River Quality Chemistry GQA Grade C - Fairly Good Not Supplied 1999 River Quality Chemistry GQA Grade B - Good	A8NW (SW)	258	4	258762 203908
	Compliance: Year: GQA Grade: Compliance: Year:	Not Supplied 2000 River Quality Chemistry GQA Grade B - Good Not Supplied 2001 River Quality Chemistry GQA Grade B - Good Not Supplied 2002 River Quality Chemistry GQA Grade B - Good Not Supplied 2003 River Quality Chemistry GQA Grade B - Good Not Supplied 2004 River Quality Chemistry GQA Grade B - Good Not Supplied 2004 River Quality Chemistry GQA Grade B - Good Not Supplied 2005 River Quality Chemistry GQA Grade B - Good Not Supplied 2006 River Quality Chemistry GQA Grade B - Good Not Supplied 2007 River Quality Chemistry GQA Grade A - Very Good Not Supplied 2007 River Quality Chemistry GQA Grade A - Very Good Not Supplied 2008 River Quality Chemistry GQA Grade A - Very Good Not Supplied 2008 River Quality Chemistry GQA Grade A - Very Good Not Supplied 2009 River Quality Chemistry GQA Grade A - Very Good				

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	River Quality Chem	istry Sampling Points				
38	Name: Reach: Estimated Distance:	Gwili Road Bridge Hendy To M4 Road Bridge 2.00	A7SW (SW)	1000	4	258029 203624
	Year:	Not Supplied Located by supplier to within 10m 1990				
	GQA Grade: Compliance: Year: GQA Grade:	River Quality Chemistry GQA Grade B - Good Not Supplied 1993 River Quality Chemistry GQA Grade B - Good				
	Compliance: Year: GQA Grade:	Not Supplied 1994 River Quality Chemistry GQA Grade B - Good				
	Compliance: Year: GQA Grade:	Not Supplied 1995 River Quality Chemistry GQA Grade B - Good				
	Compliance: Year: GQA Grade:	Not Supplied 1996 River Quality Chemistry GQA Grade B - Good				
	Compliance: Year: GQA Grade:	Not Supplied 1997 River Quality Chemistry GQA Grade B - Good				
	Compliance: Year: GQA Grade:	Not Supplied 1998 River Quality Chemistry GQA Grade A - Very Good				
	Compliance: Year: GQA Grade: Compliance:	Not Supplied 1999 River Quality Chemistry GQA Grade A - Very Good Not Supplied				
	Year: GQA Grade: Compliance:	2000 River Quality Chemistry GQA Grade B - Good Not Supplied				
	Year: GQA Grade: Compliance:	2001 River Quality Chemistry GQA Grade B - Good Not Supplied				
	Year: GQA Grade: Compliance:	2002 River Quality Chemistry GQA Grade B - Good Not Supplied				
	Year: GQA Grade: Compliance: Year:	2003 River Quality Chemistry GQA Grade B - Good Not Supplied 2004				
	GQA Grade: Compliance: Year:	River Quality Chemistry GQA Grade A - Very Good Not Supplied 2005				
	GQA Grade: Compliance: Year:	River Quality Chemistry GQA Grade A - Very Good Not Supplied 2006				
	GQA Grade: Compliance: Year:	River Quality Chemistry GQA Grade A - Very Good Not Supplied 2007				
	GQA Grade: Compliance: Year:	River Quality Chemistry GQA Grade A - Very Good Not Supplied 2008				
	GQA Grade: Compliance: Year:	River Quality Chemistry GQA Grade A - Very Good Not Supplied 2009				
	GQA Grade: Compliance:	River Quality Chemistry GQA Grade B - Good Not Supplied				

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	River Quality Chem	istry Sampling Points				
38	Name:	Gwili	A7SW	1000	4	258029
30	Reach:	M4 R.B. To Confluence With Un Named Tributary	(SW)	1000	4	203624
	Estimated Distance:		(611)	ļ		200024
	Objective:	Not Supplied		ļ		
		Located by supplier to within 10m		ļ		
	Year:	1990		ļ		
	GQA Grade:	River Quality Chemistry GQA Grade B - Good				
	Compliance:	Not Supplied		ļ		
	Year: GQA Grade:	1993 River Quality Chemistry GQA Grade B - Good		ļ		
	Compliance:	Not Supplied		ļ		
	Year:	1994		ļ		
	GQA Grade:	River Quality Chemistry GQA Grade B - Good		ļ		
	Compliance:	Not Supplied		ļ		
	Year:	1995		ļ		
	GQA Grade:	River Quality Chemistry GQA Grade B - Good		ļ		
	Compliance:	Not Supplied		ļ		
	Year: GQA Grade:	1996 River Quality Chemistry GQA Grade B - Good		ļ		
	Compliance:	Not Supplied				
	Year:	1997				
	GQA Grade:	River Quality Chemistry GQA Grade B - Good				
	Compliance:	Not Supplied				
	Year:	1998				
	GQA Grade:	River Quality Chemistry GQA Grade A - Very Good				
	Compliance:	Not Supplied 1999				
	Year: GQA Grade:			ļ		
	Compliance:	River Quality Chemistry GQA Grade A - Very Good Not Supplied		ļ		
	Year:	2000		ļ		
	GQA Grade:	River Quality Chemistry GQA Grade B - Good				
	Compliance:	Not Supplied		ļ		
	Year:	2001		ļ		
	GQA Grade:	River Quality Chemistry GQA Grade B - Good		ļ		
	Compliance:	Not Supplied		ļ		
	Year: GQA Grade:	2002 River Quality Chemistry GQA Grade B - Good		ļ		
	Compliance:	Not Supplied		ļ		
	Year:	2003		ļ		
	GQA Grade:	River Quality Chemistry GQA Grade B - Good		ļ		
	Compliance:	Not Supplied		ļ		
	Year:	2004		ļ		
	GQA Grade:	River Quality Chemistry GQA Grade A - Very Good		ļ		
	Compliance:	Not Supplied		ļ		
	Year: GQA Grade:	2005 River Quality Chemistry GQA Grade A - Very Good		ļ		
	Compliance:	Not Supplied		ļ		
	Year:	2006		ļ		
	GQA Grade:	River Quality Chemistry GQA Grade A - Very Good				
	Compliance:	Not Supplied				
	Year:	2007				
	GQA Grade:	River Quality Chemistry GQA Grade A - Very Good				
	Compliance: Year:	Not Supplied 2008		'		
	GQA Grade:	River Quality Chemistry GQA Grade A - Very Good				
	Compliance:	Not Supplied				
	Year:	2009				
	GQA Grade:	River Quality Chemistry GQA Grade B - Good				
	Compliance:	Not Supplied				
	Water Abstractions					
39	Operator:	Tata Steel Uk Limited	A13SW	0	2	258950
39	Licence Number:	22/59/2/0046	(SW)		_	204250
	Permit Version:	103	(311)			
	Location:	Underground Strata At Pontardulais				
	Authority:	Natural Resources Wales				
	Abstraction:	Metal: Process Water				
	Abstraction Type:	Water may be abstracted from a single point				
	Source:	Groundwater Not Supplied				
	Daily Rate (m3): Yearly Rate (m3):	Not Supplied Not Supplied		'		
	Details:	Not Supplied Not Supplied				
	Authorised Start:	01 January				
	Authorised End:	31 December				
	Permit Start Date:	12th November 2010				
		N (O P)	1	The second secon	1	
	Permit End Date:	Not Supplied Located by supplier to within 10m		1		

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
39	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Corus Uk Ltd 22/59/2/0046 102 Underground Strata At Pontardulais Environment Agency, Welsh Region Metal: Process Water Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Not Supplied O1 January 31 December 1st April 2008 Not Supplied Located by supplier to within 10m	A13SW (SW)	0	4	258950 204250
39	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Corus Uk Ltd 22/59/2/0046 101 Underground Strata At Pontardulais Environment Agency, Welsh Region Metal: Process Water Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Well At Pontardulais 01 January 31 December 6th October 2000 Not Supplied Located by supplier to within 100m	A13SW (SW)	0	4	258950 204250
39	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Tata Steel Uk Limited 22/59/2/0046 Not Supplied Boreholes Pontardulais Natural Resources Wales Metal: Process Water Water may be abstracted from any point within an area Groundwater Not Supplied Not Supplied Not Supplied O1 January 31 December Not Supplied Not Supplied Not Supplied Not Supplied Located by supplier to within 10m	A13SW (SW)	0	2	258950 204250
40	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Tata Steel Uk Limited 22/59/2/0046 103 Underground Strata At Pontardulais Natural Resources Wales Metal: Process Water Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Not Supplied 101 January 31 December 12th November 2010 Not Supplied Located by supplier to within 10m	A13SE (SE)	0	2	259050 204280

Map ID		Details		Estimated Distance From Site	Contact	NGR
40	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Corus Uk Ltd 22/59/2/0046 102 Underground Strata At Pontardulais Environment Agency, Welsh Region Metal: Process Water Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Not Supplied O1 January 31 December 1st April 2008 Not Supplied Located by supplier to within 10m	A13SE (SE)	0	4	259050 204280
40	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Corus Uk Ltd 22/59/2/0046 101 Underground Strata At Pontardulais Environment Agency, Welsh Region Metal: Process Water Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Well At Pontardulais 01 January 31 December 6th October 2000 Not Supplied Located by supplier to within 100m	A13SE (SE)	0	4	259050 204280
	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Mr D Davies 22/59/2/0036 100 Well Near Talycynllwyn Farm Environment Agency, Welsh Region General Farming And Domestic Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Well Near Talycynllwyn Farm 01 January 31 December 31st January 1966 Not Supplied Located by supplier to within 100m	A24NW (NE)	1349	4	259700 205700
	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Nacap Land & Marine 22/59/2/0115 2 Lougor Downstream Of Tidal Limit, Grovesend, Swansea Environment Agency, Welsh Region Petrochemicals: Hydraulic Testing Water may be abstracted from a single point Tidal Not Supplied Not Supplied Abstraction From Loughor, Below The Tidal Limit, Grovesend, Swansea 22 June 01 December 22nd June 2007 Not Supplied Located by supplier to within 10m	A2SW (SW)	1563	4	258280 202690

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Water Abstractions Operator:	Nacap Land & Marine	A2SW	1563	4	258280
	Licence Number: Permit Version:	22/59/2/0115 2	(SW)			202690
	Location:	Lougor Downstream Of Tidal Limit, Grovesend, Swansea				
	Authority: Abstraction:	Environment Agency, Welsh Region Petrochemicals: General Cooling (Existing Licences Only) (High Loss)				
	Abstraction Type:	Water may be abstracted from a single point				
	Source: Daily Rate (m3):	Tidal Not Supplied				
	Yearly Rate (m3): Details:	Not Supplied Loughor Downstrweam Of The Tidal Limit At Grovesend				
	Authorised Start:	22 June				
	Authorised End: Permit Start Date:	01 December 22nd June 2007				
	Permit End Date:	Not Supplied				
	<u> </u>	Located by supplier to within 10m				
	Water Abstractions		(NI)	1677	4	250000
	Operator: Licence Number:	Nacap Land & Marine 22/59/2/0117	(N)	1677	4	259090 206160
	Permit Version: Location:	1 Coordolyn North Of Optorddylain				
	Authority:	Caerdelyn, North Of Ontarddulais Environment Agency, Welsh Region				
	Abstraction: Abstraction Type:	Petrochemicals: Hydraulic Testing Water may be abstracted from a single point				
	Source:	Surface				
	Daily Rate (m3): Yearly Rate (m3):	Not Supplied Not Supplied				
	Details:	Caerdelyn - North Of Pontarddulais				
	Authorised Start: Authorised End:	01 June 01 December				
	Permit Start Date:	1st June 2007				
	Permit End Date: Positional Accuracy:	Not Supplied Located by supplier to within 10m				
	Water Abstractions					
	Operator:	Mr W Walters	(W)	1780	4	257110
	Licence Number: Permit Version:	22/59/2/0018 100				204040
	Location:	Well No. 2 At Wern Farm				
	Authority: Abstraction:	Environment Agency, Welsh Region General Farming And Domestic				
	Abstraction Type: Source:	Water may be abstracted from a single point Groundwater				
	Daily Rate (m3):	Not Supplied				
	Yearly Rate (m3): Details:	Not Supplied Well No. 2 At Wern Farm				
	Authorised Start:	01 January				
	Authorised End: Permit Start Date:	31 December 31st January 1966				
	Permit End Date:	Not Supplied				
	-	Located by supplier to within 100m				
	Water Abstractions Operator:	Mr W Walters	(W)	1809	4	257110
	Licence Number:	22/59/2/0018	(**)	1003	7	203800
	Permit Version: Location:	100 Well No. 1 At Wern Farm				
	Authority:	Environment Agency, Welsh Region				
	Abstraction: Abstraction Type:	General Farming And Domestic Water may be abstracted from a single point				
	Source:	Groundwater				
	Daily Rate (m3): Yearly Rate (m3):	Not Supplied Not Supplied				
	Details: Authorised Start:	Well No. 1 At Wern Farm 01 January				
	Authorised End:	31 December				
	Permit Start Date: Permit End Date:	31st January 1966 Not Supplied				
		Located by supplier to within 100m				

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Groundwater Vulne	erability Map				
	Combined Classification:	Secondary Superficial Aquifer - High Vulnerability	A13SW (W)	0	2	259000 204289
	Combined Vulnerability: Combined Aquifer: Pollutant Speed: Bedrock Flow: Dilution:	High Productive Bedrock Aquifer, Productive Superficial Aquifer High Well Connected Fractures >550 mm/year				
	Baseflow Index: Superficial Patchiness: Superficial	>70% <90% 3-10m				
	Thickness: Superficial Recharge:	High				
	Groundwater Vulne	erability Map				
	Combined Classification: Combined Vulnerability: Combined Aquifer:	Secondary Superficial Aquifer - High Vulnerability High Productive Bedrock Aquifer, Productive Superficial Aquifer	A13SE (E)	0	2	259038 204289
	Pollutant Speed: Bedrock Flow: Dilution: Baseflow Index: Superficial Patchiness:	High Well Connected Fractures >550 mm/year >70% <90%				
	Superficial Thickness: Superficial Recharge:	<3m High				
	Bedrock Aquifer De	esignations				
	Aquifer Designation:	Secondary Aquifer - A	A13SE (E)	0	2	259038 204289
	Superficial Aquifer Aquifer Designation:	Designations Secondary Aquifer - A	A13SE (E)	0	2	259038 204289
	Extreme Flooding f Type: Flood Plain Type: Boundary Accuracy:	from Rivers or Sea without Defences Extent of Extreme Flooding from Rivers or Sea without Defences Fluvial Models As Supplied	A13SE (S)	0	2	259038 204287
		from Rivers or Sea without Defences				
	Type: Flood Plain Type: Boundary Accuracy:	Extent of Extreme Flooding from Rivers or Sea without Defences Fluvial/Tidal Models As Supplied	A13SW (W)	33	2	258855 204265
	Extreme Flooding f Type: Flood Plain Type: Boundary Accuracy:	from Rivers or Sea without Defences Extent of Extreme Flooding from Rivers or Sea without Defences Fluvial Models As Supplied	A13NW (W)	161	2	258814 204357
	Extreme Flooding f Type: Flood Plain Type: Boundary Accuracy:	from Rivers or Sea without Defences Extent of Extreme Flooding from Rivers or Sea without Defences Tidal Models As Supplied	A13SW (SW)	195	2	258713 204050
	Extreme Flooding f Type: Flood Plain Type: Boundary Accuracy:	from Rivers or Sea without Defences Extent of Extreme Flooding from Rivers or Sea without Defences Fluvial Models As Supplied	A13SW (SW)	195	2	258714 204047
		from Rivers or Sea without Defences				
	Type: Flood Plain Type: Boundary Accuracy:	Extent of Extreme Flooding from Rivers or Sea without Defences Tidal Models	A13SW (SW)	230	2	258734 203965
	Extreme Flooding f Type: Flood Plain Type: Boundary Accuracy:	from Rivers or Sea without Defences Extent of Extreme Flooding from Rivers or Sea without Defences Fluvial Models As Supplied	A8NW (SW)	238	2	258737 203952
	Extreme Flooding f Type: Flood Plain Type: Boundary Accuracy:	from Rivers or Sea without Defences Extent of Extreme Flooding from Rivers or Sea without Defences Tidal Models As Supplied	A8NW (SW)	244	2	258742 203941

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models	A13SE	0	2	259038 204281
	Boundary Accuracy: As Supplied	(S)			204261
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial/Tidal Models Boundary Accuracy: As Supplied	A13SW (W)	24	2	258903 204244
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A13SW (SW)	149	2	258782 204031
	Flooding from Rivers or Sea without Defences				
	Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A13SW (W)	164	2	258741 204244
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences	A13NW	166	2	258934
	Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	(N)			204567
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A13SW (SW)	178	2	258709 204148
	Flooding from Rivers or Sea without Defences				
	Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A13SW (SW)	181	2	258709 204108
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences	A13NW	184	2	258863
	Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	(NW)			204492
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A13SW (SW)	186	2	258701 204140
	Flooding from Rivers or Sea without Defences				
	Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A13SW (SW)	199	2	258721 204028
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A13NW (NW)	212	2	258855 204532
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A13SW (SW)	223	2	258734 203975
	Flooding from Rivers or Sea without Defences				
	Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Fluvial Models Boundary Accuracy: As Supplied	A8NW (SW)	227	2	258746 203959
	Flooding from Rivers or Sea without Defences Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Tidal Models Boundary Accuracy: As Supplied	A8NW (SW)	248	2	258767 203916
	Flooding from Rivers or Sea without Defences				
	Type: Extent of Flooding from Rivers or Sea without Defences Flood Plain Type: Tidal Models Boundary Accuracy: As Supplied	A8NW (SW)	249	2	258745 203932
	Areas Benefiting from Flood Defences Type: Area Benefiting from Flood Defences Boundary Accuracy: As Supplied	A13SE	0	2	259038
	Boundary Accuracy: As Supplied Areas Benefiting from Flood Defences Type: Area Benefiting from Flood Defences	(S) A13SW	64	2	204282
	Boundary Accuracy: As Supplied	(SW)		_	204058

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Areas Benefiting from Flood Defences				
	Type: Area Benefiting from Flood Defences Boundary Accuracy: As Supplied	A8NW (S)	166	2	258912 203950
	Areas Benefiting from Flood Defences Type: Area Benefiting from Flood Defences Boundary Accuracy: As Supplied	A8NW (SW)	230	2	258816 203910
	Flood Water Storage Areas None				
	Flood Defences				
	Type: Flood Defences Reference: Not Supplied	A13SW (SW)	166	2	258790 204003
41	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 141.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A13SW (SW)	33	5	258871 204181
42	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 125.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A13NW (W)	135	5	258842 204345
43	Water Network Lines Watercourse Form: Inland river Watercourse Length: 324.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Afon Llwchwr Catchment Name: Loughor Primacy: 1	A13NW (W)	153	5	258826 204359
44	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 394.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Afon Llwchwr Catchment Name: Loughor Primacy: 1	A13SW (W)	154	5	258737 204167
45	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 39.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A13NW (NW)	202	5	258804 204418
46	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 104.1 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A13NW (NW)	203	5	258809 204429
47	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 103.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A13NW (NW)	203	5	258809 204429

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
48	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 101.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Afon Llwchwr Catchment Name: Loughor Primacy: 1	A13NW (NW)	204	5	258790 204395
49	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 101.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A13NW (NW)	249	5	258789 204525
50	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 123.4 Watercourse Level: On ground surface Permanent: True Watercourse Name: Dulais Catchment Name: Loughor Primacy: 1	A8NW (S)	259	5	258996 203867
51	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 18.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Dulais Catchment Name: Loughor Primacy: 1	A8NW (S)	260	5	258996 203867
52	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 816.4 Watercourse Level: On ground surface Permanent: True Watercourse Name: Dulais Catchment Name: Loughor Primacy: 1	A8NW (S)	264	5	259015 203865
53	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 128.4 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 2	A13NW (NW)	267	5	258787 204525
54	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 2.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A8NW (S)	300	5	258883 203823
55	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 74.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Dulais Catchment Name: Loughor Primacy: 1	A8NW (S)	301	5	258886 203821
56	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 207.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A13NW (NW)	301	5	258712 204454

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
57	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 45.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Afon Llwchwr Catchment Name: Loughor Primacy: 1	A13NW (NW)	301	5	258712 204454
58	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 11.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A12NE (NW)	338	5	258691 204494
59	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 124.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Afon Llwchwr Catchment Name: Loughor Primacy: 1	A12NE (NW)	338	5	258691 204494
60	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 158.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 2	A18SW (NW)	344	5	258762 204653
61	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 24.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Dulais Catchment Name: Loughor Primacy: 1	A8NW (SW)	345	5	258820 203788
62	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 5.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A8NW (SW)	345	5	258820 203788
63	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 8.2 Watercourse Level: Underground Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A12NE (NW)	346	5	258680 204491
64	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 217.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A12NE (NW)	352	5	258672 204489
65	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 2	A18SW (NW)	357	5	258762 204651

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
66	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 44.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Dulais Catchment Name: Loughor Primacy: 1	A8NW (SW)	357	5	258796 203782
67	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 3.1 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A8NW (SW)	357	5	258796 203782
68	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 198.6 Watercourse Level: On ground surface Permanent: True Watercourse Name: Afon Llwchwr Catchment Name: Loughor Primacy: 1	A18SW (NW)	371	5	258742 204646
69	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 161.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Afon Llwchwr Catchment Name: Loughor Primacy: 1	A8NW (SW)	375	5	258753 203780
70	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 85.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A8NW (S)	390	5	258829 203739
71	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 21.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A7NE (SW)	408	5	258633 203818
72	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 181.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Afon Llwchwr Catchment Name: Loughor Primacy: 1	A18SW (NW)	427	5	258709 204700
73	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 32.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A18SW (NW)	427	5	258709 204700
74	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 10.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Afon Llwchwr Catchment Name: Loughor Primacy: 1	A12NE (NW)	436	5	258638 204606

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
75	Water Network Lines Watercourse Form: Inland river Watercourse Length: 12.6 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A12NE (NW)	436	5	258638 204606
76	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 98.4 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A12NE (NW)	437	5	258642 204615
77	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 30.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A12NE (NW)	449	5	258626 204610
78	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A18SE (N)	450	5	259259 204904
79	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 101.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A18SW (NW)	453	5	258698 204730
80	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 18.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A8NW (S)	470	5	258842 203656
81	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 63.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A18SW (NW)	470	5	258714 204780
82	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 48.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A8NW (S)	474	5	258824 203655
83	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 27.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A8NW (S)	474	5	258824 203655

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
84	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 91.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A18SE (N)	480	5	259182 204952
85	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 6.4 Watercourse Level: Underground Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A8NW (S)	487	5	258797 203648
86	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A8NW (S)	490	5	258791 203646
87	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 6.4 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A7NE (SW)	506	5	258611 203712
88	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 95.1 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A7NE (SW)	506	5	258611 203712
89	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 36.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A18SW (NW)	509	5	258718 204843
90	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 20.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A18SW (NW)	509	5	258718 204843
91	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 205.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A17SE (NW)	525	5	258684 204830
92	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 62.1 Watercourse Level: On ground surface Permanent: True Watercourse Name: Afon Llwchwr Catchment Name: Loughor Primacy: 1	A8SW (SW)	531	5	258720 203625

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
93	Water Network Lines Watercourse Form: Inland river Watercourse Length: 95.8 Watercourse Level: Not Supplied Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A18NE (N)	534	5	259302 204981
94	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 4.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A7NE (SW)	546	5	258664 203633
95	OS Water Network Lines Watercourse Form: Lake Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A7NE (SW)	551	5	258661 203629
96	OS Water Network Lines Watercourse Form: Lake Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 2	A7NE (SW)	551	5	258661 203629
97	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 46.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 2	A7SE (SW)	551	5	258674 203622
98	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 173.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A7NE (SW)	554	5	258656 203628
99	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A17SE (NW)	556	5	258629 204811
100	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Afon Llwchwr Catchment Name: Loughor Primacy: 1	A17SE (NW)	556	5	258629 204811
101	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 148.6 Watercourse Level: Not Supplied Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A18NE (N)	557	5	259212 205024

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
102	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 4.2 Watercourse Level: Underground Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 2	A8SW (SW)	564	5	258698 203598
103	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 47.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 2	A8SW (SW)	565	5	258702 203595
104	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: Underground Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A17SE (NW)	568	5	258610 204805
105	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A12NE (NW)	574	5	258446 204540
106	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 76.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A17SE (NW)	575	5	258603 204806
107	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 63.6 Watercourse Level: On ground surface Permanent: True Watercourse Name: Afon Llwchwr Catchment Name: Loughor Primacy: 1	A8SW (S)	581	5	258738 203566
108	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 47.6 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A7NE (SW)	611	5	258480 203682
109	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 24.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A17SE (NW)	613	5	258526 204761
110	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A17SE (NW)	615	5	258521 204758

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
111	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 214.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A17SE (NW)	615	5	258521 204758
112	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 33.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A7NE (SW)	618	5	258489 203664
113	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 177.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A18NE (N)	626	5	259356 205059
114	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 259.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Afon Llwchwr Catchment Name: Loughor Primacy: 1	A8SW (S)	637	5	258736 203508
115	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 138.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 2	A8SW (S)	637	5	258736 203508
116	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 119.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A8SW (S)	650	5	258904 203471
117	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 118.1 Watercourse Level: Not Supplied Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A7NE (SW)	651	5	258469 203638
118	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 3.7 Watercourse Level: Underground Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A18NW (NW)	667	5	258694 205029
119	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 11.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A18NW (NW)	670	5	258695 205033

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
120	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 2.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A8SW (S)	672	5	258800 203459
121	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 75.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A8SW (S)	674	5	258799 203457
122	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 248.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A8SE (S)	677	5	259300 203499
123	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 149.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A9SW (SE)	679	5	259395 203540
124	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 128.1 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A8SE (S)	691	5	259144 203447
125	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 102.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A19NW (NE)	695	5	259406 205114
126	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 9.1 Watercourse Level: Underground Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A17SE (NW)	697	5	258403 204719
127	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 59.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A7SE (SW)	701	5	258505 203547
128	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 65.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A7SE (SW)	701	5	258505 203547

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
129	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 144.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Afon Llwchwr Catchment Name: Loughor Primacy: 1	A17NE (NW)	701	5	258660 205046
130	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 104.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A17SE (NW)	705	5	258394 204718
131	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 16.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A18NW (NW)	706	5	258701 205081
132	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 6.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A7SE (SW)	712	5	258452 203574
133	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 79.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A17SE (NW)	717	5	258500 204907
134	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 108.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Afon Llwchwr Catchment Name: Loughor Primacy: 1	A17NE (NW)	718	5	258685 205084
135	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 176.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A17SE (NW)	721	5	258485 204894
136	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 4.4 Watercourse Level: Underground Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A17SE (NW)	721	5	258485 204894
137	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 117.1 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A18NE (N)	721	5	259343 205162

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
138	Watercourse Form: Inland river Watercourse Length: 174.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A12SW (W)	742	5	258145 204143
139	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Afon Llwchwr Catchment Name: Loughor Primacy: 1	A17SE (NW)	743	5	258508 204961
140	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A8SW (S)	747	5	258795 203383
141	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A8SW (S)	747	5	258795 203383
142	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 30.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 2	A8SW (S)	748	5	258799 203382
143	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A9NE (SE)	751	5	259750 203823
144	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 970.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Dulais Catchment Name: Loughor Primacy: 1	A9NE (SE)	751	5	259750 203823
145	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 336.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A9NE (SE)	753	5	259752 203824
146	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 30.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Afon Llwchwr Catchment Name: Loughor Primacy: 1	A7SE (SW)	755	5	258502 203485

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
147	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 109.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Afon Llwchwr Catchment Name: Loughor Primacy: 1	A17NE (NW)	759	5	258556 205035
148	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 72.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A19NW (NE)	759	5	259547 205116
149	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 61.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A8SE (S)	760	5	259052 203370
150	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 181.4 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A7SE (SW)	769	5	258401 203542
151	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 16.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: Afon Llwchwr Catchment Name: Loughor Primacy: 1	A17NE (NW)	773	5	258568 205064
152	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 37.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 2	A8SW (S)	773	5	258811 203354
153	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 101.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A19NW (NE)	776	5	259524 205149
154	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 35.3 Watercourse Level: Underground Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A9SW (SE)	777	5	259508 203496
155	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A8SW (S)	777	5	258708 203371

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
156	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 159.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 2	A8SW (S)	777	5	258708 203371
157	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 24.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A19NW (NE)	780	5	259536 205146
158	OS Water Network Lines Watercourse Form: Tidal river Watercourse Length: 16.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Afon Llwchwr Catchment Name: Loughor Primacy: 1	A7SE (SW)	781	5	258474 203472
159	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 404.4 Watercourse Level: On ground surface Permanent: True Watercourse Name: Afon Llwchwr Catchment Name: Loughor Primacy: 1	A17NE (NW)	781	5	258573 205079
160	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 157.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Afon Llwchwr Catchment Name: Loughor Primacy: 2	A17NE (NW)	781	5	258573 205079
161	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 44.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A7SE (SW)	797	5	258469 203456
162	OS Water Network Lines Watercourse Form: Tidal river Watercourse Length: 304.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Afon Llwchwr Catchment Name: Loughor Primacy: 1	A7SE (SW)	797	5	258469 203456
163	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 70.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A19NW (NE)	797	5	259456 205204
164	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 21.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A17NE (NW)	801	5	258485 205022

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
165	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 234.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A19NW (NE)	802	5	259438 205217
166	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 68.1 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 2	A8SW (S)	803	5	258830 203322
167	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 44.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A9SW (SE)	811	5	259529 203469
168	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 13.0 Watercourse Level: Underground Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A8SE (S)	815	5	259031 203312
169	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 23.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A17NE (N)	817	5	258667 205189
170	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 37.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A8SW (S)	818	5	258984 203306
171	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 3.8 Watercourse Level: Underground Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A17NE (NW)	820	5	258471 205036
172	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 66.6 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A17NE (NW)	823	5	258471 205040
173	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 14.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A8SW (S)	827	5	259026 203300

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
174	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 154.8 Watercourse Level: On ground surface True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A19NW (NE)	830	5	259571 205185
	OS Water Network Lines				
175	Watercourse Form: Inland river Watercourse Level: Underground Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A17NE (N)	831	5	258675 205210
	OS Water Network Lines				
176	Watercourse Form: Inland river Watercourse Length: 4.7 Watercourse Level: Underground Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A19NW (NE)	832	5	259589 205176
	OS Water Network Lines				
177	Watercourse Form: Inland river Watercourse Length: 69.1 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A19NW (NE)	833	5	259604 205168
	OS Water Network Lines				
178	Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A17NE (N)	835	5	258675 205214
	OS Water Network Lines				
179	Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A3NW (S)	837	5	259018 203289
	OS Water Network Lines				
180	Watercourse Form: Inland river Watercourse Length: 91.9 Watercourse Level: Underground Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A19NW (NE)	839	5	259650 205144
	OS Water Network Lines				
181	Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A17SW (NW)	850	5	258333 204899
	OS Water Network Lines				
182	Watercourse Form: Inland river Watercourse Length: 82.1 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A17SW (NW)	850	5	258333 204899

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
183	Watercourse Form: Inland river Watercourse Length: 8.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A3NW (S)	851	5	259003 203274
184	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 92.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A3NW (S)	851	5	259004 203274
185	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A3NW (S)	853	5	258996 203271
186	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A3NW (S)	853	5	258996 203271
187	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 97.6 Watercourse Level: Underground Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A19NE (NE)	854	5	259780 205048
188	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 47.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A19NE (NE)	854	5	259780 205048
189	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: Underground Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A3NW (S)	855	5	258990 203269
190	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 30.6 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A19NW (NE)	855	5	259501 205248
191	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 67.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 2	A3NW (S)	856	5	258865 203266

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
192	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 1.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 2	A3NW (S)	856	5	258867 203266
193	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 24.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 2	A3NW (S)	856	5	258867 203266
194	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 39.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A3NW (S)	857	5	258981 203267
195	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 122.6 Watercourse Level: Not Supplied Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A12SW (W)	858	5	258037 204026
196	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 10.7 Watercourse Level: Underground Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A19NE (NE)	861	5	259753 205086
197	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 67.6 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 2	A3NW (S)	863	5	258935 203258
198	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 18.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A19NE (NE)	863	5	259746 205095
199	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 81.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A3NW (S)	865	5	258943 203256
200	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 56.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A17NE (NW)	867	5	258428 205058

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
201	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 96.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A17NE (NW)	869	5	258471 205106
202	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 18.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A17NE (NW)	869	5	258471 205106
203	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 59.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 2	A3NW (S)	877	5	258878 203244
204	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 62.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A19NE (NE)	879	5	259859 204991
205	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 18.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A19NW (NE)	881	5	259497 205279
206	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 148.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 2	A3NW (S)	886	5	258802 203242
207	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 6.0 Watercourse Level: Underground Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A17NE (NW)	886	5	258454 205111
208	OS Water Network Lines Watercourse Form: Tidal river Watercourse Length: 11.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Not Supplied Primacy: 1	A2NE (S)	887	5	258683 203264
209	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 94.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A17NE (NW)	891	5	258448 205114

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
210	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 38.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A17NE (N)	894	5	258679 205283
211	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 289.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A17NE (N)	894	5	258679 205283
212	OS Water Network Lines Watercourse Form: Tidal river Watercourse Length: 206.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Afon Llwchwr Catchment Name: Loughor Primacy: 1	A2NE (S)	897	5	258683 203253
213	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 40.0 Watercourse Level: Underground Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A17NE (NW)	899	5	258374 205042
214	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 9.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A19NW (NE)	899	5	259506 205294
215	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 213.9 Watercourse Level: On ground surface True Watercourse Name: Not Supplied Catchment Name: Catchment Name: Primacy: 2	A6NE (W)	901	5	258004 203959
216	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 76.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A17SW (NW)	904	5	258312 204965
217	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 427.6 Watercourse Level: On ground surface Permanent: True Watercourse Name: Camffrwd Catchment Name: Loughor Primacy: 1	A15NW (E)	904	5	260046 204627
218	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 1022.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Camffrwd Catchment Name: Loughor Primacy: 1	A19SE (NE)	904	5	260009 204768

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
219	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 121.8 Watercourse Level: Not Supplied Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A19NW (NE)	906	5	259509 205301
220	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 140.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A6NE (W)	916	5	258000 203909
221	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 58.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A17NE (NW)	926	5	258492 205200
222	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 88.1 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A17NE (NW)	926	5	258492 205200
223	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 60.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A3NW (S)	927	5	258909 203193
224	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 65.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A14SE (E)	931	5	260033 204010
225	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 43.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A24SW (N)	940	5	259458 205356
226	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 115.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A20SW (E)	945	5	260067 204713
227	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 364.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A17NE (NW)	975	5	258520 205283

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
228	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 77.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A17NE (NW)	975	5	258520 205283
229	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 53.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A15SW (E)	980	5	260075 203980
230	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 74.1 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A3NW (S)	980	5	258939 203141
231	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 119.1 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 2	A3NW (S)	980	5	258939 203141
232	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 66.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A15SW (E)	980	5	260092 204030
233	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 35.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A15SW (E)	982	5	260074 203978
234	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 88.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A24SW (N)	983	5	259469 205399
235	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 3.1 Watercourse Level: Underground Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A6NE (SW)	984	5	257972 203777
236	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 11.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Loughor Primacy: 1	A6NE (SW)	987	5	257969 203776

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
007	OS Water Network Lines	A7SW	000	-	050000
237	Watercourse Form: Tidal river Watercourse Length: 109.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Afon Gwili Catchment Name: Loughor Primacy: 1	(SW)	988	5	258099 203541
	OS Water Network Lines				
238	Watercourse Form: Tidal river Watercourse Level: On ground surface Permanent: True Watercourse Name: Afon Gwili Catchment Name: Loughor Primacy: 1	A7SW (SW)	988	5	258106 203532
	OS Water Network Lines				
239	Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Afon Gwili Catchment Name: Loughor Primacy: 1	A6NE (SW)	989	5	258002 203696
	OS Water Network Lines				
240	Watercourse Form: Inland river Watercourse Length: 151.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: Afon Gwili Catchment Name: Loughor Primacy: 1	A6NE (SW)	998	5	257959 203771

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
241	Historical Landfill S Licence Holder: Location: Name: Operator Location: Boundary Accuracy: Provider Reference: First Input Date: Last Input Date: Specified Waste Type: EA Waste Ref: Regis Ref: WRC Ref: BGS Ref: Other Ref:	D R and J G Thomas Pontardulais Lower Marsh Not Supplied As Supplied	A8NW (SW)	445	2	258712 203722
242	Licensed Waste Ma Licence Number: Location: Operator Name: Operator Location: Authority: Site Category: Licence Status: Issued: Last Modified: Expires: Suspended: Revoked: Surrendered: IPPC Reference:	nagement Facilities (Locations) RP3198FX 7 Hundred Auto Spares, Pontardulais, Pontardulais, Swansea, SA4 8RG Kevin Anthony Paul Cody Not Supplied Natural Resources Wales End of Life Vehicles Surrendered 18th February 2005 Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied 19th March 2014 Not Supplied Located by supplier to within 10m	A8SE (S)	553	2	259071 203579
242	Licence Number: Location: Operator Name: Operator Location: Authority: Site Category: Licence Status: Issued: Last Modified: Expires: Suspended: Revoked: Surrendered: IPPC Reference:	nagement Facilities (Locations) 34252 Unit 3, Cambrian Place, Pontardulais, Pontardulais, SA4 8RG Cody Kevin Anthony Paul Not Supplied Natural Resources Wales End of Life Vehicles Surrendered 18th February 2005 Not Supplied 19th March 2014 Not Supplied Located by supplier to within 10m	A8SE (S)	553	2	259071 203579
	Local Authority Lan Name:	dfill Coverage City and County of Swansea - Has no landfill data to supply		0	3	259038 204289
	Local Authority Lan Name:	dfill Coverage Carmarthenshire County Council - Has no landfill data to supply		153	6	258823 204354
243	Potentially Infilled L Bearing Ref: Use: Date of Mapping:	.and (Non-Water) W Unknown Filled Ground (Pit, quarry etc) 1993	A12SE (W)	262	9	258626 204149
244	Potentially Infilled L Bearing Ref: Use: Date of Mapping:	.and (Non-Water) W Unknown Filled Ground (Pit, quarry etc) 1993	A12SE (W)	277	9	258614 204178
245	Potentially Infilled L Bearing Ref: Use: Date of Mapping:	.and (Non-Water) SW Unknown Filled Ground (Pit, quarry etc) 1993	A12SE (SW)	316	9	258612 203981
246	Potentially Infilled L Bearing Ref: Use: Date of Mapping:	.and (Non-Water) W Unknown Filled Ground (Pit, quarry etc) 1993	A12NW (W)	607	9	258323 204358
247	Potentially Infilled L Bearing Ref: Use: Date of Mapping:	nand (Non-Water) NE Unknown Filled Ground (Pit, quarry etc) 1993	A19SE (NE)	697	9	259732 204855

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
248	Potentially Infilled Land (Non-Water) Bearing Ref: N Use: Unknown Filled Ground (Pit, quarry etc) Date of Mapping: 1993	A18NE (N)	732	9	259333 205177
249	Potentially Infilled Land (Non-Water) Bearing Ref: N Use: Unknown Filled Ground (Pit, quarry etc) Date of Mapping: 1993	A18NE (N)	748	9	259353 205188
250	Potentially Infilled Land (Non-Water) Bearing Ref: N Use: Unknown Filled Ground (Pit, quarry etc) Date of Mapping: 1993	A18NE (N)	761	9	259314 205211
251	Potentially Infilled Land (Non-Water) Bearing Ref: W Use: Unknown Filled Ground (Pit, quarry etc) Date of Mapping: 1993	A12NW (W)	765	9	258201 204476
252	Potentially Infilled Land (Non-Water) Bearing Ref: N Use: Unknown Filled Ground (Pit, quarry etc) Date of Mapping: 1993	A18NE (N)	778	9	259349 205220
253	Potentially Infilled Land (Non-Water) Bearing Ref: NE Use: Unknown Filled Ground (Pit, quarry etc) Date of Mapping: 1993	A19NW (NE)	798	9	259664 205080
254	Potentially Infilled Land (Non-Water) Bearing Ref: SE Use: Unknown Filled Ground (Pit, quarry etc) Date of Mapping: 1993	A9NE (SE)	810	9	259717 203654
255	Potentially Infilled Land (Non-Water) Bearing Ref: N Use: Unknown Filled Ground (Pit, quarry etc) Date of Mapping: 1993	A18NE (N)	814	9	259240 205281
256	Potentially Infilled Land (Non-Water) Bearing Ref: W Use: Unknown Filled Ground (Pit, quarry etc) Date of Mapping: 1993	A12NW (W)	821	9	258120 204427
257	Potentially Infilled Land (Non-Water) Bearing Ref: NW Use: Unknown Filled Ground (Pit, quarry etc) Date of Mapping: 1993	A17SW (NW)	822	9	258236 204669
258	Potentially Infilled Land (Non-Water) Bearing Ref: NW Use: Unknown Filled Ground (Pit, quarry etc) Date of Mapping: 1993	A17SW (NW)	950	9	258099 204684
259	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1952	A13SW (S)	0	9	259006 204162
260	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1952	A13SW (W)	120	9	258799 204233
261	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1952 Potentially Infilled Land (Water)	A13SE (S)	123	9	259078 204012
262	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1952 Potentially Infilled Land (Water)	A13SE (S)	126	9	259088 204010
263	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1952 Potentially Infilled Land (Water)	A13SE (SE)	148	9	259163 204024
264	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1952	A13SE (S)	150	9	259049 203982
265	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1964	A13SE (S)	154	9	259063 203978

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
266	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1964	A8NE (S)	185	9	259065 203947
267	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1952	A8NW (S)	188	9	258937 203934
268	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1964	A8NE (S)	239	9	259062 203893
269	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1952	A8NE (S)	256	9	259189 203911
270	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1964	A13SE (SE)	302	9	259358 204051
271	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1952	A12SE (W)	330	9	258574 204239
272	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1952	A12SE (W)	388	9	258527 204279
273	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1952	A8NW (S)	461	9	258926 203660
274	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1952	A18NE (N)	528	9	259180 205001
275	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1952	A18NE (N)	537	9	259185 205009
276	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1952	A8SE (S)	588	9	259068 203543
277	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1952	A8SE (S)	613	9	259039 203516
278	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1952	A8SE (S)	618	9	259265 203549
279	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1952	A8SE (S)	636	9	259058 203495
280	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1952	A7NE (SW)	642	9	258422 203694
281	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1952	A8SE (S)	646	9	259128 203491
282	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1908	A9NW (SE)	647	9	259610 203784
283	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1952	A8SE (S)	660	9	259043 203470
284	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1898	A9NW (SE)	664	9	259651 203821
285	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1952	A8SE (S)	668	9	259170 203475
286	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1921	A12NW (W)	669	9	258249 204337

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
287		and (Water) Unknown Filled Ground (Pond, marsh, river, stream, dock etc) 1952	A18NW (N)	693	9	258837 205133
288		and (Water) Unknown Filled Ground (Pond, marsh, river, stream, dock etc) 1898	A12NW (W)	699	9	258312 204551
289		and (Water) Unknown Filled Ground (Pond, marsh, river, stream, dock etc) 1952	A18NW (N)	709	9	258846 205153
290		and (Water) Unknown Filled Ground (Pond, marsh, river, stream, dock etc) 1952	A18NW (N)	748	9	258804 205179
291		and (Water) Unknown Filled Ground (Pond, marsh, river, stream, dock etc) 1952	A8SW (S)	767	9	258919 203354
292		and (Water) Unknown Filled Ground (Pond, marsh, river, stream, dock etc) 1952	A12NW (W)	800	9	258168 204487
293		and (Water) Unknown Filled Ground (Pond, marsh, river, stream, dock etc) 1952	A9NE (SE)	813	9	259796 203775
294		and (Water) Unknown Filled Ground (Pond, marsh, river, stream, dock etc) 1952	A12NW (W)	900	9	258074 204521
295		and (Water) Unknown Filled Ground (Pond, marsh, river, stream, dock etc) 1965	A19NW (NE)	904	9	259574 205268
296		and (Water) Unknown Filled Ground (Pond, marsh, river, stream, dock etc) 1964	A19SE (NE)	908	9	260005 204782
297		and (Water) Unknown Filled Ground (Pond, marsh, river, stream, dock etc) 1952	A9SW (SE)	914	9	259615 203404
298		and (Water) Unknown Filled Ground (Pond, marsh, river, stream, dock etc) 1952	A12NW (W)	940	9	258040 204543
299		and (Water) Unknown Filled Ground (Pond, marsh, river, stream, dock etc) 1898	A17SW (W)	985	9	258050 204666
300		and (Water) Unknown Filled Ground (Pond, marsh, river, stream, dock etc) 1964	A6NE (SW)	991	9	257993 203710
301		and (Water) Unknown Filled Ground (Pond, marsh, river, stream, dock etc) 1965	A24SW (NE)	999	9	259570 205375
302	Licence Reference: Site Location: Licence Easting: Licence Northing: Operator Location: Authority: Site Category: Max Input Rate: Waste Source Restrictions: Status:	D R & J G Thomas 1/83 The Lower Marsh, Rear Of Gwyn Hotel, Pontarddulais, Swansea, West Glamorgan 258800 203700 Old Abbatoir, Trinity Place, Pontardulais, Swansea, West Glamorgan Environment Agency Wales, South West Area Landfill Undefined No known restriction on source of waste Licence lapsed/cancelled/defunct/not applicable/surrenderedCancelled	A8NW (S)	335	4	258837 203793
	Preceded By Licence: Superseded By Licence: Positional Accuracy: Boundary Accuracy:	Not Supplied Not Given Not Given Manually positioned to the road within the address or location Not Applicable Inert Waste				

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS 1:625,000 Solid	d Geology				
	Description:	South Wales Upper Coal Measures Formation	A13SE (E)	0	1	259038 204289
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Sediment 15 - 25 mg/kg	A13SW (W)	0	1	259000 204289
	Cadmium Concentration: Chromium Concentration:	<1.8 mg/kg 60 - 90 mg/kg				
	Lead Concentration: Nickel Concentration:	<100 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Sediment 25 - 35 mg/kg	A13SE (E)	0	1	259038 204289
	Cadmium Concentration: Chromium	<1.8 mg/kg 60 - 90 mg/kg				
	Concentration: Lead Concentration: Nickel Concentration:	<100 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Sediment 25 - 35 mg/kg	A13SW (S)	104	1	258953 204000
	Concentration: Cadmium Concentration: Chromium	<1.8 mg/kg				
	Concentration: Lead Concentration: Nickel Concentration:	60 - 90 mg/kg <100 mg/kg 15 - 30 mg/kg				
		Chamistry				
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Sediment 15 - 25 mg/kg	A13SE (E)	145	1	259322 204293
	Cadmium Concentration: Chromium	<1.8 mg/kg				
	Concentration: Lead Concentration: Nickel	60 - 90 mg/kg <100 mg/kg 15 - 30 mg/kg				
	Concentration:	10 30 mg/kg				
	BGS Estimated Soil Source: Soil Sample Type:	British Geological Survey, National Geoscience Information Service Sediment	A13SW (W)	177	1	258712 204162
	Arsenic Concentration: Cadmium	25 - 35 mg/kg <1.8 mg/kg				
	Concentration: Chromium Concentration:	60 - 90 mg/kg				
	Lead Concentration: Nickel Concentration:	<100 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Sediment 25 - 35 mg/kg	A12SE (SW)	207	1	258686 204066
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration: Lead Concentration: Nickel	60 - 90 mg/kg <100 mg/kg 15 - 30 mg/kg				
	Concentration:					

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Sediment 45 - 60 mg/kg	A18SE (N)	426	1	259226 204887
	Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration: Lead Concentration: Nickel	60 - 90 mg/kg <100 mg/kg 15 - 30 mg/kg				
	Concentration:	13 - 30 Ilig/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Sediment 45 - 60 mg/kg	A18SW (NW)	451	1	258729 204776
	Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	60 - 90 mg/kg				
	Lead Concentration: Nickel Concentration:	<100 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Sediment 25 - 35 mg/kg	A8NW (S)	473	1	258899 203648
	Concentration: Cadmium	<1.8 mg/kg				
	Concentration: Chromium Concentration:	60 - 90 mg/kg				
	Lead Concentration: Nickel Concentration:	<100 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Sediment 15 - 25 mg/kg	A18NE (N)	551	1	259154 205029
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	60 - 90 mg/kg				
	Lead Concentration: Nickel Concentration:	<100 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil	•				
	Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Sediment 45 - 60 mg/kg	A19SW (NE)	551	1	259433 204942
	Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	60 - 90 mg/kg				
	Lead Concentration: Nickel Concentration:	<100 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Sediment 25 - 35 mg/kg	A18NW (N)	618	1	259000 205096
	Concentration: Cadmium	<1.8 mg/kg				
	Concentration: Chromium Concentration:	60 - 90 mg/kg				
	Lead Concentration: Nickel Concentration:	<100 mg/kg 15 - 30 mg/kg				

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Estimated Soil Source: Soil Sample Type:	Chemistry British Geological Survey, National Geoscience Information Service Sediment	A12NW (W)	748	1	258257 204553
	Arsenic Concentration: Cadmium	25 - 35 mg/kg <1.8 mg/kg				
	Concentration: Chromium Concentration:	60 - 90 mg/kg				
	Lead Concentration: Nickel Concentration:	<100 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Sediment 45 - 60 mg/kg	A19NW (NE)	839	1	259573 205194
	Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration: Lead Concentration:	60 - 90 mg/kg				
	Nickel Concentration:	15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Sediment 25 - 35 mg/kg	A17SW (NW)	873	1	258269 204841
	Concentration: Cadmium	<1.8 mg/kg				
	Concentration: Chromium Concentration:	60 - 90 mg/kg				
	Lead Concentration: Nickel Concentration:	<100 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Sediment 25 - 35 mg/kg	A11SE (W)	898	1	258000 204000
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	60 - 90 mg/kg				
	Lead Concentration: Nickel Concentration:	<100 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Sediment 15 - 25 mg/kg	A19NW (NE)	899	1	259488 205302
	Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	60 - 90 mg/kg				
	Lead Concentration: Nickel Concentration:	15 - 30 mg/kg				
	BGS Recorded Mine	eral Sites				
303	Site Name: Location: Source:	Ty'N-Y-Bonau Pontarddulais, Ammanford, Glamorgan British Geological Survey, National Geoscience Information Service	A13NE (NE)	152	1	259306 204467
	Reference: Type: Status:	151464 Opencast Ceased				
	Operator: Operator Location:	Unknown Operator Not Supplied				
	Periodic Type: Geology: Commodity:	Carboniferous Swansea Member Sandstone				
		Located by supplier to within 10m				

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
304	BGS Recorded Mine Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	St. David'S Church Fforest, Llanelli, Carmarthenshire British Geological Survey, National Geoscience Information Service 101515 Opencast Ceased Unknown Operator Not Supplied Carboniferous Swansea Member Sandstone Located by supplier to within 10m	A12SE (W)	282	1	258606 204152
304	BGS Recorded Mine Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	St. David'S Church Fforest, Llanelli, Carmarthenshire British Geological Survey, National Geoscience Information Service 101416 Underground Ceased Unknown Operator Not Supplied Carboniferous Swansea Member Coal - Deep Located by supplier to within 10m	A12SE (W)	307	1	258587 204197
305	BGS Recorded Mine Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	St. David'S Church Fforest, Llanelli, Carmarthenshire British Geological Survey, National Geoscience Information Service 101516 Opencast Ceased Unknown Operator Not Supplied Carboniferous Swansea Member Sandstone Located by supplier to within 10m	A12SE (SW)	333	1	258591 203986
306	BGS Recorded Mine Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	Pleasant Villas Pleasant Villas Pontarddulais, Ammanford, Glamorgan British Geological Survey, National Geoscience Information Service 151470 Underground Ceased Unknown Operator Not Supplied Carboniferous Swansea Member Coal - Deep Located by supplier to within 10m	A19SW (NE)	617	1	259623 204868
307	BGS Recorded Mine Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	Bral Sites Bwlch-Y-Gwynt Fforest, Llanelli, Carmarthenshire British Geological Survey, National Geoscience Information Service 101514 Opencast Ceased Unknown Operator Not Supplied Carboniferous Swansea Member Sandstone Located by supplier to within 10m	A12NW (W)	629	1	258301 204362
308	BGS Recorded Mine Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	Hendy Hendy, Llanelli, Carmarthenshire British Geological Survey, National Geoscience Information Service 101517 Opencast Ceased Unknown Operator Not Supplied Carboniferous Swansea Member Sandstone Located by supplier to within 10m	A7NW (SW)	639	1	258339 203810

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
309	BGS Recorded Mine Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	Tal-Y-Fan-Fach Colliery Pontarddulais, Ammanford, Glamorgan British Geological Survey, National Geoscience Information Service 151467 Underground Ceased Unknown Operator Not Supplied Carboniferous Hughes Member Coal - Deep Located by supplier to within 10m	A18NE (N)	759	1	259307 205210
309	BGS Recorded Mine Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	Tal-Y-Fan-Fach Colliery Pontarddulais, Ammanford, Glamorgan British Geological Survey, National Geoscience Information Service 151463 Underground Ceased Unknown Operator Not Supplied Carboniferous Hughes Member Coal - Deep Located by supplier to within 10m	A18NE (N)	774	1	259339 205218
310	BGS Recorded Mine Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	Hendy Hendy, Llanelli, Carmarthenshire British Geological Survey, National Geoscience Information Service 101518 Opencast Ceased Unknown Operator Not Supplied Carboniferous Swansea Member Sandstone Located by supplier to within 10m	A7NW (SW)	771	1	258190 203808
311	BGS Recorded Mine Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	Paral Sites Tal-Y-Fan-Fach Colliery Pontarddulais, Ammanford, Glamorgan British Geological Survey, National Geoscience Information Service 151466 Underground Ceased Unknown Operator Not Supplied Carboniferous Brithdir Member Coal - Deep Located by supplier to within 10m	A18NE (N)	776	1	259163 205254
312	BGS Recorded Mine Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	eral Sites Gwili Bridge Fforest, Llanelli, Carmarthenshire British Geological Survey, National Geoscience Information Service 100481 Opencast Ceased Unknown Operator Not Supplied Carboniferous Hughes Member Sandstone Located by supplier to within 10m	A12NW (W)	779	1	258183 204469
313	BGS Recorded Mine Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	Pleasant Villas Pleasant Villas Pontarddulais, Ammanford, Glamorgan British Geological Survey, National Geoscience Information Service 151469 Underground Ceased Unknown Operator Not Supplied Carboniferous Hughes Member Coal - Deep Located by supplier to within 10m	A19NW (NE)	794	1	259666 205074

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
314	BGS Recorded Mine Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	Fforest Fforest, Llanelli, Carmarthenshire British Geological Survey, National Geoscience Information Service 100428 Underground Ceased Unknown Operator Not Supplied Carboniferous Hughes Member Coal - Deep Located by supplier to within 10m	A12NW (W)	799	1	258141 204422
314	BGS Recorded Mine Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	Forest Fforest Fforest, Llanelli, Carmarthenshire British Geological Survey, National Geoscience Information Service 100464 Underground Ceased Unknown Operator Not Supplied Carboniferous Hughes Member Coal - Deep Located by supplier to within 10m	A12NW (W)	834	1	258102 204415
315	BGS Recorded Mine Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	Fforest Fforest, Llanelli, Carmarthenshire British Geological Survey, National Geoscience Information Service 100479 Opencast Ceased Unknown Operator Not Supplied Carboniferous Hughes Member Sandstone Located by supplier to within 10m	A17SW (NW)	840	1	258215 204668
316	BGS Recorded Mine Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	West Merthyr Colliery Pontarddulais, Ammanford, Glamorgan British Geological Survey, National Geoscience Information Service 151468 Underground Ceased Unknown Operator Not Supplied Carboniferous Grovesend Formation Coal - Deep Located by supplier to within 10m	A9SE (SE)	877	1	259778 203623
317	BGS Measured Urb No data available BGS Urban Soil Che	Fforest Fforest, Llanelli, Carmarthenshire British Geological Survey, National Geoscience Information Service 100478 Opencast Ceased Unknown Operator Not Supplied Carboniferous Hughes Member Sandstone Located by supplier to within 10m an Soil Chemistry	A17SW (W)	971	1	258076 204686
	No data available Coal Mining Affecte Description:	In an area which may be affected by coal mining activity. It is recommended that a coal mining report is obtained from the Coal Authority. Contact details are included in the Useful Contacts section of this report.	A13SE (E)	0	7	259038 204289

Order Number: 308357480_1_1 Date: 09-Mar-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 59 of 85

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Mining Instability Mining Evidence: Source: Boundary Quality:	Inconclusive Coal Mining Ove Arup & Partners As Supplied	A13SE (E)	0	-	259038 204289
	Non Coal Mining A	reas of Great Britain				
	Potential for Collap	sible Ground Stability Hazards				
	Hazard Potential: Source:	Very Low British Geological Survey, National Geoscience Information Service	A13SE (E)	0	1	259038 204289
	-	sible Ground Stability Hazards		_		
	Hazard Potential: Source:	No Hazard British Geological Survey, National Geoscience Information Service	A13SW (SW)	0	1	258875 204219
	Potential for Collap	sible Ground Stability Hazards				
	Hazard Potential: Source:	Very Low British Geological Survey, National Geoscience Information Service	A13SW (W)	177	1	258711 204261
		ressible Ground Stability Hazards	(**)			204201
	Hazard Potential: Source:	No Hazard British Geological Survey, National Geoscience Information Service	A13SE (E)	0	1	259038 204289
	Potential for Comp Hazard Potential: Source:	ressible Ground Stability Hazards Moderate British Geological Survey, National Geoscience Information Service	A13SW (SW)	0	1	258875 204219
	Potential for Compo Hazard Potential: Source:	ressible Ground Stability Hazards No Hazard British Geological Survey, National Geoscience Information Service	A13SW (W)	177	1	258711 204261
	Potential for Groun Hazard Potential: Source:	d Dissolution Stability Hazards No Hazard British Geological Survey, National Geoscience Information Service	A13SE (E)	0	1	259038 204289
	Potential for Lands Hazard Potential: Source:	lide Ground Stability Hazards Very Low British Geological Survey, National Geoscience Information Service	A13SE (E)	0	1	259038 204289
	Potential for Lands Hazard Potential: Source:	lide Ground Stability Hazards Low British Geological Survey, National Geoscience Information Service	A13SW (W)	122	1	258749 204258
	Potential for Lands Hazard Potential: Source:	lide Ground Stability Hazards Very Low British Geological Survey, National Geoscience Information Service	A13SW (SW)	137	1	258747 204150
	Potential for Lands Hazard Potential: Source:	lide Ground Stability Hazards Moderate British Geological Survey, National Geoscience Information Service	A13SW (W)	168	1	258729 204254
	Potential for Lands Hazard Potential: Source:	lide Ground Stability Hazards Very Low British Geological Survey, National Geoscience Information Service	A13SW (W)	177	1	258712 204162
	Potential for Lands Hazard Potential: Source:	lide Ground Stability Hazards Moderate British Geological Survey, National Geoscience Information Service	A12SE (W)	242	1	258650 204182
	Potential for Runni Hazard Potential: Source:	ng Sand Ground Stability Hazards Very Low British Geological Survey, National Geoscience Information Service	A13SE (E)	0	1	259038 204289
	Potential for Runni Hazard Potential: Source:	ng Sand Ground Stability Hazards Low British Geological Survey, National Geoscience Information Service	A13SW (SW)	0	1	258875 204219
		ng Sand Ground Stability Hazards No Hazard British Geological Survey, National Geoscience Information Service	A13SE (E)	145	1	259322 204293
		ng Sand Ground Stability Hazards No Hazard British Geological Survey, National Geoscience Information Service	A13SW (W)	177	1	258712 204162
	Potential for Runni Hazard Potential: Source:	ng Sand Ground Stability Hazards Very Low British Geological Survey, National Geoscience Information Service	A13SW (W)	178	1	258711 204261
		king or Swelling Clay Ground Stability Hazards No Hazard British Geological Survey, National Geoscience Information Service	A13SE (E)	0	1	259038 204289

Geological

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Potential for Shrinking or Swelling Clay Ground Stability Hazards					
	Hazard Potential: Source:	Very Low British Geological Survey, National Geoscience Information Service	A13SW (SW)	0	1	258987 204169
	Potential for Shrink	ring or Swelling Clay Ground Stability Hazards				
	Hazard Potential: Source:	No Hazard British Geological Survey, National Geoscience Information Service	A13SW (S)	73	1	258970 204024
	Potential for Shrink	ring or Swelling Clay Ground Stability Hazards				
	Hazard Potential: Source:	No Hazard British Geological Survey, National Geoscience Information Service	A13SW (S)	135	1	258974 203976
	Potential for Shrink	ring or Swelling Clay Ground Stability Hazards				
	Hazard Potential: Source:	No Hazard British Geological Survey, National Geoscience Information Service	A13SW (W)	177	1	258712 204162
	Potential for Shrink	ring or Swelling Clay Ground Stability Hazards				
	Hazard Potential: Source:	No Hazard British Geological Survey, National Geoscience Information Service	A12SE (SW)	207	1	258686 204066
	Radon Potential - R	adon Affected Areas				
	Affected Area: Source:	The property is in a Lower probability radon area (less than 1% of homes are estimated to be at or above the Action Level). British Geological Survey, National Geoscience Information Service	A13SE (E)	0	1	259038 204289
		Radon Protection Measures				
		No radon protective measures are necessary in the construction of new dwellings or extensions British Geological Survey, National Geoscience Information Service	A13SE (E)	0	1	259038 204289

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Contemporary Trad	e Directory Entries				
318	Name: Location: Classification: Status: Positional Accuracy:	Corus Glamorgan Works, Pontarddulais, Swansea, SA4 8SB Spraying - Paint & Coatings Inactive Automatically positioned to the address	A13NW (NW)	0	-	259020 204330
	Contemporary Trad	e Directory Entries				
319	Name: Location: Classification: Status: Positional Accuracy:	Premier Electronics Ltd Unit 2, Glan Llwyd, Tyn y Bonau Road, Pontarddulais, Swansea, SA4 8SF Electronic Equipment - Manufacturers & Assemblers Inactive Automatically positioned to the address	A13NE (NE)	7	-	259131 204479
	Contemporary Trad	e Directory Entries				
319	Name: Location: Classification: Status:	D W Printers Ltd Pontarddulais Workshops, Tyn y Bonau Road, Pontarddulais, Swansea, West Glamorgan, SA4 8SG Printers Inactive Automatically positioned to the address	A13NE (NE)	8	-	259140 204478
	Contemporary Trad	e Directory Entries				
319	Name: Location: Classification: Status: Positional Accuracy:	Glass Solutions Pontarddulais Workshops, Tyn y Bonau Road, Pontarddulais, Swansea, West Glamorgan, SA4 8SG Glass Products - Manufacturers Inactive Automatically positioned to the address	A13NE (NE)	8	-	259140 204478
	Contemporary Trad	e Directory Entries				
319	Name: Location:	C F L Commercials UNIT 3, GLAN LLWYD, TYN Y BONAU ROAD, PONTARDDULAIS, SWANSEA, SA4 8SF	A13NE (N)	11	-	259100 204490
	Classification: Status: Positional Accuracy:	Commercial Vehicle Servicing, Repairs, Parts & Accessories Active Automatically positioned to the address				
	Contemporary Trad	e Directory Entries				
319	Name: Location: Classification: Status: Positional Accuracy:	J D K Cleaning UNIT 8, GLAN LLWYD, TYN Y BONAU ROAD, PONTARDDULAIS, SWANSEA, SA4 8SF Commercial Cleaning Services Active Automatically positioned to the address	A13NE (NE)	43	-	259143 204514
	Contemporary Trad	e Directory Entries				
319	Name: Location: Classification: Status: Positional Accuracy:	Tate Refrigeration Ltd Unit 7, Glan Llwyd, Tyn y Bonau Road, Pontarddulais, Swansea, SA4 8SF Air Conditioning & Refrigeration Contractors Inactive Automatically positioned to the address	A13NE (NE)	43	-	259135 204515
	Contemporary Trad	· · · · · · · · · · · · · · · · · · ·				
319	Name: Location: Classification: Status:	Tate Refrigeration Ltd Unit 7, Glan Llwyd, Tyn y Bonau Road Industrial Estate, Pontarddulais, Swansea, SA4 1SG Air Conditioning & Refrigeration Contractors Inactive Automatically positioned to the address	A13NE (NE)	43	-	259135 204515
	Contemporary Trad	•				
320	Name: Location: Classification: Status: Positional Accuracy:	Bont Engineering Services 2000 18, High Street, Pontarddulais, Swansea, SA4 8RU Pneumatic Systems & Equipment Inactive Automatically positioned to the address	A13SE (SE)	45	-	259122 204153
	Contemporary Trad					
321	Name: Location: Classification: Status:	S S E Contracting Ltd Ty Golau, Tyn y Bonau Road, Pontarddulais, Swansea, SA4 8SG Mechanical Engineers Inactive Automatically positioned to the address	A13NE (N)	81	-	259126 204556
	Contemporary Trad					
322	Name: Location: Classification: Status:	Southern Electric Tyn Y Bonau Road, Pontarddulais, Swansea, West Glamorgan, SA4 8SG Electricity Companies Inactive	A13NE (NE)	82	-	259211 204526

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Contemporary Trad	e Directory Entries				
322	Name: Location:	Sportfit Unit 23,Tyn Y Bonau Rd, Pontarddulais, Swansea, West Glamorgan, SA4 8SG	A13NE (NE)	105	-	259245 204519
	Classification: Status:	Sports Equipment Manufacturers & Distributors Inactive Manually positioned to the address or location				
	,					
323	Contemporary Trad Name: Location: Classification: Status:	Equipment Building Systems Pontarddulais Workshops, Tyn y Bonau Road, Pontarddulais, Swansea, West Glamorgan, SA4 8SG Machine Shops Inactive	A13NE (NE)	82	-	259236 204474
		Automatically positioned to the address				
	Contemporary Trad	e Directory Entries				
324	Name: Location: Classification: Status:	Motor Xpress Unit 4,Glan Llwyd,Tyn y Bonau Rd, Pontarddulais, Swansea, West Glamorgan, SA4 8SF Garage Services Inactive	A13NE (NE)	105	-	259203 204560
		Manually positioned to the address or location				
	Contemporary Trad	e Directory Entries				
324	Name: Location: Classification: Status: Positional Accuracy:	Sts Signals Ltd Unit 2, Teilo Works, Tyn y Bonau Road, Pontarddulais, Swansea, SA4 8SA Electric Motor Manufacturers Inactive Automatically positioned to the address	A13NE (NE)	114	-	259191 204574
	Contemporary Trad	e Directory Entries				
325	Name: Location: Classification: Status: Positional Accuracy:	Lifestyle Designs 1, Myrtle Hill, Tyn y Bonau Road, Pontarddulais, Swansea, SA4 1RS T-Shirts Inactive Automatically positioned to the address	A13SE (E)	176	-	259283 204190
	Contemporary Trad					
326	Name: Location: Classification: Status:	Brockington & Scott Ltd Teilo Works, Pontarddulais, Swansea, SA4 8RP Precision Engineers Inactive Automatically positioned to the address	A8NE (S)	196	-	259139 203953
	Contemporary Trad					
327	Name: Location: Classification: Status:	Station Garage St. Teilo Street, Pontarddulais, Swansea, SA4 8TH Garage Services Active Automatically positioned to the address	A13SW (SW)	205	-	258776 203965
	Contemporary Trad	e Directory Entries				
328	Name: Location: Classification: Status: Positional Accuracy:	Mrs Bucket 1, St. Teilo Street, Pontarddulais, Swansea, SA4 8TH Commercial Cleaning Services Inactive Automatically positioned to the address	A8NW (SW)	227	-	258835 203906
	Contemporary Trad	e Directory Entries				
329	Name: Location:	Pontardulais Sheet Metal Unit 21,Tyn-Y-Bonau Ind Est, Pontarddulais, Swansea, West Glamorgan, SA4 8RS	A8NE (SE)	240	-	259188 203928
	Classification: Status: Positional Accuracy:	Metal Products - Fabricated Inactive Manually positioned within the geographical locality				
	Contemporary Trad					
329	Name: Location:	N J Restorations Unit 22,Tyn Y Bonau Ind Est, Pontarddulais, Swansea, West Glamorgan, SA4	A8NE (SE)	249	-	259193 203921
	Classification: Status: Positional Accuracy:	8RZ Classic Car Specialists Inactive Manually positioned within the geographical locality				
	Contemporary Trad	,				
330	Name: Location: Classification:	A I R Precision Engineering Ltd Unit 4, Tyn y Bonau Road, Pontarddulais, Swansea, West Glamorgan, SA4 8SG Precision Engineers	A18SE (NE)	241	-	259234 204694
	Status: Positional Accuracy:	Active Automatically positioned to the address				

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
331	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries Fforest M O T Centre Ltd Fforest Road, Pontarddulais, Swansea, SA4 0TN Car Body Repairs Inactive Automatically positioned to the address	A12SE (W)	255	-	258637 204182
331	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries Cars Direct Fforest Garage, Fforest Road, Pontarddulais, Swansea, SA4 0TN Car Dealers - Used Inactive Automatically positioned to the address	A12SE (W)	255	-	258637 204182
331	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries Fforest Garage Fforest Garage, Fforest Road, Pontarddulais, Swansea, SA4 0TN Mot Testing Centres Inactive Automatically positioned to the address	A12SE (W)	255	-	258637 204182
331	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries Forest Garage FFOREST ROAD, HENDY, SWANSEA, SA4 0TN Garage Services Active Automatically positioned to the address	A12SE (W)	256	-	258636 204181
332	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries Trostre Tyres Ltd 12, St. Teilo Street, Pontarddulais, Swansea, SA4 8TH Tyre Dealers Active Automatically positioned to the address	A8NW (S)	258	-	258865 203867
332	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	Tyre Shop 12 St Teilo Street, Pontarddulais, Swansea, West Glamorgan, SA4 8TH Tyre Dealers Inactive Manually positioned within the geographical locality	A8NW (S)	260	-	258864 203865
332	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries Grand Prix Off Road Ltd 14, ST. TEILO STREET, PONTARDDULAIS, SWANSEA, SA4 8TH Garage Services Active Automatically positioned to the address	A8NW (S)	260	-	258870 203864
332	Contemporary Trad Name: Location: Classification: Status:		A8NW (S)	260	-	258864 203865
332	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	Tyre Shop 12 St Teilo Street, Pontarddulais, Swansea, West Glamorgan, SA4 8TH Tyre Dealers Inactive Manually positioned to the address or location	A8NW (SW)	263	-	258840 203867
333	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	M D Bevan Water St, Pontarddulais, Swansea, West Glamorgan, SA4 8RL Garage Services Inactive Manually positioned to the road within the address or location	A8NE (S)	262	-	259042 203868
334	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries 247 Commercials 2, St. Teilo Street, Pontarddulais, Swansea, SA4 8TH Garage Services Inactive Automatically positioned to the address	A8NW (SW)	287	-	258788 203861
335	Contemporary Trad Name: Location: Classification: Status:	• • • • • • • • • • • • • • • • • • • •	A8NW (S)	291	-	258982 203834

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
336	Contemporary Trad Name: Location: Classification:	Ross Car Sales Dulais House, Water Street, Pontarddulais, Swansea, SA4 8RL Car Dealers - Used	A8NE (S)	314	-	259047 203817
	Status: Positional Accuracy: Contemporary Trad	Active Automatically positioned to the address				
337	Name: Location: Classification: Status:	J & L Mini Model Centre 39, St. Teilo Street, Pontarddulais, Swansea, SA4 8SY Classic Car Specialists Inactive Automatically positioned to the address	A8NW (S)	322	-	258983 203803
337	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries Hard Pressed 44, St. Teilo Street, Pontarddulais, Swansea, SA4 8SZ Dry Cleaners Active Automatically positioned to the address	A8NW (S)	354	-	258961 203769
338	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries My-Motor.Net Dulais Garage, Water Street, Pontarddulais, Swansea, SA4 8RL Car Dealers - Used Inactive Automatically positioned to the address	A8NE (S)	325	-	259191 203835
339	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries Jennifer Thomas 3, Ger yr Eglwys, Pontarddulais, Swansea, SA4 0UL Carpet, Curtain & Upholstery Cleaners Inactive Automatically positioned to the address	A7NE (SW)	363	-	258604 203910
340	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries A M Auto Welding & General Fabrication 4 St Teilo Street, Pontarddulais, Swansea, West Glamorgan, SA4 8TH Metal Products - Fabricated Active Automatically positioned to the address	A8NW (S)	379	-	258819 203753
340	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries Am Auto Welding 4, St. Teilo Street, Pontarddulais, Swansea, SA4 8TH Car Body Repairs Inactive Automatically positioned to the address	A8NW (S)	384	-	258819 203748
341	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries Hendy Motor Sales Iscoed Road, Pontarddulais, Swansea, SA4 0UN Car Dealers - Used Inactive Automatically positioned to the address	A7NE (SW)	398	-	258623 203840
341	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries O'Neill'S Iscoed Rd,Hendy, Pontarddulais, Swansea, West Glamorgan, SA4 0UN Garage Services Inactive Manually positioned to the road within the address or location	A7NE (SW)	420	-	258581 203850
342	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries Dulais Spares 73, St. Teilo Street, Pontarddulais, Swansea, SA4 8SS Domestic Appliances - Servicing, Repairs & Parts Inactive Automatically positioned to the address	A8NE (S)	419	-	259102 203717
343	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries D D Evans & Co Ltd New Road, Pontarddulais, Swansea, SA4 8TB Car Body Repairs Inactive Automatically positioned to the address	A8NW (S)	443	-	259003 203684
344	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries S & G Soils 105, St. Teilo Street, Pontarddulais, Swansea, SA4 8RE Road Haulage Services Inactive Automatically positioned to the address	A8NE (S)	464	-	259179 203684

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Contemporary Trad	e Directory Entries				
344	Name: Location: Classification: Status: Positional Accuracy:	S & G Soils 105, St. Teilo Street, Pontarddulais, Swansea, SA4 8RE Road Haulage Services Active Automatically positioned to the address	A8NE (S)	470	-	259180 203679
	Contemporary Trad	e Directory Entries				
345	Name: Location: Classification: Status: Positional Accuracy:	Roberts Tal y Fan Fach Farm, Pontarddulais, Swansea, SA4 8SQ Dairies Inactive Automatically positioned to the address	A18SE (N)	468	-	259142 204946
	Contemporary Trade Directory Entries					
346	Name: Location: Classification: Status:	P Brock Gwalia Workshops,Dulais Rd, Pontarddulais, Swansea, West Glamorgan, SA4 8RH Garage Services Inactive	A8NE (S)	477	-	259258 203698
		Manually positioned to the road within the address or location				
347	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Sweet Sensation 120a, St. Teilo Street, Pontarddulais, Swansea, SA4 8RE Confectionery Manufacturers Inactive Automatically positioned to the address	A8NE (S)	488	-	259170 203658
	Contemporary Trad	•				
347	Name: Location: Classification: Status:	Seven Hundred Auto Spares Unit 2,Cambrian PI, Pontarddulais, Swansea, West Glamorgan, SA4 8RG Garage Services Inactive Manually positioned to the road within the address or location	A8SE (S)	525	-	259146 203616
	Contemporary Trad	e Directory Entries				
348	Name: Location: Classification: Status: Positional Accuracy:	Ace Skip Hire 78, Squirrel Walk, Pontarddulais, Swansea, SA4 0UJ Car Breakers & Dismantlers Inactive Automatically positioned to the address	A12SE (W)	513	-	258388 204251
	Contemporary Trad					
349	Name: Location: Classification: Status: Positional Accuracy:	Tesco Petrol Station Tesco Filling Station, Tidal Reach, Swansea, SA4 8TA Petrol Filling Stations Active Automatically positioned to the address	A8SW (S)	592	-	258929 203529
	Contemporary Trad	e Directory Entries				
350	Name: Location: Classification: Status: Positional Accuracy:	M X 4 U 15, Glanffrwd Road, Pontarddulais, Swansea, SA4 8QE Garage Services Inactive Automatically positioned to the address	A19SE (NE)	696	-	259771 204789
	Contemporary Trad	e Directory Entries				
351	Name: Location: Classification: Status: Positional Accuracy:	Oakfield Garage Oakfield Street, Pontarddulais, Swansea, SA4 8LW Garage Services Inactive Automatically positioned to the address	A9SW (SE)	721	-	259496 203556
	Contemporary Trad	, ,				
351	Name: Location: Classification: Status:	D W Bowen & Son Oakfield Street, Pontarddulais, Swansea, SA4 8LW Garage Services Inactive Automatically positioned to the address	A9SW (SE)	721	-	259496 203556
	Contemporary Trad					
352	Name: Location: Classification: Status:	Compressor Solutions Ltd 18, Harleyford Road, Pontarddulais, Swansea, SA4 0UT Air Compressors Active Automatically positioned to the address	A7SE (SW)	748	-	258356 203611

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
353	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries Kolor Coating Ltd Unit 9, Hendy Industrial Estate, Pontarddulais, Swansea, SA4 0XP Spraying - Paint & Coatings Inactive Automatically positioned to the address	A7SW (SW)	824	-	258314 203545
353	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries Ben Hughes Engineering Unit 8-9, Hendy Industrial Estate, Pontarddulais, Swansea, SA4 0XP Engineers - General Inactive Automatically positioned to the address	A7SW (SW)	845	-	258294 203535
353	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries Weartech (International) Ltd Unit 8, Hendy Industrial Estate, Pontarddulais, Swansea, West Glamorgan, SA4 0XP Manufacturers Inactive Automatically positioned to the address	A7SW (SW)	845	-	258294 203535
354	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries Fairway Fleet Sales 195, St. Teilo Street, Pontarddulais, Swansea, SA4 8LQ Car Dealers - Used Inactive Automatically positioned to the address	A9SW (SE)	828	-	259503 203432
354	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries Pontardulais Motor Co 195, St. Teilo Street, Pontarddulais, SWANSEA, SA4 8LQ Car Dealers - Used Active Automatically positioned to the address	A9SW (SE)	828	-	259503 203432
355	Contemporary Trad Name: Location: Classification: Status:	le Directory Entries Carmarthen & Pumpsaint Farmers Ltd Tynywaun Trades, Hendy, Pontarddulais, Swansea, West Glamorgan, SA4 1YL Agricultural Merchants Inactive Manually positioned within the geographical locality	A7SW (SW)	832	-	258267 203582
356	Contemporary Trad Name: Location: Classification: Status:	71 0 0 1	A7SW (SW)	920	-	258155 203579
356	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	Massilly Uk Ltd Unit 2, Hendy Industrial Estate, Pontarddulais, SWANSEA, SA4 0XP Packaging Materials Manufacturers & Suppliers Active Automatically positioned to the address	A7SW (SW)	920	-	258155 203579
356	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	J & S Transport Ltd Unit 2, Hendy Industrial Estate, Hendy, Pontarddulais, Swansea, West Glamorgan, SA4 0XP Road Haulage Services Inactive Manually positioned to the address or location	A7SW (SW)	920	-	258155 203579
357	Contemporary Trad Name: Location: Classification: Status:	, ,	A7SW (SW)	921	-	258223 203499
357	Contemporary Trad Name: Location: Classification: Status:	71 0 0 1	A7SW (SW)	922	-	258222 203499

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Contemporary Trad	le Directory Entries				
358	Name: Location: Classification:	B B Price Ltd Hendy Industrial Estate, Hendy Pontarddulais, Swansea, West Glamorgan, SA4 0XP Engineers - General	A7SW (SW)	923	-	258263 203456
	Status: Positional Accuracy:	Inactive Automatically positioned to the address				
	Contemporary Trad					
358	Name: Location: Classification: Status: Positional Accuracy:	Travis Perkins Plc Unit 10, Hendy Industrial Estate, Pontarddulais, Swansea, SA4 0XP Builders' Merchants Inactive Automatically positioned to the address	A7SW (SW)	924	-	258263 203456
	Contemporary Trad					
359	Name: Location: Classification: Status:	L & D Dustbusters Y Graig, Twyniago, Pontarddulais, Swansea, SA4 8HX Cleaning Services - Domestic Active Automatically positioned to the address	A9SE (SE)	940	-	259777 203521
	Fuel Station Entries	•				
360	Name: Location: Brand: Premises Type: Status: Positional Accuracy:	L H Car Sales Fforest Road , Pontarddulais , Swansea, Carmarthenshire, SA4 1TN Obsolete Not Applicable Obsolete Automatically positioned to the address	A12SE (W)	255	-	258637 204182
	Fuel Station Entries	5				
361	Name: Location: Brand: Premises Type: Status: Positional Accuracy:	Pontardulais Service Station 12, St Teilo Street , Pontarddulais , Swansea, Swansea, SA4 8TH SHELL Petrol Station Open Manually positioned to the address or location	A8NW (SW)	273	-	258840 203857
	Fuel Station Entries	5				
362	Name: Location: Brand: Premises Type: Status: Positional Accuracy:	Tesco Pontarddulais New Road New Bypass, , Pontarddulais, Swansea, SA4 8TB Tesco Hypermarket Open Manually positioned to the address or location	A8SW (S)	591	-	258929 203530
	Points of Interest -	Commercial Services				
363	Name: Location: Category: Class Code: Positional Accuracy:	C F L Commercials Unit 3 Glan Llwyd, Tyn y Bonau Road, Pontarddulais, Swansea, SA4 8SF Repair and Servicing Vehicle Repair, Testing and Servicing Positioned to address or location	A13NE (N)	11	8	259100 204490
363	Name: Location: Category: Class Code:	Commercial Services Motor Xpress Unit 3 Glan Llwyd, Tyn Y Bonau Road, Pontarddulais, Swansea, SA4 8SF Repair and Servicing Vehicle Repair, Testing and Servicing Positioned to address or location	A13NE (N)	12	8	259095 204491
	Points of Interest -	Commercial Services				
364	Name: Location: Category: Class Code: Positional Accuracy:	Dynamite Deals Unit 9 Glan Llwyd, Tyn y Bonau Road, Pontarddulais, Swansea, SA4 8SF Personal, Consumer and other Services Vehicle Cleaning Services Positioned to address or location	A13NE (NE)	44	8	259154 204512
	Points of Interest -	Commercial Services				
364	Name: Location: Category: Class Code: Positional Accuracy:	Motor Xpress Unit 4, Glan Llwyd, Tyn Y Bonau Rd, Pontarddulais, Swansea, West Glamorgan, SA4 8SF Repair and Servicing Vehicle Repair, Testing and Servicing Positioned to address or location	A13NE (NE)	105	8	259203 204560
	,	Commercial Services				
365	Name: Location: Category: Class Code:	David Matthews Ltd Clayton Works, Pontarddulais, Swansea, SA4 8SN Construction Services Metalworkers Including Blacksmiths Positioned to address or location	A13SW (SW)	91	8	258889 204032

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
366	Name: Location: Category: Class Code:	Commercial Services Station Garage St Teilo Street, Pontarddulais, Swansea, SA4 8TH Repair and Servicing Vehicle Repair, Testing and Servicing Positioned to address or location	A8NW (SW)	206	8	258775 203964
367	Name: Location: Category: Class Code:	Commercial Services A M Auto Welding 36 Fforest Road, Pontarddulais, Swansea, SA4 0TN Repair and Servicing Vehicle Repair, Testing and Servicing Positioned to address or location	A12SE (W)	236	8	258651 204135
367	Name: Location: Category: Class Code:	Commercial Services Fforest Garage Fforest Garage, Fforest Road, Pontarddulais, Swansea, SA4 0TN Repair and Servicing Vehicle Repair, Testing and Servicing Positioned to address or location	A12SE (W)	255	8	258637 204182
367	Name: Location: Category: Class Code:	Commercial Services Forest Garage Fforest Road, Hendy, Swansea, SA4 0TN Repair and Servicing Vehicle Repair, Testing and Servicing Positioned to address or location	A12SE (W)	256	8	258636 204181
367	Name: Location: Category: Class Code:	Commercial Services Fforest M O T Centre Ltd Fforest Road, Pontarddulais, Swansea, SA4 0TN Repair and Servicing Vehicle Repair, Testing and Servicing Positioned to address or location	A12SE (W)	256	8	258636 204181
368	Name: Location: Category: Class Code:	Commercial Services Station Garage St. Teilo Street, Pontarddulais, Swansea, SA4 8TH Repair and Servicing Vehicle Repair, Testing and Servicing Positioned to address or location	A8NW (SW)	259	8	258837 203872
368	Name: Location: Category: Class Code:	Commercial Services Grand Prix Off Road Ltd 14 St Teilo Street, Pontarddulais, Swansea, SA4 8TH Repair and Servicing Vehicle Repair, Testing and Servicing Positioned to address or location	A8NW (S)	260	8	258870 203864
368	Name: Location: Category: Class Code:	Commercial Services Pontardulais Service Station 12 St. Teilo Street, Pontarddulais, Swansea, SA4 8TH Repair and Servicing Vehicle Repair, Testing and Servicing Positioned to address or location	A8NW (S)	260	8	258864 203865
368	Name: Location: Category: Class Code:	Commercial Services Pontarddulais Service Station Central Garage 12, St. Teilo Street, Pontarddulais, Swansea, SA4 8TH Repair and Servicing Vehicle Repair, Testing and Servicing Positioned to address or location	A8NW (S)	260	8	258864 203865
368	Name: Location: Category: Class Code:	Commercial Services 247 Commercials 2 St. Teilo Street, Pontarddulais, Swansea, SA4 8TH Repair and Servicing Vehicle Repair, Testing and Servicing Positioned to address or location	A8NW (SW)	287	8	258788 203861
369	Name: Location: Category: Class Code:	Commercial Services Dynamite Deals Fire Station 5, Tyn y Bonau Road, Pontarddulais, Swansea, SA4 8RS Personal, Consumer and other Services Vehicle Cleaning Services Positioned to address or location	A8NE (S)	313	8	259212 203857
369	Name: Location: Category: Class Code:	Commercial Services M D Bevan Water Street, Pontarddulais, Swansea, SA4 8RL Repair and Servicing Vehicle Repair, Testing and Servicing Positioned to address or location	A8NE (S)	325	8	259191 203835

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
370	Location: 39 Category: Re Class Code: Ve	mmercial Services & L Mini Model Centre 9 St. Teilo Street, Pontarddulais, Swansea, SA4 8SY epair and Servicing ehicle Repair, Testing and Servicing ositioned to address or location	A8NW (S)	322	8	258983 203803
371	Location: 1 Category: Re Class Code: Ve	mmercial Services D Evans & Co Ltd New Road, Pontarddulais, Swansea, SA4 8TB epair and Servicing ehicle Repair, Testing and Servicing ositioned to address or location	A8NW (S)	440	8	259012 203688
372	Location: 10 Category: Tr Class Code: Di	mmercial Services & G Soils 35 St Teilo Street, Pontarddulais, Swansea, SA4 8RE ransport, Storage and Delivery istribution and Haulage ositioned to address or location	A8NE (S)	470	8	259179 203678
373	Location: Ne Category: Pe Class Code: Ve	mmercial Services esco Pontarddulais ew Road, New Bypass, Pontarddulais, Dyfed, SA4 ersonal, Consumer and other Services ehicle Cleaning Services ositioned to address or location	A8SW (S)	591	8	258929 203530
374	Location: 15 Category: Re Class Code: Ve	mmercial Services X 4 U 5 Glanffrwd Road, Pontarddulais, Swansea, SA4 8QE epair and Servicing ehicle Repair, Testing and Servicing ositioned to address or location	A19SE (NE)	696	8	259771 204788
375	Location: Oa Category: Re Class Code: Ve	mmercial Services W Bowen & Son akfield Street, Pontarddulais, Swansea, SA4 8LW epair and Servicing ehicle Repair, Testing and Servicing ositioned to address or location	A9SW (SE)	721	8	259495 203555
376	Location: Ur Category: Tr Class Code: Di	mmercial Services /alkers Snack Services Ltd nit 6, Hendy Industrial Estate, Pontarddulais, Swansea, SA4 0XP ransport, Storage and Delivery istribution and Haulage ositioned to address or location	A7SW (SW)	899	8	258245 203508
376	Location: W Category: Re Class Code: Ve	mmercial Services o Explore Vans & Campers /alker Snack Services 6, Hendy Industrial Estate, Hendy, Swansea, SA4 0XP epair and Servicing ehicle Repair, Testing and Servicing ositioned to address or location	A7SW (SW)	900	8	258245 203507
376	Location: 3 Category: Re Class Code: Ve	mmercial Services Hocking & Slade Paint & Bodywork Ltd Hendy Industrial Estate, Hendy, Swansea, SA4 0XP epair and Servicing ehicle Repair, Testing and Servicing ositioned to address or location	A7SW (SW)	922	8	258222 203499
377	Location: Ur Category: Tr Class Code: Di	mmercial Services & S Transport Ltd nit 2, Hendy Industrial Estate, Hendy, Pontarddulais, Swansea, SA4 0XP ransport, Storage and Delivery istribution and Haulage ositioned to address or location	A7SW (SW)	920	8	258155 203579
377	Location: Ur Category: Tr Class Code: Di	mmercial Services andrair International nit 2, Hendy Industrial Estate, Hendy, Pontarddulais, Swansea, SA4 0XP ransport, Storage and Delivery istribution and Haulage ositioned to address or location	A7SW (SW)	920	8	258155 203579
377	Location: Ur Category: Tr Class Code: Di	mmercial Services & W Distribution nit 2, Hendy Industrial Estate, Pontarddulais, Swansea, SA4 0XP ransport, Storage and Delivery istribution and Haulage ositioned to address or location	A7SW (SW)	920	8	258155 203579

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
378	Points of Interest - Manufacturing and Production Name: Tank Location: SA4 Category: Industrial Features Class Code: Tanks (Generic) Positional Accuracy: Positioned to address or location	A13NE (NE)	0	8	259049 204308
378	Points of Interest - Manufacturing and Production Name: Tank Location: SA4 Category: Industrial Features Class Code: Tanks (Generic) Positional Accuracy: Positioned to address or location	A13NE (NE)	0	8	259049 204315
378	Points of Interest - Manufacturing and Production Name: Tank Location: SA4 Category: Industrial Features Class Code: Tanks (Generic) Positional Accuracy: Positioned to address or location	A13SE (NE)	0	8	259057 204299
378	Points of Interest - Manufacturing and Production Name: Tank Location: SA4 Category: Industrial Features Class Code: Tanks (Generic) Positional Accuracy: Positioned to address or location	A13NE (N)	0	8	259045 204315
378	Points of Interest - Manufacturing and Production Name: Tank Location: SA4 Category: Industrial Features Class Code: Tanks (Generic) Positional Accuracy: Positioned to address or location	A13NE (N)	0	8	259038 204312
378	Points of Interest - Manufacturing and Production Name: Tank Location: SA4 Category: Industrial Features Class Code: Tanks (Generic) Positional Accuracy: Positioned to address or location	A13NE (NE)	0	8	259048 204303
378	Points of Interest - Manufacturing and Production Name: Works Location: SA4 Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	A13SW (SW)	0	8	258982 204261
378	Points of Interest - Manufacturing and Production Name: Works Location: Not Supplied Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	A13SW (SW)	0	8	258982 204261
378	Points of Interest - Manufacturing and Production Name: Tanks Location: SA4 Category: Industrial Features Class Code: Tanks (Generic) Positional Accuracy: Positioned to an adjacent address or location	A13SE (N)	0	8	259036 204299
378	Points of Interest - Manufacturing and Production Name: Works Location: SA4 Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	A13SW (SW)	0	8	259016 204273
379	Points of Interest - Manufacturing and Production Name: Works Location: Not Supplied Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	A13SW (SW)	0	8	258972 204133
379	Points of Interest - Manufacturing and Production Name: Works Location: SA4 Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	A13SW (S)	0	8	258974 204133

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
380	Points of Interest - Manufacturing and Production Name: Pontardulais Workshops Location: Not Supplied Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	A13NE (NE)	92	8	259167 204558
380	Points of Interest - Manufacturing and Production Name: Workshops Location: SA4 Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	A13NE (N)	107	8	259156 204576
380	Points of Interest - Manufacturing and Production Name: Pontardulais Industrial Estate Location: SA4 Category: Industrial Features Class Code: Business Parks and Industrial Estates Positional Accuracy: Positioned to an adjacent address or location	A13NE (NE)	173	8	259201 204633
381	Points of Interest - Manufacturing and Production Name: Works Location: Not Supplied Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	A13SW (SW)	94	8	258905 204027
381	Points of Interest - Manufacturing and Production Name: Works Location: SA4 Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	A13SW (SW)	94	8	258902 204027
381	Points of Interest - Manufacturing and Production Name: Works Location: SA4 Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	A13SW (SW)	155	8	258879 203969
381	Points of Interest - Manufacturing and Production Name: Works Location: Not Supplied Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	A13SW (SW)	156	8	258879 203968
382	Points of Interest - Manufacturing and Production Name: Works Location: Not Supplied Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	A13SW (S)	116	8	258965 204008
382	Points of Interest - Manufacturing and Production Name: Works Location: Not Supplied Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	A13SE (S)	118	8	259052 204013
382	Points of Interest - Manufacturing and Production Name: Tank Location: SA4 Category: Industrial Features Class Code: Tanks (Generic) Positional Accuracy: Positioned to an adjacent address or location	A8NW (S)	178	8	259010 203950
383	Points of Interest - Manufacturing and Production Name: Works Location: Not Supplied Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	A13SE (SE)	135	8	259157 204035
384	Points of Interest - Manufacturing and Production Name: Pontardulais Industrial Estate Location: SA4 Category: Industrial Features Class Code: Business Parks and Industrial Estates Positional Accuracy: Positioned to an adjacent address or location	A13NE (NE)	179	8	259202 204639

Map ID	D	etails	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
385	Points of Interest - Manufacturing and Production: Name: Location: Not Supplied Category: Industrial Features Class Code: Unspecified Works Or Fatoritional Accuracy: Positioned to an adjacentic	ctories	A8NE (S)	227	8	259030 203903
386	Points of Interest - Manufacturing and Production: Name: Location: Not Supplied Category: Industrial Features Class Code: Unspecified Works Or Fators it in the production of the product	ctories	A8NE (S)	253	8	259187 203913
387	Points of Interest - Manufacturing and Production: Name: Location: Category: Class Code: Positional Accuracy: Reference of Manufacturing and Production of Control	ddulais, Swansea, SA4 8SE	A19SW (NE)	338	8	259412 204685
388	Points of Interest - Manufacturing and Production: Name: Quarry Location: SA4 Category: Class Code: Unspecified Quarries Or Positional Accuracy: Positioned to an adjacent	Mines	A7NW (SW)	611	8	258352 203842
388	Points of Interest - Manufacturing and Production: Name: Quarry Location: SA4 Category: Class Code: Unspecified Quarries Or Positional Accuracy: Positioned to address or	Mines	A7NW (SW)	631	8	258335 203833
389	Points of Interest - Manufacturing and Production: Name: Mine (Disused) Location: SA4 Category: Extractive Industries Class Code: Unspecified Quarries Or Positional Accuracy: Positioned to address or	Mines	A18NE (N)	726	8	259295 205179
390	Points of Interest - Manufacturing and Production: Name: Abx Slate & Stone Ltd Location: 71 Iscoed Road, Pontard Category: Extractive Industries Class Code: Stone Quarrying and Pre Positional Accuracy: Positioned to address or	dulais, Swansea, SA4 0UP	A7NW (SW)	729	8	258281 203733
391	Points of Interest - Manufacturing and Production: Name: G M & J L Clement Location: Pontarddulais, Swansea, Category: Farming Class Code: Positional Accuracy: Positioned to address or	SA4 8SQ	A18NW (N)	750	8	258791 205176
391	Points of Interest - Manufacturing and Production: Name: Coategory: Class Code: Positional Accuracy: Communication and Production and Pr	: ntarddulais, Swansea, SA4 8SQ	A18NW (N)	750	8	258791 205176
392	Points of Interest - Manufacturing and Production: Name: Tanks Location: SA4 Category: Industrial Features Class Code: Tanks (Generic) Positional Accuracy: Positioned to an adjacent		A7SW (SW)	852	8	258215 203613
393	Points of Interest - Manufacturing and Production: Name: Shaft Location: SA4 Category: Extractive Industries Class Code: Unspecified Quarries Or Positional Accuracy: Positioned to an adjacent	Mines	A9NE (SE)	871	8	259778 203633
393	Points of Interest - Manufacturing and Production: Name: Shaft Location: SA4 Category: Class Code: Positional Accuracy: Positioned to address or	Mines	A9NE (SE)	874	8	259780 203631

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
394	Points of Interest - Manufacturing and Production Name: Tanks Location: SA4 Category: Industrial Features Class Code: Tanks (Generic) Positional Accuracy: Positioned to an adjacent address or location	A7SW (SW)	949	8	258334 203365
394	Points of Interest - Manufacturing and Production Name: Works Location: Not Supplied Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	A7SW (SW)	972	8	258320 203347
394	Points of Interest - Manufacturing and Production Name: Works Location: SA4 Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	A7SW (SW)	972	8	258322 203345
394	Points of Interest - Manufacturing and Production Name: Tanks Location: SA4 Category: Industrial Features Class Code: Tanks (Generic) Positional Accuracy: Positioned to an adjacent address or location	A7SW (SW)	999	8	258297 203331
395	Points of Interest - Manufacturing and Production Name: S M A Duggins Location: Dantwyn Farm, Dantwyn Road, Pontarddulais, Swansea, SA4 8NB Category: Farming Class Code: Livestock Farming Positional Accuracy: Positioned to address or location	A9NE (E)	955	8	260036 203958
395	Points of Interest - Manufacturing and Production Name: Mrs S M A Duggins Location: Dantwyn Road, Pontarddulais, Swansea, SA4 8NB Category: Farming Class Code: Livestock Farming Positional Accuracy: Positioned to address or location	A10NW (E)	960	8	260044 203963
396	Points of Interest - Public Infrastructure Name: Pontarddulais Rail Station Location: SA4 Category: Public Transport, Stations and Infrastructure Class Code: Railway Stations, Junctions and Halts Positional Accuracy: Positioned to address or location	A13SW (SW)	150	8	258803 204013
396	Points of Interest - Public Infrastructure Name: Pontarddulais Junction Location: Station Road, SA4 Category: Public Transport, Stations and Infrastructure Class Code: Railway Stations, Junctions and Halts Positional Accuracy: Positioned to address or location	A13SW (SW)	150	8	258803 204013
397	Points of Interest - Public Infrastructure Name: Shell Service Station Location: 12 St Teilo Street, Pontarddulais, Swansea, SA4 8TH Category: Road And Rail Class Code: Petrol and Fuel Stations Positional Accuracy: Positioned to address or location	A8NW (S)	258	8	258865 203867
397	Points of Interest - Public Infrastructure Name: Pontardulais Service Station Location: Central Garage 12, St. Teilo Street, Pontarddulais, Swansea, SA4 8TH Category: Road And Rail Class Code: Petrol and Fuel Stations Positional Accuracy: Positioned to address or location	A8NW (S)	260	8	258864 203865
397	Points of Interest - Public Infrastructure Name: Shell UK Location: Central Garage 12, St. Teilo Street, Pontarddulais, Swansea, SA4 8TH Category: Road And Rail Class Code: Petrol and Fuel Stations Positional Accuracy: Positioned to address or location	A8NW (SW)	264	8	258839 203867
397	Points of Interest - Public Infrastructure Name: Pontardulais Service Station Location: 12 St Teilo Street, Pontarddulais, Swansea, SA4 8TH Category: Road And Rail Class Code: Petrol and Fuel Stations Positional Accuracy: Positioned to address or location	A8NW (SW)	273	8	258840 203857

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
398		nfrastructure Sluices and Dams ned to an adjacent address or location	A8NE (S)	310	8	259125 203830
399	Location: Pontare SA4 8F Category: Central	dulais Fire Station ddulais Fire Station 5, Tyn y Bonau Road, Pontarddulais, Swansea, RS I and Local Government igade Stations	A8NE (S)	314	8	259212 203857
399		nfrastructure Sluices and Dams ned to an adjacent address or location	A8NE (S)	366	8	259235 203810
399		nfrastructure Sluices and Dams ned to an adjacent address or location	A8NE (SE)	367	8	259238 203811
399	Points of Interest - Public It Name: Weir Location: SA4 Category: Water Class Code: Weirs, Positional Accuracy: Positio	nfrastructure Sluices and Dams ned to an adjacent address or location	A8NE (SE)	437	8	259319 203778
400	Class Code: Waste		A18SE (N)	427	8	259086 204910
401		nfrastructure Sluices and Dams and to an adjacent address or location	A9NW (SE)	472	8	259378 203781
402	Location: New Road A	Pontarddulais oad, New Bypass, Pontarddulais, Dyfed, SA4 8TB And Rail and Fuel Stations	A8SW (S)	591	8	258929 203530
402	Location: Tidal R Category: Road A	Petrol Station teach, Pontarddulais, Swansea, SA4 8TB And Rail and Fuel Stations	A8SW (S)	592	8	258929 203529
403	Class Code: Waste		A7SE (S)	872	8	258640 203292
404	Location: SA4 Category: Infrastr Class Code: Waste	nfrastructure le Pumping Station ructure and Facilities Storage, Processing and Disposal ned to an adjacent address or location	A7SW (SW)	974	8	258309 203353
405	Points of Interest - Recreat Name: Play Ai Location: Not Su Category: Recrea Class Code: Playgro Positional Accuracy: Positio	rea pplied ational	A12SE (W)	456	8	258432 204136

Industrial Land Use

Map ID	Details		Estimated Distance From Site	Contact	NGR
405	Points of Interest - Recreational and Environmental Name: Playground Location: Not Supplied Category: Recreational Class Code: Playgrounds Positional Accuracy: Positioned to an adjacent address or location	A12SE (W)	533	8	258355 204153
405	Points of Interest - Recreational and Environmental Name: Playground Location: Bronallt Road (Heol Bronallt), SA4 Category: Recreational Class Code: Playgrounds Positional Accuracy: Positioned to address or location	A12SW (W)	535	8	258354 204169
406	Points of Interest - Recreational and Environmental Name: Playground Location: Dantwyn Road, SA4 Category: Recreational Class Code: Playgrounds Positional Accuracy: Positioned to address or location	A14SE (E)	826	8	259908 203989
406	Points of Interest - Recreational and Environmental Name: Playground Location: Not Supplied Category: Recreational Class Code: Playgrounds Positional Accuracy: Positioned to an adjacent address or location	A14SE (E)	832	8	259915 203988
407	Points of Interest - Recreational and Environmental Name: Picnic Area Location: River Terrace, SA4 Category: Recreational Class Code: Picnic Areas Positional Accuracy: Positioned to an adjacent address or location	A6NE (SW)	985	8	257981 203751
408	Gas Pipelines Name: FELINDRE TO THREE COCKS Nat Grid: Owned By National Grid Diameter (mm): 1200 Building Proximity Distance (m): Status: Active Pipe Length (m): 107497.04 Pipe Number: Not Supplied	A19NW (NE)	854	9	259637 205171

Order Number: 308357480_1_1 Date: 09-Mar-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 76 of 85

Sensitive Land Use

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
409	Ancient Woodland Name: Reference: Area(m²): Type:	Not Supplied 3699 10838.85 Restored Ancient Woodland Site	A12SE (W)	282	2	258603 204138
410	Ancient Woodland Name: Reference: Area(m²): Type:	Not Supplied 3696 7178.6 Restored Ancient Woodland Site	A7NE (SW)	567	2	258358 203934
411	Ancient Woodland Name: Reference: Area(m²): Type:	Not Supplied 3681 4146.19 Ancient and Semi-Natural Woodland	A12SW (W)	760	2	258133 204046
412	Ancient Woodland Name: Reference: Area(m²): Type:	Not Supplied 3697 3985.59 Restored Ancient Woodland Site	A12SW (W)	773	2	258126 204000
413	Ancient Woodland Name: Reference: Area(m²): Type:	Not Supplied 3689 4339.86 Ancient and Semi-Natural Woodland	A17SW (NW)	832	2	258340 204876
414	Ancient Woodland Name: Reference: Area(m²): Type:	Not Supplied 3688 3331.33 Ancient and Semi-Natural Woodland	A12NW (W)	852	2	258076 204396
415	Ancient Woodland Name: Reference: Area(m²): Type:	Not Supplied 50380 3664.87 Ancient Woodland Site of Unknown Category	A19NW (NE)	853	2	259478 205256
416	Ancient Woodland Name: Reference: Area(m²): Type:	Not Supplied 3685 13230.32 Ancient and Semi-Natural Woodland	A3NE (S)	916	2	259349 203263
417	Ancient Woodland Name: Reference: Area(m²): Type:	Not Supplied 5911 2510.01 Ancient and Semi-Natural Woodland	A24SW (NE)	960	2	259524 205353

Order Number: 308357480_1_1 Date: 09-Mar-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 77 of 85

Agency & Hydrological	Version	Update Cycle
Contaminated Land Register Entries and Notices		
Natural Resources Wales	June 2020	Annually
Carmarthenshire County Council - Environmental Health Department	September 2017	Annual Rolling Update
City and County of Swansea - Environmental Health Department	September 2017	Annual Rolling Update
Discharge Consents		
Environment Agency - Welsh Region	August 2014	Quarterly
Natural Resources Wales	October 2022	Quarterly
Enforcement and Prohibition Notices		
Environment Agency - Welsh Region	March 2013	
Integrated Pollution Controls		
Environment Agency - Welsh Region	January 2009	
Integrated Pollution Prevention And Control		
Environment Agency - Welsh Region	January 2021	Quarterly
Natural Resources Wales	January 2023	Quarterly
Local Authority Integrated Pollution Prevention And Control		
Swansea Bay Port Health Authority	April 2014	Variable
City and County of Swansea - Environmental Health Department	June 2014	Variable
Carmarthenshire County Council - Environmental Health Department	March 2015	Variable
Local Authority Pollution Prevention and Controls		
Swansea Bay Port Health Authority	April 2014	Annually
City and County of Swansea - Environmental Health Department	June 2014	Annual Rolling Update
Carmarthenshire County Council - Environmental Health Department	March 2015	Annual Rolling Update
Local Authority Pollution Prevention and Control Enforcements		
Swansea Bay Port Health Authority	April 2014	Variable
City and County of Swansea - Environmental Health Department	June 2014	Variable
Carmarthenshire County Council - Environmental Health Department	March 2015	Variable
Nearest Surface Water Feature		
Ordnance Survey	December 2022	
Pollution Incidents to Controlled Waters		
Environment Agency - Welsh Region	December 1998	
Prosecutions Relating to Authorised Processes		
Environment Agency - Welsh Region	July 2015	
Natural Resources Wales	July 2015	
Prosecutions Relating to Controlled Waters		
Environment Agency - Welsh Region	March 2013	
Natural Resources Wales	March 2013	
Registered Radioactive Substances		
Natural Resources Wales	January 2015	
Environment Agency - Welsh Region	June 2016	As notified
River Quality		
Environment Agency - Head Office	November 2001	Not Applicable
River Quality Chemistry Sampling Points		
Environment Agency - Head Office	April 2012	
Substantiated Pollution Incident Register		
Environment Agency Wales - South West Area	January 2021	Quarterly
Natural Resources Wales	January 2023	Quarterly
Water Abstractions		
Environment Agency - Welsh Region	January 2023	Quarterly
Natural Resources Wales	January 2023	Quarterly
Water Industry Act Referrals		
Environment Agency - Welsh Region	October 2017	
Natural Resources Wales	October 2022	Quarterly

Order Number: 308357480_1_1 Date: 09-Mar-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 78 of 85

Agency & Hydrological	Version	Update Cycle
Groundwater Vulnerability Map		
Natural Resources Wales	June 2018	As notified
Bedrock Aquifer Designations		
Natural Resources Wales	January 2018	Annually
Superficial Aquifer Designations		
Natural Resources Wales	January 2018	Annually
Source Protection Zones		
Natural Resources Wales	July 2022	Annual Rolling Update
Extreme Flooding from Rivers or Sea without Defences		
Natural Resources Wales	September 2020	
Flooding from Rivers or Sea without Defences		
Natural Resources Wales	September 2020	
Areas Benefiting from Flood Defences		
Natural Resources Wales	November 2019	Quarterly
Flood Water Storage Areas		
Natural Resources Wales	August 2019	Quarterly
Flood Defences		
Natural Resources Wales	November 2019	Quarterly
OS Water Network Lines		
Ordnance Survey	January 2023	Quarterly
Surface Water 1 in 30 year Flood Extent		
Natural Resources Wales	May 2018	Annually
Surface Water 1 in 100 year Flood Extent		
Natural Resources Wales	May 2018	Annually
Surface Water 1 in 1000 year Flood Extent		
Natural Resources Wales	May 2018	Annually
Surface Water Suitability		
Natural Resources Wales	February 2016	Annually
BGS Groundwater Flooding Susceptibility		
British Geological Survey - National Geoscience Information Service	May 2013	As notified

Order Number: 308357480_1_1 Date: 09-Mar-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 79 of 85

Waste	Version	Update Cycle
BGS Recorded Landfill Sites		
British Geological Survey - National Geoscience Information Service	November 2002	As notified
Historical Landfill Sites		
Natural Resources Wales	March 2023	Quarterly
Integrated Pollution Control Registered Waste Sites		
Environment Agency - Welsh Region	January 2009	Not Applicable
Licensed Waste Management Facilities (Landfill Boundaries)		
Environment Agency Wales - South West Area	January 2023	Quarterly
Natural Resources Wales	October 2021	Quarterly
Licensed Waste Management Facilities (Locations)		
Natural Resources Wales	January 2023	Quarterly
Environment Agency Wales - South West Area	July 2021	Quarterly
Local Authority Landfill Coverage		
Carmarthenshire County Council	February 2003	Not Applicable
City and County of Swansea - Environmental Health Department	February 2003	Not Applicable
Local Authority Recorded Landfill Sites	,	
Carmarthenshire County Council	October 2018	
City and County of Swansea - Environmental Health Department	October 2018	
Potentially Infilled Land (Non-Water)		
Landmark Information Group Limited	December 1999	
Potentially Infilled Land (Water)	December rece	
Landmark Information Group Limited	December 1999	
	December 1999	
Registered Landfill Sites	March 2006	Not Applicable
Environment Agency Wales - South West Area	IVIAICII 2006	Not Applicable
Registered Waste Transfer Sites	A = = 1 0040	
Environment Agency Wales - South West Area	April 2018	
Registered Waste Treatment or Disposal Sites		
Environment Agency Wales - South West Area	June 2015	
Hazardous Substances	Version	Update Cycle
Control of Major Accident Hazards Sites (COMAH)		
Health and Safety Executive	January 2022	Bi-Annually
Explosive Sites		•
Health and Safety Executive	March 2017	Annually
Notification of Installations Handling Hazardous Substances (NIHHS)		
Health and Safety Executive	August 2001	
,	7.tagust 2001	
Planning Hazardous Substance Enforcements	Fobruary 2016	Variable
Carmarthenshire County Council - Area Planning Office (East Area) Carmarthenshire County Council - Area Planning Office (South Area)	February 2016 February 2016	Variable
Carmarthenshire County Council - Area Flaming Office (South Area) Carmarthenshire County Council - Environment Department (West Area)	February 2016	Variable
City and County of Swansea - Planning Department	January 2016	Variable
- ,	January 2010	
Planning Hazardous Substance Consents		
•	February 2016	Variable
Planning Hazardous Substance Consents Carmarthenshire County Council - Area Planning Office (East Area) Carmarthenshire County Council - Area Planning Office (South Area)	February 2016	Variable Variable
•	February 2016 February 2016 February 2016	Variable Variable Variable

Order Number: 308357480_1_1 Date: 09-Mar-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 80 of 85

Geological	Version	Update Cycle
BGS 1:625,000 Solid Geology		
British Geological Survey - National Geoscience Information Service	January 2009	As notified
BGS Estimated Soil Chemistry		
British Geological Survey - National Geoscience Information Service	December 2015	As notified
BGS Recorded Mineral Sites		
British Geological Survey - National Geoscience Information Service	November 2022	Bi-Annually
CBSCB Compensation District		
Cheshire Brine Subsidence Compensation Board (CBSCB)	August 2011	
Cheshire Brine Subsidence Compensation Board (CBSCB)	November 2020	As notified
Coal Mining Affected Areas		
The Coal Authority - Property Searches	February 2023	Annual Rolling Update
Mining Instability		
Ove Arup & Partners	June 1998	Not Applicable
Non Coal Mining Areas of Great Britain		
British Geological Survey - National Geoscience Information Service	May 2015	Not Applicable
Potential for Collapsible Ground Stability Hazards		
British Geological Survey - National Geoscience Information Service	April 2020	As notified
Potential for Compressible Ground Stability Hazards		
British Geological Survey - National Geoscience Information Service	January 2019	As notified
Potential for Ground Dissolution Stability Hazards		
British Geological Survey - National Geoscience Information Service	January 2019	As notified
Potential for Landslide Ground Stability Hazards		
British Geological Survey - National Geoscience Information Service	January 2019	As notified
Potential for Running Sand Ground Stability Hazards		
British Geological Survey - National Geoscience Information Service	January 2019	As notified
Potential for Shrinking or Swelling Clay Ground Stability Hazards		
British Geological Survey - National Geoscience Information Service	January 2019	As notified
Radon Potential - Radon Affected Areas		
British Geological Survey - National Geoscience Information Service	September 2022	Annually
Radon Potential - Radon Protection Measures		
British Geological Survey - National Geoscience Information Service	September 2022	Annually

Order Number: 308357480_1_1 Date: 09-Mar-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 81 of 85

Industrial Land Use	Version	Update Cycle
Contemporary Trade Directory Entries		
Thomson Directories	January 2023	Quarterly
Fuel Station Entries		
Catalist Ltd - Experian	February 2023	Quarterly
Gas Pipelines		
National Grid	October 2021	Bi-Annually
Points of Interest - Commercial Services		
PointX	March 2023	Quarterly
Points of Interest - Education and Health		
PointX	March 2023	Quarterly
Points of Interest - Manufacturing and Production		
PointX	March 2023	Quarterly
Points of Interest - Public Infrastructure		
PointX	March 2023	Quarterly
Points of Interest - Recreational and Environmental		
PointX	March 2023	Quarterly
Underground Electrical Cables		
National Grid	February 2023	Bi-Annually

Order Number: 308357480_1_1 Date: 09-Mar-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 82 of 85

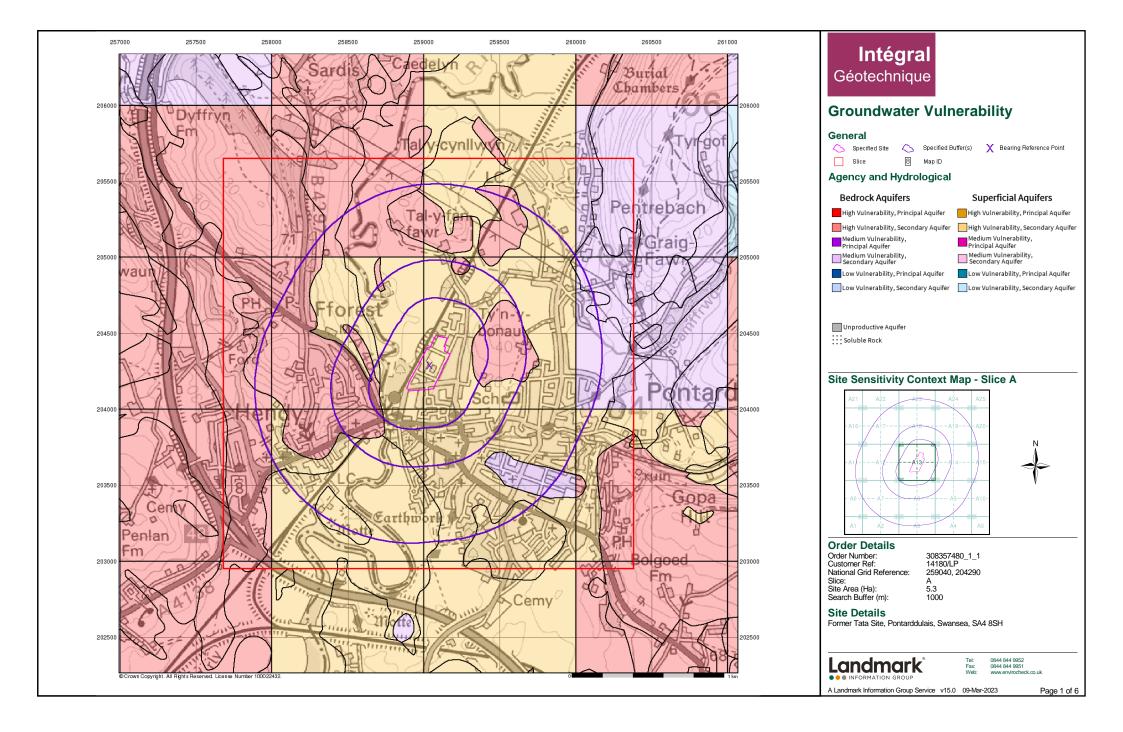
Sensitive Land Use	Version	Update Cycle
Ancient Woodland		
Natural Resources Wales	September 2018	Bi-Annually
Areas of Adopted Green Belt		
Carmarthenshire County Council	July 2022	Quarterly
City and County of Swansea	July 2022	Quarterly
Areas of Unadopted Green Belt		
Carmarthenshire County Council	July 2022	Quarterly
City and County of Swansea	July 2022	Quarterly
Areas of Outstanding Natural Beauty		
Natural Resources Wales	August 2022	Bi-Annually
Environmentally Sensitive Areas		
The National Assembly for Wales - GI Services (Department of Planning & Countryside)	January 2017	
Forest Parks		
Forestry Commission	April 1997	Not Applicable
Local Nature Reserves		
Carmarthenshire County Council	August 2018	Bi-Annually
City and County of Swansea	August 2018	Bi-Annually
Marine Nature Reserves		
Natural Resources Wales	August 2018	Bi-Annually
National Nature Reserves		
Natural Resources Wales	February 2023	Bi-Annually
National Parks		
Natural Resources Wales	February 2018	Annually
Nitrate Vulnerable Zones		
The National Assembly for Wales - GI Services (Department of Planning & Countryside)	April 2016	
Natural Resources Wales	July 2019	Bi-Annually
Ramsar Sites		
Natural Resources Wales	July 2019	Bi-Annually
Sites of Special Scientific Interest		
Natural Resources Wales	March 2020	Bi-Annually
Special Areas of Conservation		
Natural Resources Wales	August 2020	Bi-Annually
Special Protection Areas		
Natural Resources Wales	August 2018	Bi-Annually

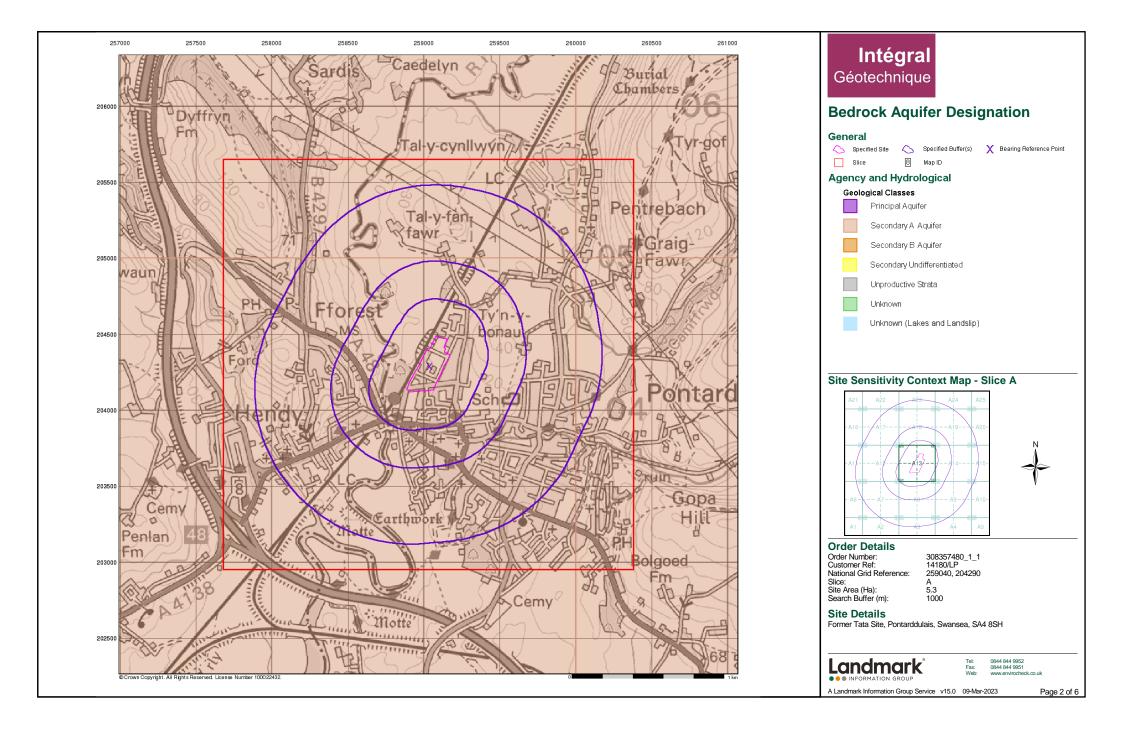
Order Number: 308357480_1_1 Date: 09-Mar-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 83 of 85

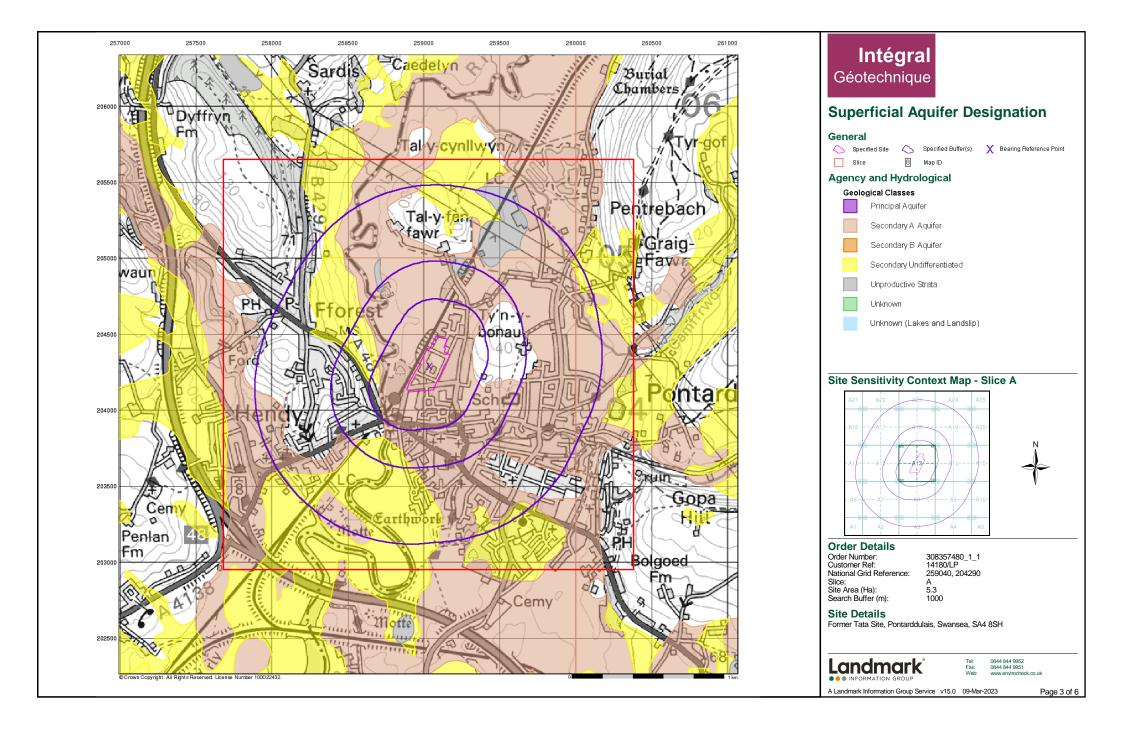
Data Suppliers

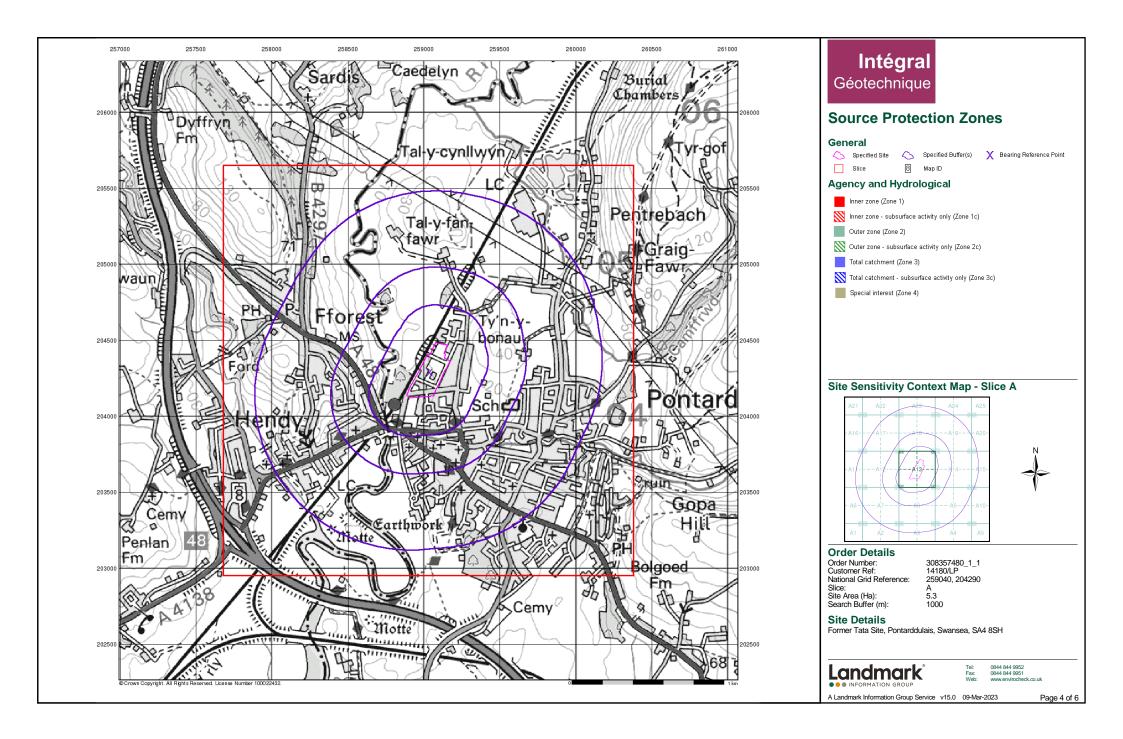
A selection of organisations who provide data within this report

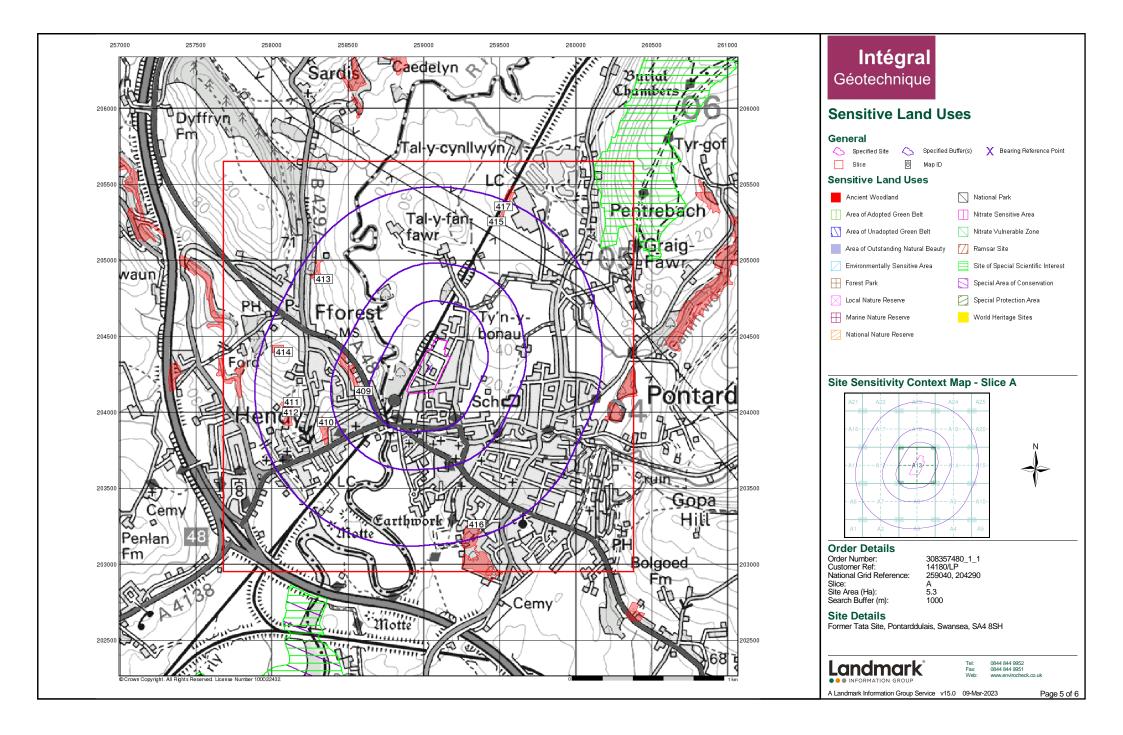
Data Supplier	Data Supplier Logo
Ordnance Survey	Map data
Environment Agency	Environment Agency
Scottish Environment Protection Agency	SEPA Scottish Environment Protection Agency
The Coal Authority	The Coal Authority
British Geological Survey	British Geological Survey NATURAL ENVIRONMENT RESEARCH COUNCIL
Centre for Ecology and Hydrology	Centre for Ecology & Hydrology NATURAL ENVIRONMENT RESEARCH COUNCIL
Natural Resources Wales	Cyfoeth Naturiol Cymru Natural Resources Wales
Scottish Natural Heritage	SCOTTISH NATURAL HERITAGE
Natural England	NATURAL ENGLAND
Public Health England	Public Health England
Ove Arup	ARUP
Stantec UK Ltd	Stantec

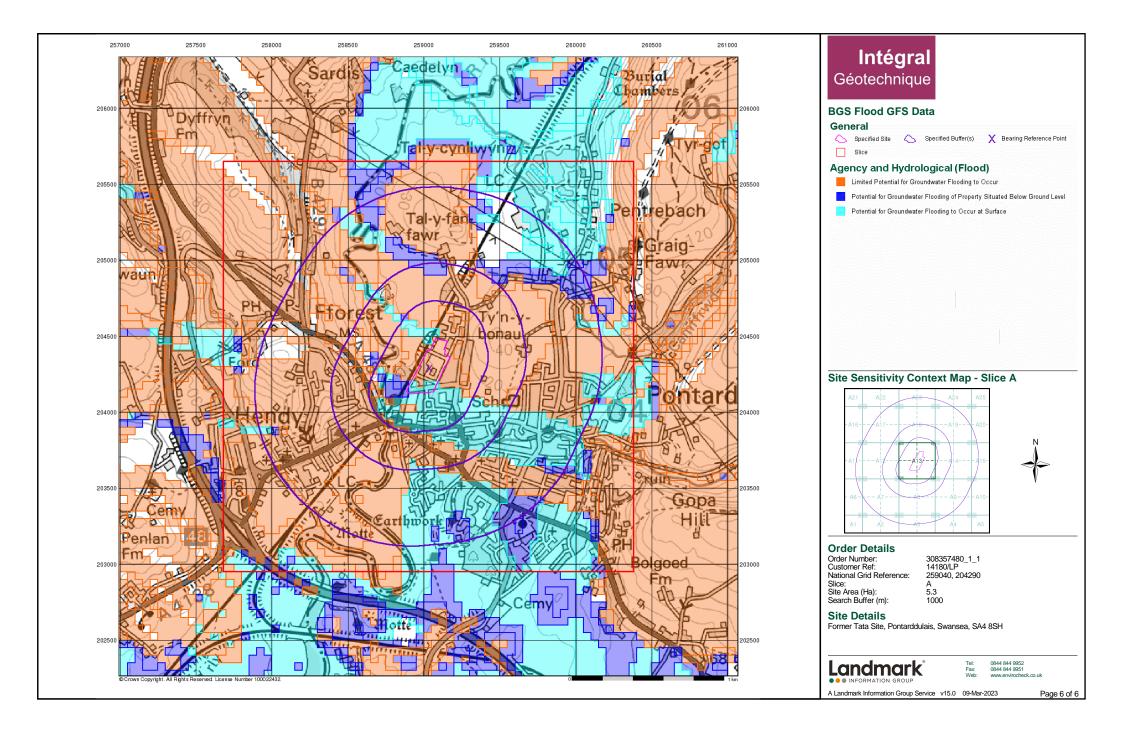


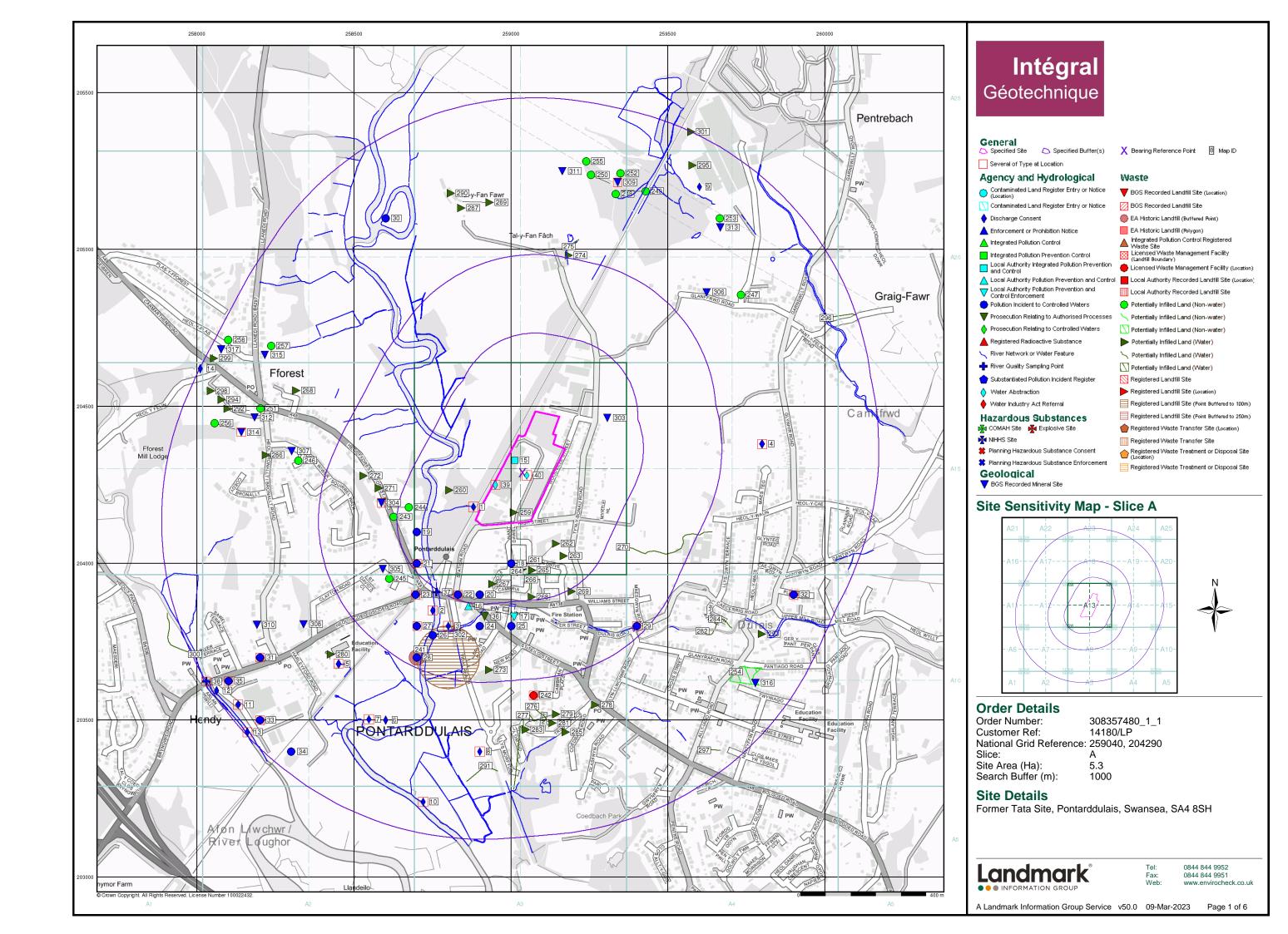

Useful Contacts

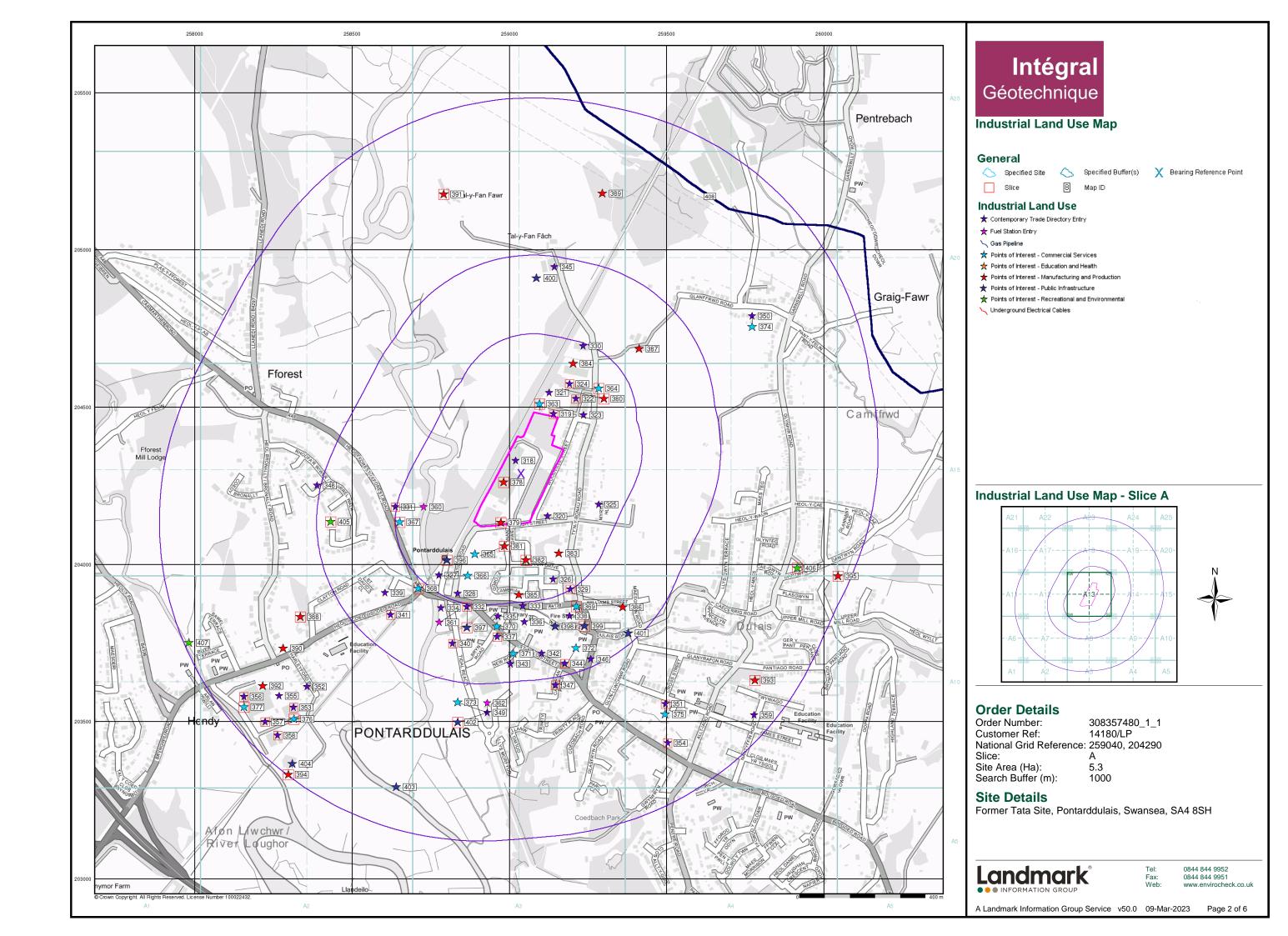

Contact	Name and Address	Contact Details
1	British Geological Survey - Enquiry Service British Geological Survey, Environmental Science Centre, Keyworth, Nottingham, Nottinghamshire, NG12 5GG	Telephone: 0115 936 3143 Fax: 0115 936 3276 Email: enquiries@bgs.ac.uk Website: www.bgs.ac.uk
2	Natural Resources Wales Ty Cambria, 29 Newport Road, Cardiff, CF24 0TP	Telephone: 0300 065 3000 Email: enquiries@naturalresourceswales.gov.uk
3	City and County of Swansea - Environmental Health Department The Guildhall, Swansea, West Glamorgan, SA1 4PE	Telephone: 01792 636000 extn 5651 Fax: 01792 635719
4	Environment Agency - National Customer Contact Centre (NCCC) PO Box 544, Templeborough, Rotherham, S60 1BY	Telephone: 03708 506 506 Email: enquiries@environment-agency.gov.uk
5	Ordnance Survey Adanac Drive, Southampton, Hampshire, SO16 0AS	Telephone: 03456 05 05 05 Email: customerservices@ordnancesurvey.co.uk Website: www.ordnancesurvey.gov.uk
6	Carmarthenshire County Council County Hall, Carmarthen, Dyfed, SA31 1JP	Telephone: 01267 234567 Fax: 01267 238326 Website: www.carmarthenshire.gov.uk
7	The Coal Authority - Property Searches 200 Lichfield Lane, Mansfield, Nottinghamshire, NG18 4RG	Telephone: 0345 762 6848 Fax: 01623 637 338 Email: groundstability@coal.gov.uk Website: www2.groundstability.com
8	PointX 7 Abbey Court, Eagle Way, Sowton, Exeter, Devon, EX2 7HY	Website: www.pointx.co.uk
9	Landmark Information Group Limited Imperium, Imperial Way, Reading, Berkshire, RG2 0TD	Telephone: 0844 844 9966 Fax: 0844 844 9951 Email: helpdesk@landmark.co.uk Website: www.landmark.co.uk
-	Public Health England - Radon Survey, Centre for Radiation, Chemical and Environmental Hazards Chilton, Didcot, Oxfordshire, OX11 0RQ	Telephone: 01235 822622 Fax: 01235 833891 Email: radon@phe.gov.uk Website: www.ukradon.org
-	Landmark Information Group Limited Imperium, Imperial Way, Reading, Berkshire, RG2 0TD	Telephone: 0844 844 9952 Fax: 0844 844 9951 Email: customerservices@landmarkinfo.co.uk Website: www.landmarkinfo.co.uk

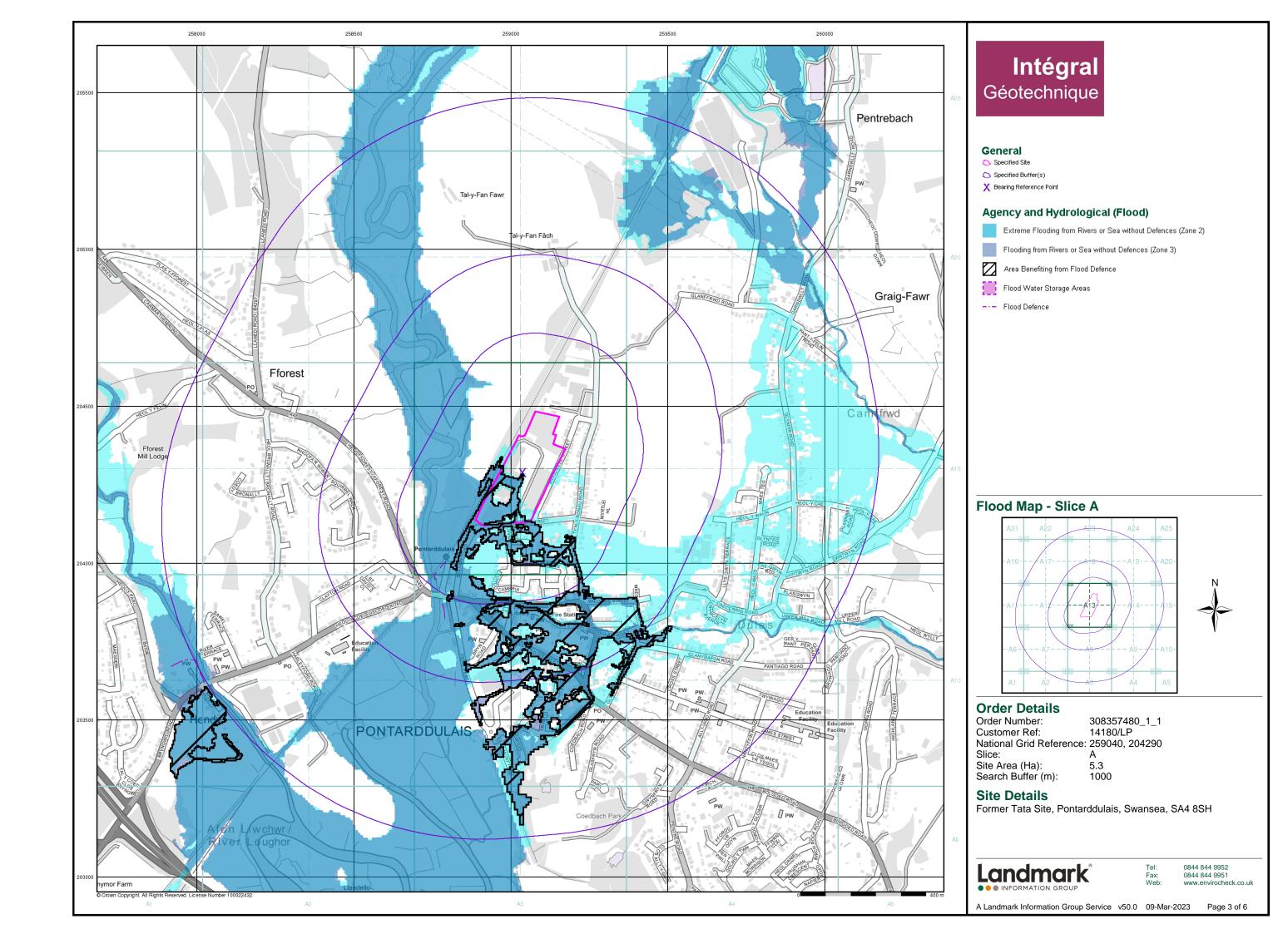

 $Please\ note\ that\ the\ Environment\ Agency\ /\ Natural\ Resources\ Wales\ /\ SEPA\ have\ a\ charging\ policy\ in\ place\ for\ enquiries.$

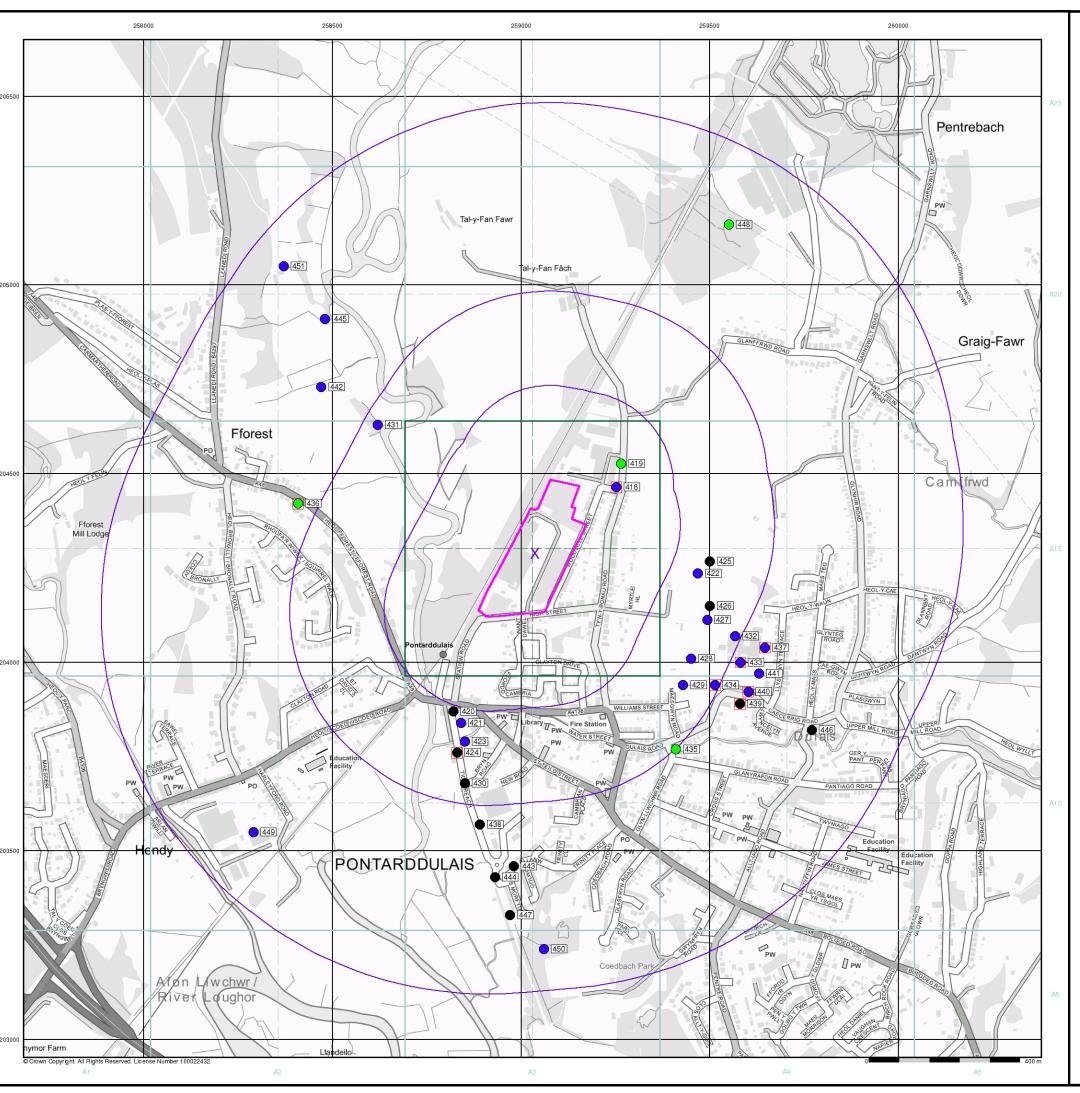

Order Number: 308357480_1_1 Date: 09-Mar-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 85 of 85











General

N Specified Site

Specified Buffer(s)

X Bearing Reference Point

8 Map ID

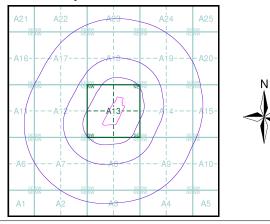
Several of Type at Location

Agency and Hydrological (Boreholes)

BGS Borehole Depth 0 - 10m

BGS Borehole Depth 10 - 30m

BGS Borehole Depth 30m +


Confidential

Other

For Borehole information please refer to the Borehole .csv file which accompanied this slice.

A copy of the BGS Borehole Ordering Form is available to download from the Support section of www.envirocheck.co.uk.

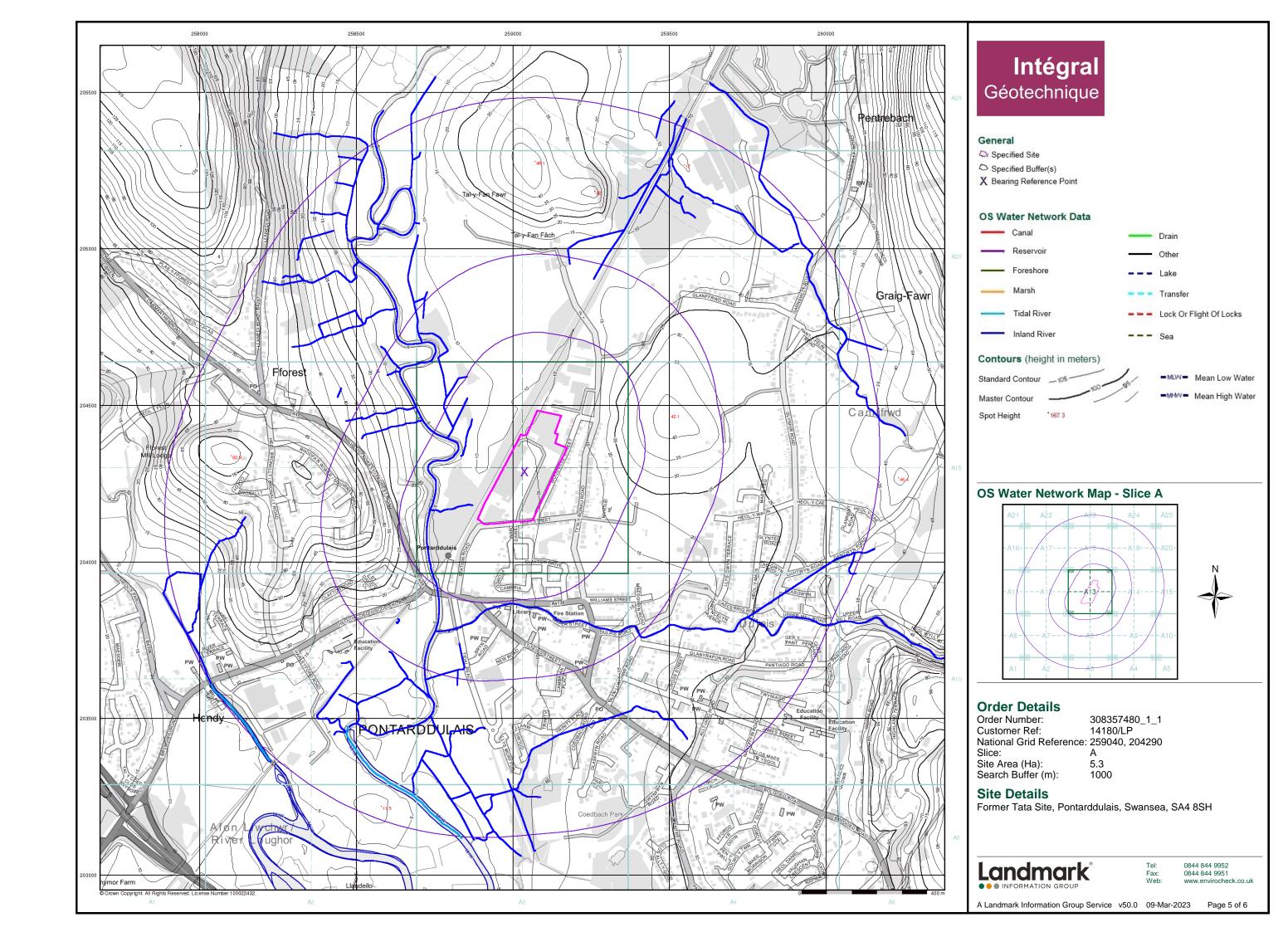
Borehole Map - Slice A

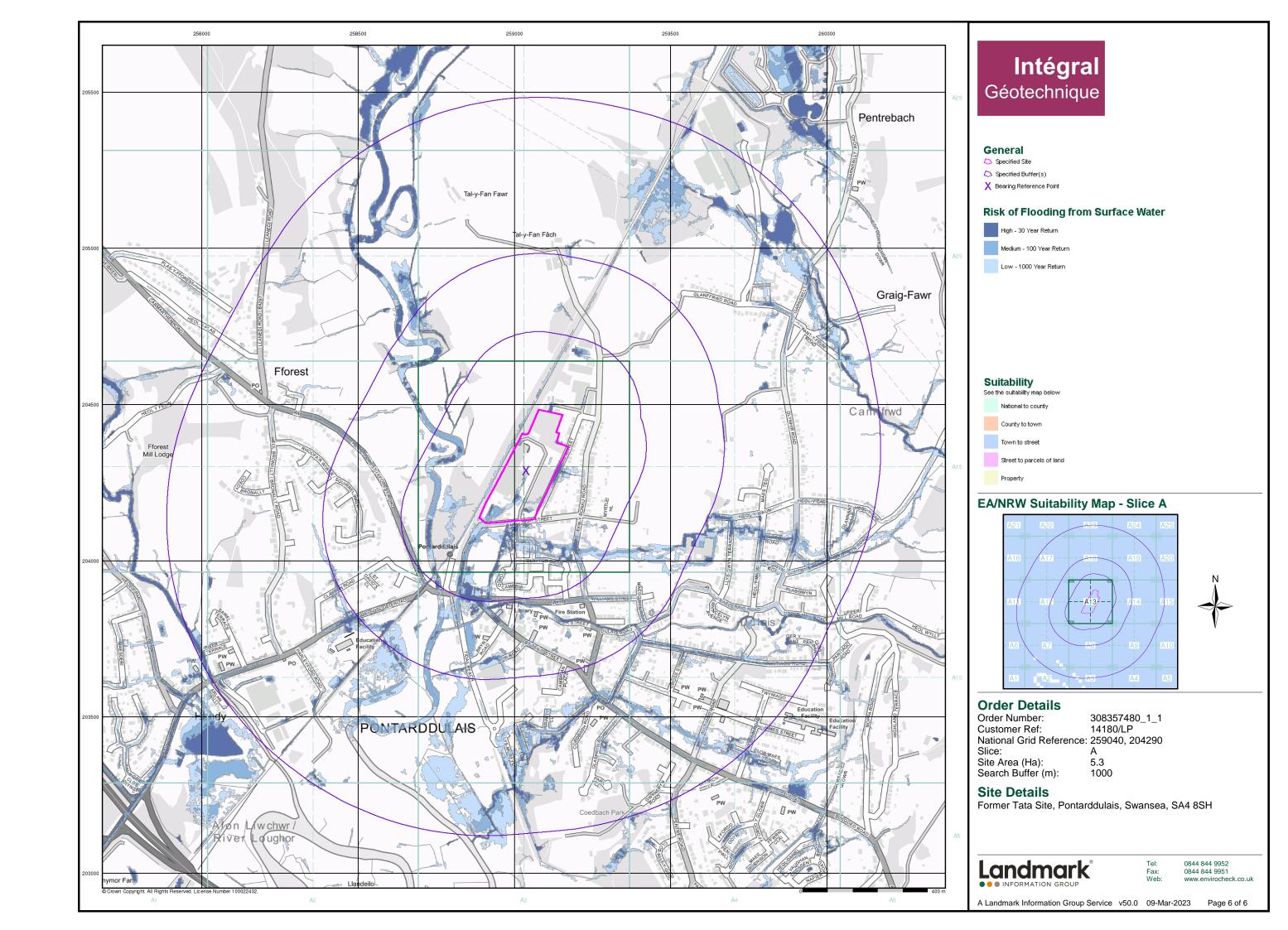
Order Details

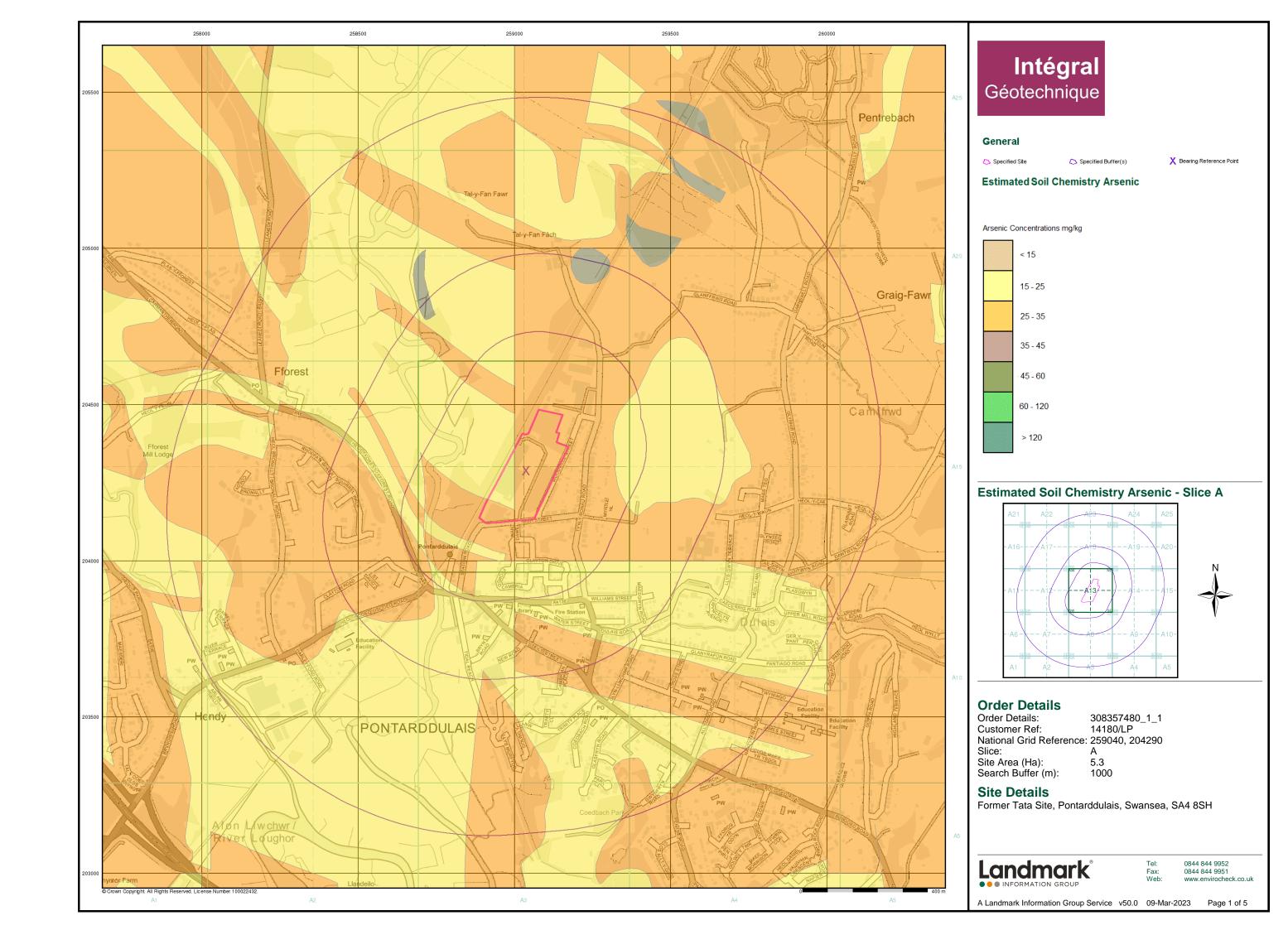
Order Number: 308357480_1_1 Customer Ref: 14180/LP National Grid Reference: 259040, 204290

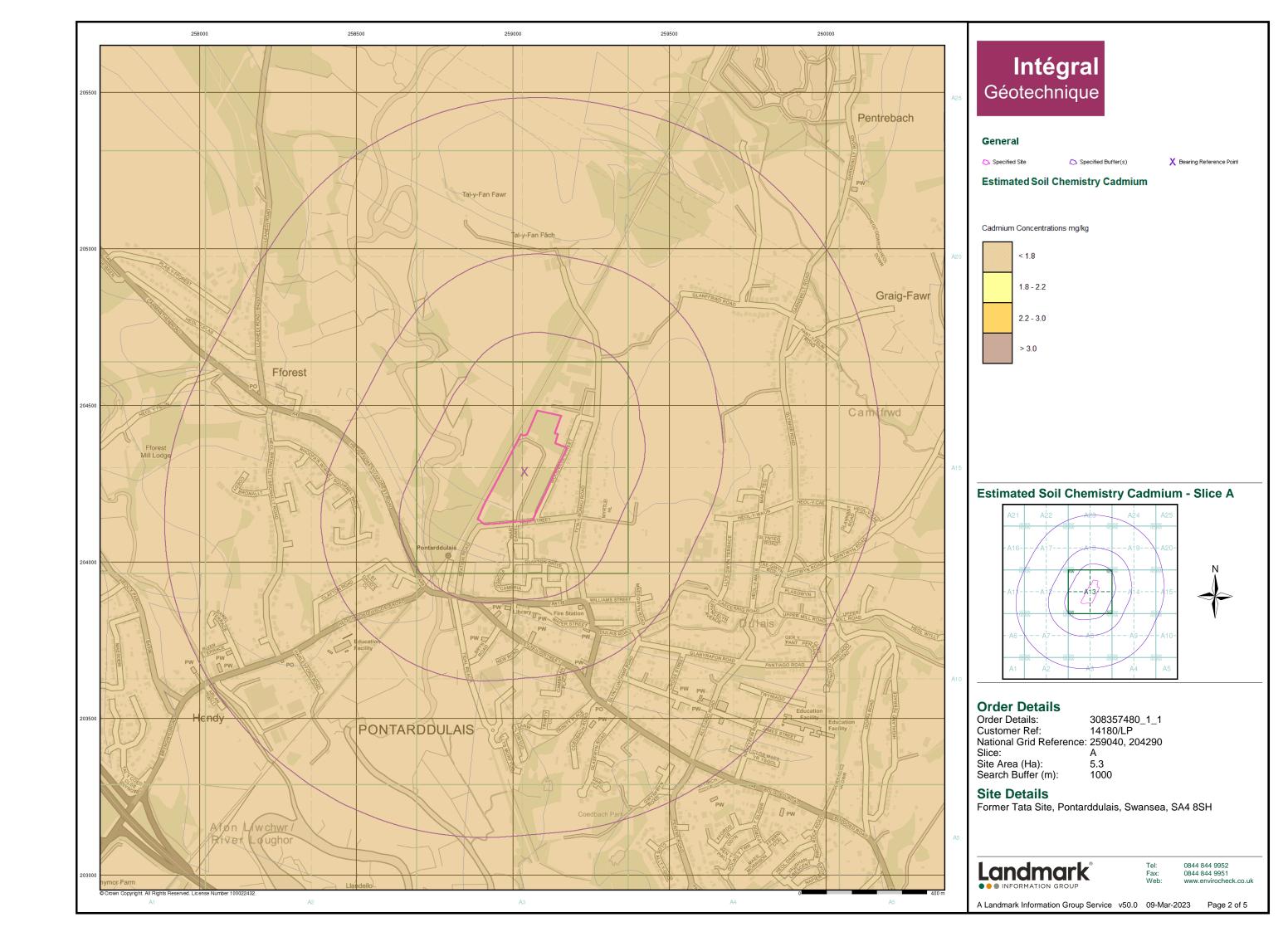
Slice:

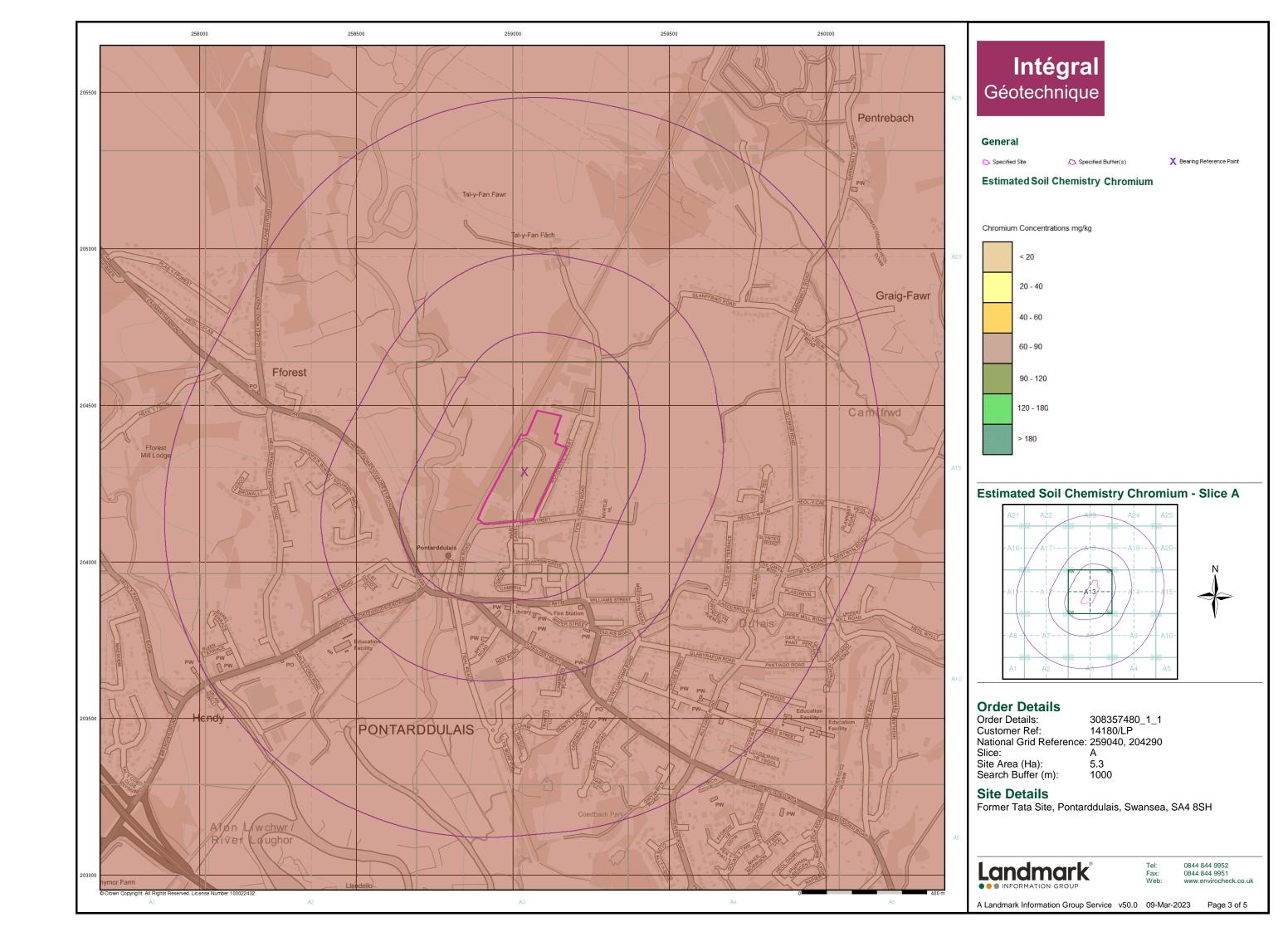
Site Area (Ha): 5.3 Search Buffer (m): 1000

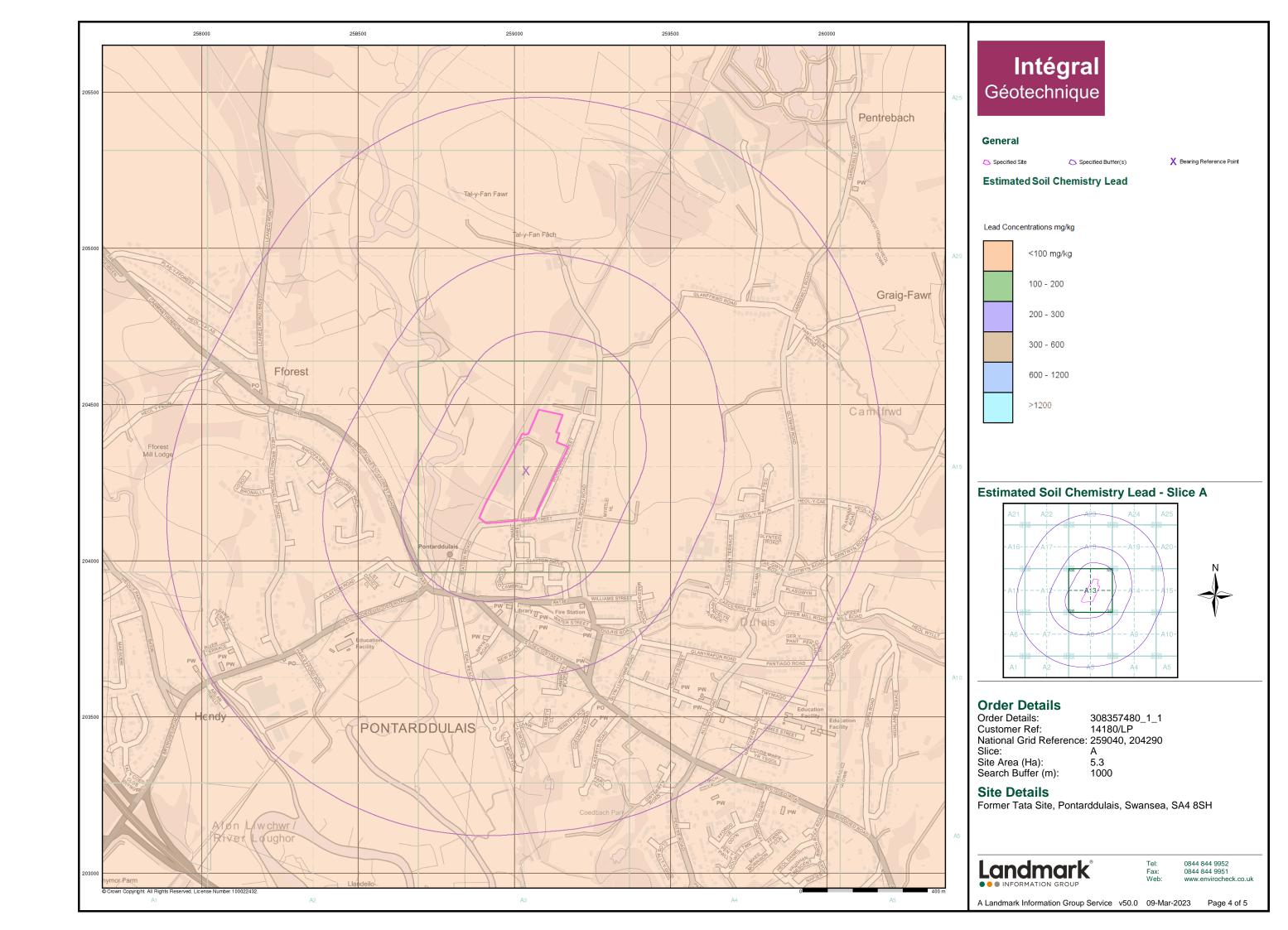

Site Details

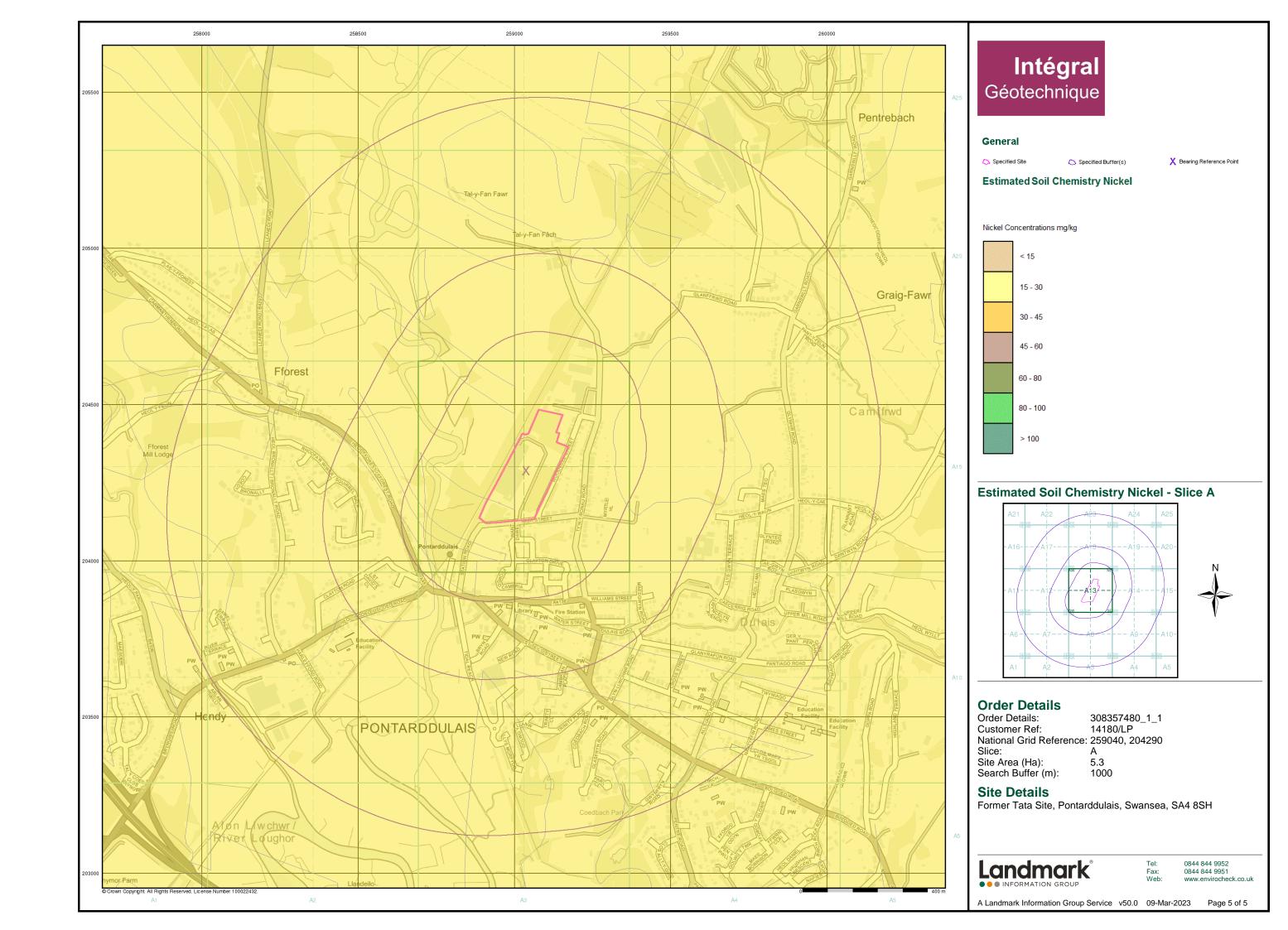

Former Tata Site, Pontarddulais, Swansea, SA4 8SH

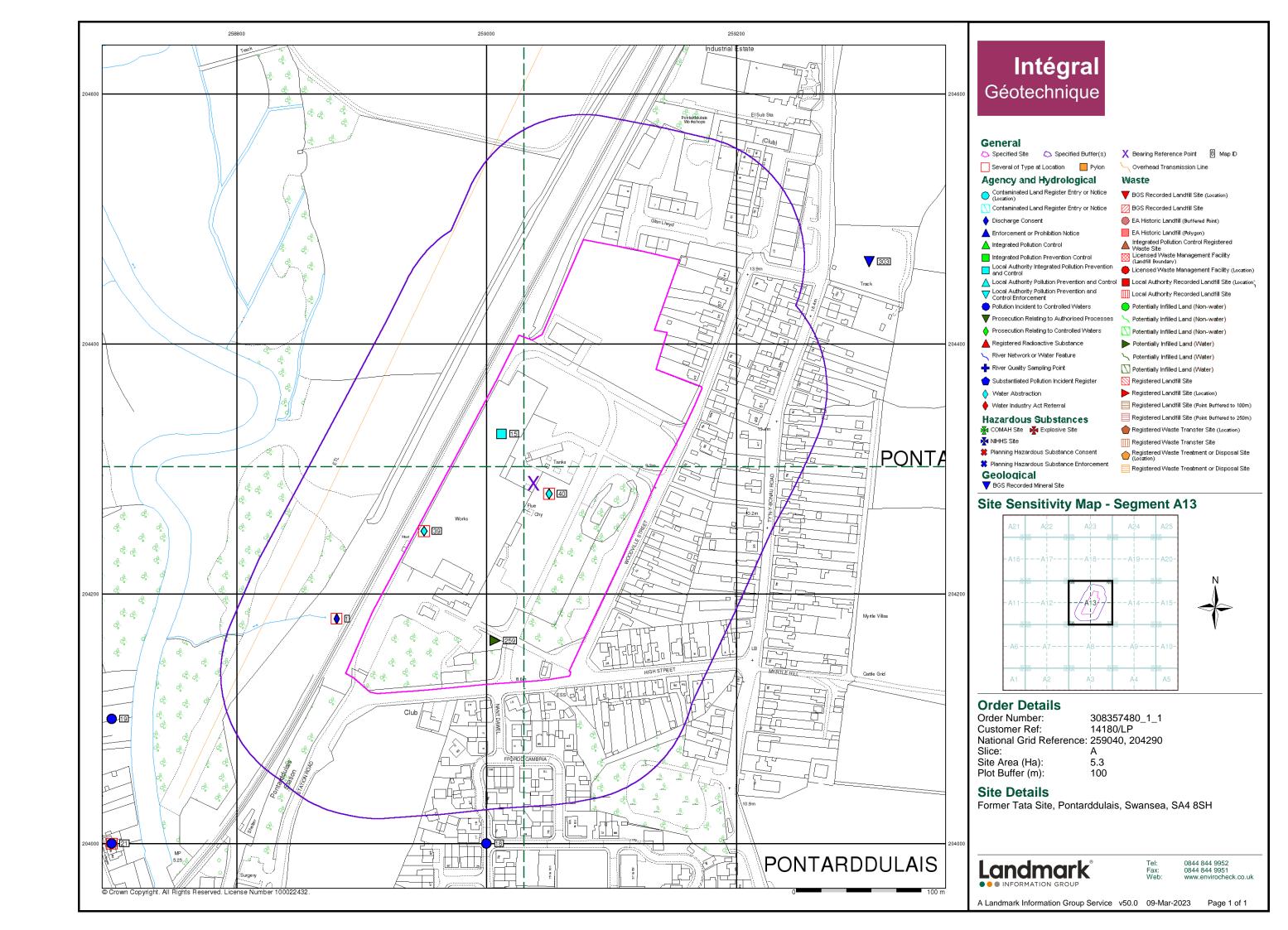

Landmark®
••• INFORMATION GROUP


Tel: 0844 844 9952 Fax: 0844 844 9951 Web: www.envirocheck.co


A Landmark Information Group Service v50.0 09-Mar-2023 Page 4 of 6







Geology 1:50,000 Maps Legends

Artificial Ground and Landslip

Map Colour	Lex Code	Rock Name	Rock Type	Min and Max Age
	SLIP	Landslide Deposit	Unknown/Unclassif ied Entry	Not Supplied - Quaternary

Superficial Geology

Map Colour	Lex Code	Rock Name	Rock Type	Min and Max Age
	ALV	Alluvium	Clay, Silt, Sand and Gravel	Not Supplied - Holocene
	TFD	Tidal Flat Deposits	Sand, Silt and Clay	Not Supplied - Holocene
	GFDUD	Glaciofluvial Deposits, Devensian	Sand and Gravel	Not Supplied - Devensian
	TILLD	Till, Devensian	Diamicton	Not Supplied - Devensian
	GFICD	Glaciofluvial Ice Contact Deposits, Devensian	Sand and Gravel	Not Supplied - Devensian
	PEAT	Peat	Peat	Not Supplied - Quaternary
	HEAD	Head	Clay, Silt, Sand and Gravel	Not Supplied - Quaternary
	BTFU	Beach and Tidal Flat Deposits (Undifferentiated)	Clay, Silt and Sand	Not Supplied - Quaternary
	BTFU	Beach and Tidal Flat Deposits (Undifferentiated)	Clay, Silt and Sand	Not Supplied - Quaternary

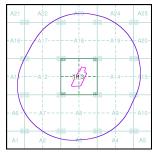
Bedrock and Faults

Map Colour	Lex Code	Rock Name	Rock Type	Min and Max Age
	Н	Hughes Member	Mudstone, Siltstone and Sandstone	Not Supplied - Westphalian
	н	Hughes Member	Sandstone	Not Supplied - Westphalian
	SW	Swansea Member	Mudstone, Siltstone and Sandstone	Not Supplied - Westphalian
	GDB	Grovesend Formation	Mudstone, Siltstone and Sandstone	Not Supplied - Westphalian
	GDB	Grovesend Formation	Mudstone, Siltstone and Sandstone	Not Supplied - Westphalian
	SW	Swansea Member	Sandstone	Not Supplied - Westphalian

Мар Lex Code **Rock Name** Rock Type Min and Max Age Colour **GDB** Grovesend Formation Sandstone Not Supplied -Westphalian BD Brithdir Member Mudstone. Not Supplied -Siltstone and Westphalian Sandstone BD Brithdir Member Sandstone Not Supplied -Westphalian RA Rhondda Member Mudstone, Not Supplied -Siltstone and Westphalian Sandstone RA Rhondda Member Sandstone Not Supplied -Westphalian Rock Segments Faults

Intégral Géotechnique

Geology 1:50,000 Maps


This report contains geological map extracts taken from the BGS Digital Geological map of Great Britain at 1:50,000 scale and is designed for users carrying out preliminary site assessments who require geological maps for the area around the site. This mapping may be more up to date than previously published paper maps.

The various geological layers - artificial and landslip deposits, superficial geology and solid (bedrock) geology are displayed in separate maps, but superimposed on the final 'Combined Surface Geology' map. All map legends feature on this page. Not all layers have complete nationwide coverage, so availability of data for relevant map sheets is indicated below.

Geology 1:50,000 Maps Coverage

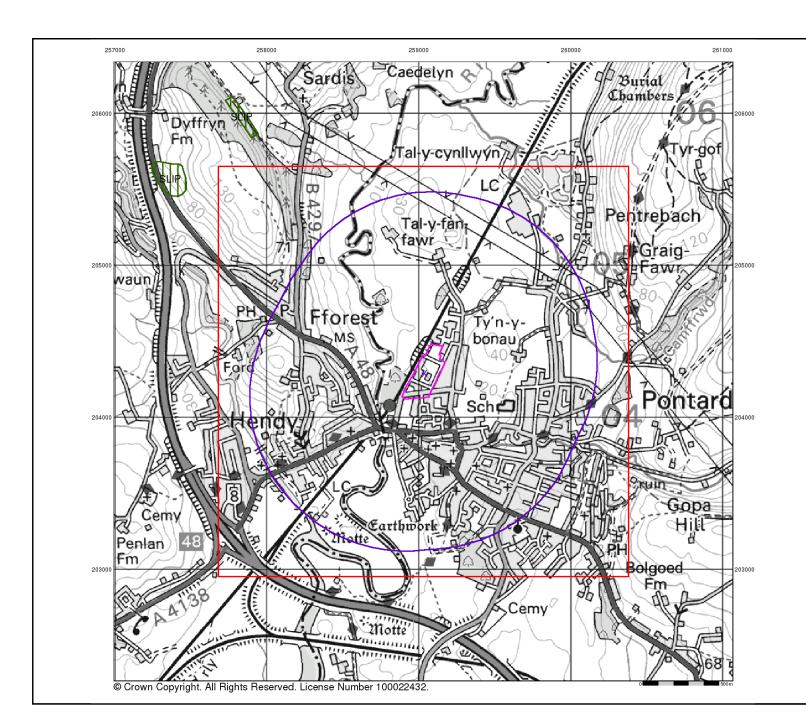
Map ID: 1
Map Sheet No: 230
Map Name: Ammanford
Map Date: 1977
Bedrock Geology: Available
Superficial Geology: Available
Faults: Not Supplied
Landslip: Available
Rock Segments: Not Supplied

Geology 1:50,000 Maps - Slice A

Order Details:

Order Number: 308357480_1_1
Customer Reference: 14180/LP
National Grid Reference: 259040, 204290
Slice: A
Site Area (Ha): 5.3
Search Buffer (m): 1000

Site Details:


Former Tata Site, Pontarddulais, Swansea, SA4 8SH

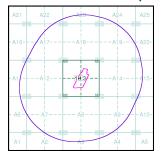
Tel: 0844 844 9952 Fax: 0844 844 9951

v15.0 09-Mar-2023

Page 1 of 5

Artificial Ground and Landslip

Artificial ground is a term used by BGS for those areas where the ground surface has been significantly modified by human activity. Information about previously developed ground is especially important, as it is often associated with potentially contaminated material, unpredictable engineering conditions and unstable ground.


Artificial ground includes:

- Made ground man-made deposits such as embankments and spoil heaps on the natural ground surface.

 - Worked ground - areas where the ground has been cut away such as
- quarries and road cuttings.
- Infilled ground areas where the ground has been cut away then wholly or partially backfilled.
- Landscaped ground areas where the surface has been reshaped.
 Disturbed ground areas of ill-defined shallow or near surface mineral workings where it is impracticable to map made and worked ground

Mass movement (landslip) deposits on BGS geological maps are primarily superficial deposits that have moved down slope under gravity to form landslips. These affect bedrock, other superficial deposits and artificial ground. The dataset also includes foundered strata, where the ground has collapsed due to subsidence.

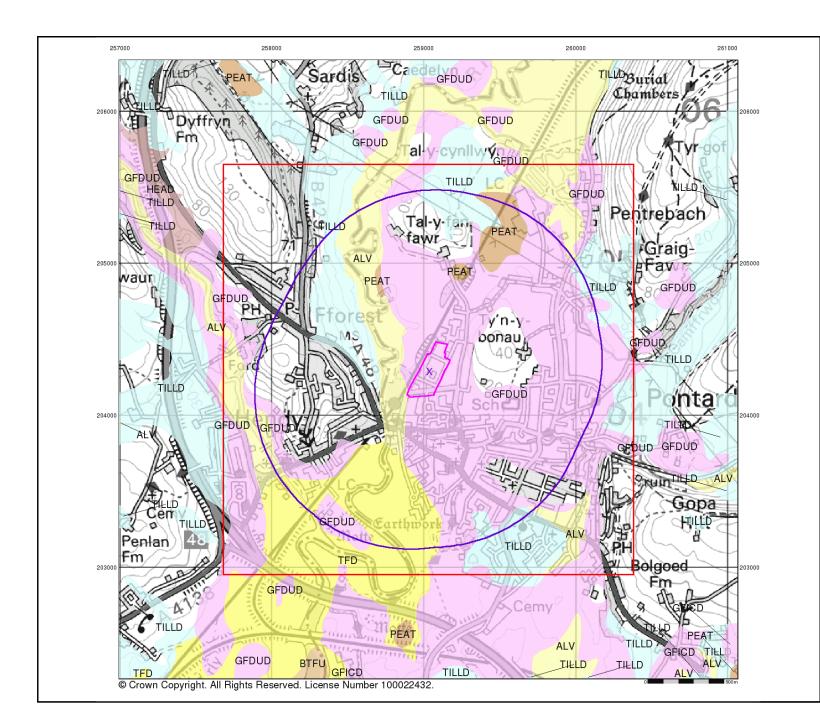
Artificial Ground and Landslip Map - Slice A

Order Details:

Order Number: Customer Reference: 308357480_1_1 14180/LP National Grid Reference: 259040, 204290 A 5.3

Site Area (Ha): Search Buffer (m): 1000

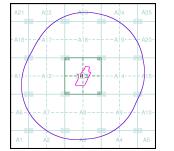
Site Details:


Former Tata Site, Pontarddulais, Swansea, SA4 8SH

0844 844 9952 0844 844 9951

v15.0 09-Mar-2023

Page 2 of 5


Superficial Geology

Superficial Deposits are the youngest geological deposits formed during the most recent period of geological time, the Quaternary, which extends back about 1.8 million years from the present.

They rest on older deposits or rocks referred to as Bedrock. This dataset contains Superficial deposits that are of natural origin and 'in place'. Other superficial strata may be held in the Mass Movement dataset where they have been moved, or in the Artificial Ground dataset where they are of man-made origin.

Most of these Superficial deposits are unconsolidated sediments such as gravel, sand, silt and clay, and onshore they form relatively thin, often discontinuous patches or larger spreads.

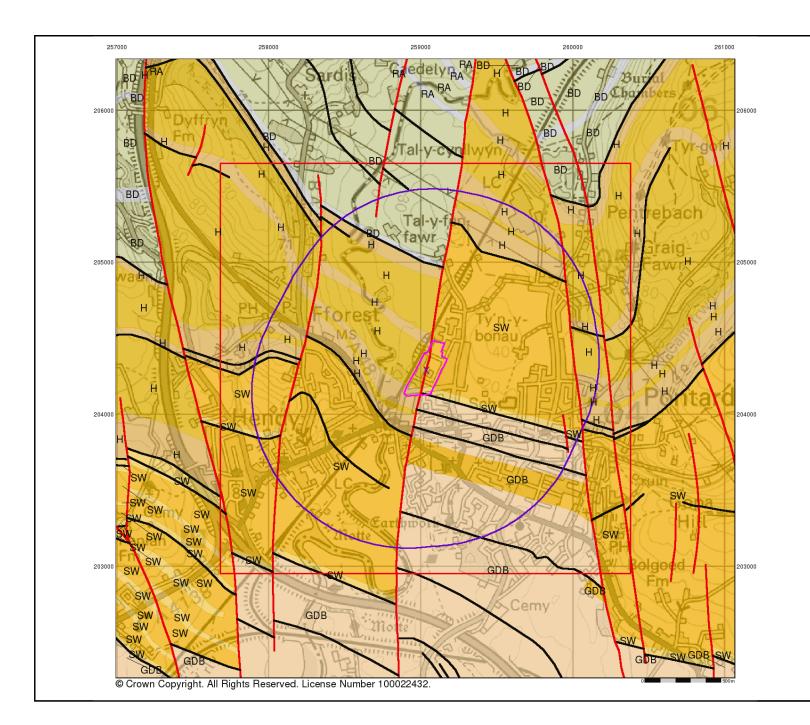
Superficial Geology Map - Slice A

Order Details:

Order Number: 308357480_1_1
Customer Reference: 14180/LP
National Grid Reference: 259040, 204290
Slice: A
Site Area (Ha): 5.3

Site Area (Ha): 5.3 Search Buffer (m): 1000

Site Details:

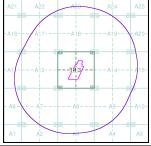

Former Tata Site, Pontarddulais, Swansea, SA4 8SH

Tel: 0844 844 9952 Tax: 0844 844 9951 Veb: www.envirocheck.co

v15.0 09-Mar-2023

Page 3 of 5

Bedrock and Faults


Bedrock geology is a term used for the main mass of rocks forming the Earth and are present everywhere, whether exposed at the surface in outcrops or concealed beneath superficial deposits or water.

The bedrock has formed over vast lengths of geological time ranging from ancient and highly altered rocks of the Proterozoic, some 2500 million years ago, or older, up to the relatively young Plicoene, 1.8 million years ago.

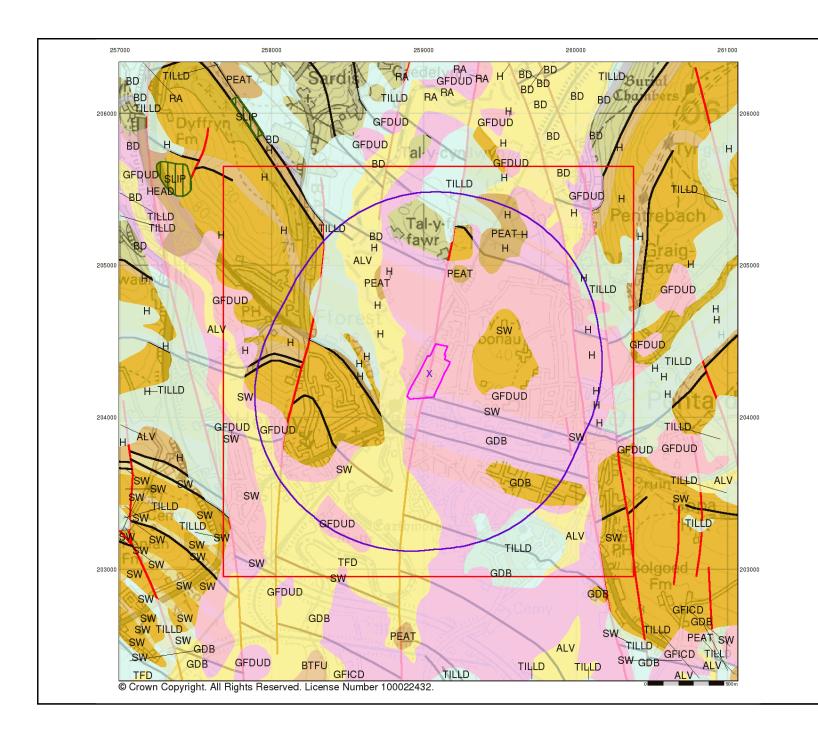
The bedrock geology includes many lithologies, often classified into three types based on origin: igneous, metamorphic and sedimentary.

The BGS Faults and Rock Segments dataset includes geological faults (e.g. normal, thrust), and thin beds mapped as lines (e.g. coal seam, gypsum bed). Some of these are linked to other particular 1:50,000 Geology datasets, for example, coal seams are part of the bedrock sequence, most faults and mineral veins primarily affect the bedrock but cut across the strata and post date its deposition.

Bedrock and Faults Map - Slice A

Order Number: 308357480_1_1
Customer Reference: 14180/LP
National Grid Reference: 259040, 204290
Slice: A
Site Area (Ha): 5.3
Search Buffer (m): 1000

Site Details:


Former Tata Site, Pontarddulais, Swansea, SA4 8SH

Fel: 0844 844 9952 Fax: 0844 844 9951 Web: www.envirocheck.c

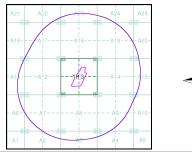
v15.0 09-Mar-2023

Page 4 of 5

Combined Surface Geology

The Combined Surface Geology map combines all the previous maps into one combined geological overview of your site.

Please consult the legends to the previous maps to interpret the Combined "Surface Geology" map.


Additional Information

More information on 1:50,000 Geological mapping and explanations of rock classifications can be found on the BGS website. Using the LEX Codes in this report, further descriptions of rock types can be obtained by interrogating the 'BGS Lexicon of Named Rock Units'. This database can be accessed by following the 'Information and Data' link on the BGS

Contact

British Geological Survey Kingsley Dunham Centre Keyworth Nottingham NG12 5GG Telephone: 0115 936 3143 Fax: 0115 936 3276 email: enquiries@bgs.ac.uk website: www.bgs.ac.uk

Combined Geology Map - Slice A

Order Details:

Order Number: Customer Reference: 308357480_1_1 14180/LP National Grid Reference: 259040, 204290 A 5.3

Site Area (Ha): Search Buffer (m): 1000

Site Details:

Former Tata Site, Pontarddulais, Swansea, SA4 8SH

0844 844 9952 0844 844 9951

v15.0 09-Mar-2023

Page 5 of 5

Historical Mapping Legends

Gravel Pit Other Orchard Mixed Wood Deciduous Brushwood Furze Rough Pasture Arrow denotes Trigonometrical flow of water Station Site of Antiquities Bench Mark Pump, Guide Post, Well, Spring, Signal Post **Boundary Post** · 285 Surface Level Sketched Instrumental Contour Contour Fenced Main Roads Minor Roads Un-Fenced Raised Road Sunken Road Railway over Road over Railway Ri∨er Railway over Level Crossing Road over Road over Road over County Boundary (Geographical) County & Civil Parish Boundary Administrative County & Civil Parish Boundary County Borough Boundary (England) Co. Boro. Bdy. County Burgh Boundary (Scotland) Co. Burgh Bdy. Rural District Boundary R.D. Bdy.

····· Civil Parish Boundary

Ordnance Survey County Series 1:10,560

Ordnance Survey Plan 1:10,000

ومرسم	Chalk Pit, Clay Pit ✓ or Quarry	000000000000000000000000000000000000000	Gravel Pit
	Sand Pit	(、 Disused Pit ✓ or Quarry
(∴ Refuse or ∴ Slag Heap		Lake, Loch or Pond
	Dunes	000	Boulders
* * * /	Coniferous Trees	A A A	Non-Coniferous Trees
ቀ ቀ	Orchard Ω n _	Scrub	∖Y₁v Coppice
ជ ជា ជ	Bracken	Heath '	、 , , , , Rough Grassland
<u> </u>	- Marsh ····V///	Reeds	<u>→</u> ±≠ Saltings
		tion of Flow of	Water
	Building	1/2	Shingle
525	*	**/	Sand
	Glasshouse		
		Pylon	Electricity
777777	Sloping Masonry		Transmission
	, ,	Pole	Line
		· -	_
Cutting	Embankm	ient	o
	**************	***************************************	
	////	\\	Standard Gauge
Road ' ' Under	''∏''' Road // Lev Over Cross		Single Track
			Siding, Tramway or Mineral Line
l			
			→ Narrow Gauge
	Geographical Co	ounty	
	— Administrative C or County of City		Borough
	Municipal Borou Burgh or District		ural District,
	Borough, Burgh Shown only when n		
	Civil Parish Shown alternately v	vhen coincidence	of boundaries occurs
BP, BS	Boundary Post or Stone	Pol Sta	Police Station
Ch	Church	PO	Post Office
CH FESta	Club House Fire Engine Station	PC PH	Public Convenience Public House
FB FB	Foot Bridge	SB	Signal Box
Fn	Fountain	Spr	Spring
GP	Guide Post	тсв	Telephone Call Box
MD	Mile Post	TCD	Tolophono Call Boot

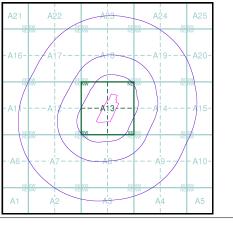
Mile Post

TCP

Telephone Call Post

1:10,000 Raster Mapping

	Gravel Pit		Refuse tip or slag heap
	Rock		Rock (scattered)
	Boulders		Boulders (scattered)
	Shingle	Mud	Mud
Sand	Sand		Sand Pit
********	Slopes		Top of cliff
	General detail		Underground detail
	Overhead detail		Narrow gauge railway
	Multi-track railway		Single track railway
-•-•	County boundary (England only)	• • • • • •	Civil, parish or community boundary
	District, Unitary, Metropolitan, London Borough boundary		Constituency boundary
۵ ^۵ **	Area of wooded vegetation	۵ ^۵	Non-coniferous trees
۵ ۵	Non-coniferous trees (scattered)	**	Coniferous trees
* *	Coniferous trees (scattered)	Ö̈	Positioned tree
ፉ	Orchard	* *	Coppice or Osiers
wīti,	Rough Grassland	www.	Heath
On_	Scrub	7 <u>√</u> /۲	Marsh, Salt Marsh or Reeds
5	Water feature	← ←	Flow arrows
MHW(S)	Mean high water (springs)	MLW(S)	Mean low water (springs)
	Telephone line (where shown)		Electricity transmission line (with poles)
← BM 123.45 m	Bench mark (where shown)	Δ	Triangulation station
	Point feature (e.g. Guide Post or Mile Stone)	\boxtimes	Pylon, flare stac or lighting tower
•‡•	Site of (antiquity)		Glasshouse
	General Building		Important


Building

Intégral Géotechnique

Historical Mapping & Photography included:

Mapping Type	Scale	Date	Pg
Glamorganshire	1:10,560	1883	3
Carmarthenshire	1:10,560	1889	4
Glamorganshire	1:10,560	1900 - 1901	5
Carmarthenshire	1:10,560	1907 - 1908	6
Glamorganshire	1:10,560	1921	7
Carmarthenshire	1:10,560	1921	8
Carmarthenshire	1:10,560	1938 - 1953	9
Glamorganshire	1:10,560	1938	10
Carmarthenshire	1:10,560	1952	11
Glamorganshire	1:10,560	1952	12
Ordnance Survey Plan	1:10,000	1964 - 1965	13
Swansea	1:10,000	1976	14
Ordnance Survey Plan	1:10,000	1980 - 1988	15
Ordnance Survey Plan	1:10,000	1988	16
Ordnance Survey Plan	1:10,000	1991 - 1993	17
10K Raster Mapping	1:10,000	1999	18
10K Raster Mapping	1:10,000	2006	19
VectorMap Local	1:10,000	2022	20

Historical Map - Slice A

Order Details

Order Number: 308357480_1_1 Customer Ref: 14180/LP National Grid Reference: 259040, 204290 Slice: A

Slice: Site Area

Site Area (Ha): 5.3 Search Buffer (m): 1000

Site Details

Former Tata Site, Pontarddulais, Swansea, SA4 8SH

ol: 0844 844 9952 lx: 0844 844 9951 eb: www.envirocheck.co.uk

A Landmark Information Group Service v50.0 09-Mar-2023 Page 1 of 20

Russian Military Mapping Legends

Military and

Industrial Buildings

Subway Entrance

Built-Up Area with

Predominant Prominent Industrial

Building

Dwelling

cκun.

Factory or Mill

without Chimney

COA.

Salt Mine

Gas Pump or

Service Station

X

Power Station

₫ 95.7

Triangulation Point

on Burial Mound

×

Telegraph Office

+

Airfield or

Seaplane Base

Highway under

Construction

Spring

Half Contour

Line

Mixed

Deciduous

Demolished Buildings

Non-Fireproof Buildings

Ruins of an Individual

♀ медн.

Mine or

Open Pit Mine

Δ

Tailings Pile

Fuel Storage or

Natural Gas Tank

= 6.mp.

Transformer

Station

△ 92.6

Triangulation

T

Telephone

Station

Landing Strip

Improved Dirt Road

(former truck road)

7 / 1 / / / / / / / / / / / / /

Dismantled Railroad

.....

Railroad Under Construction

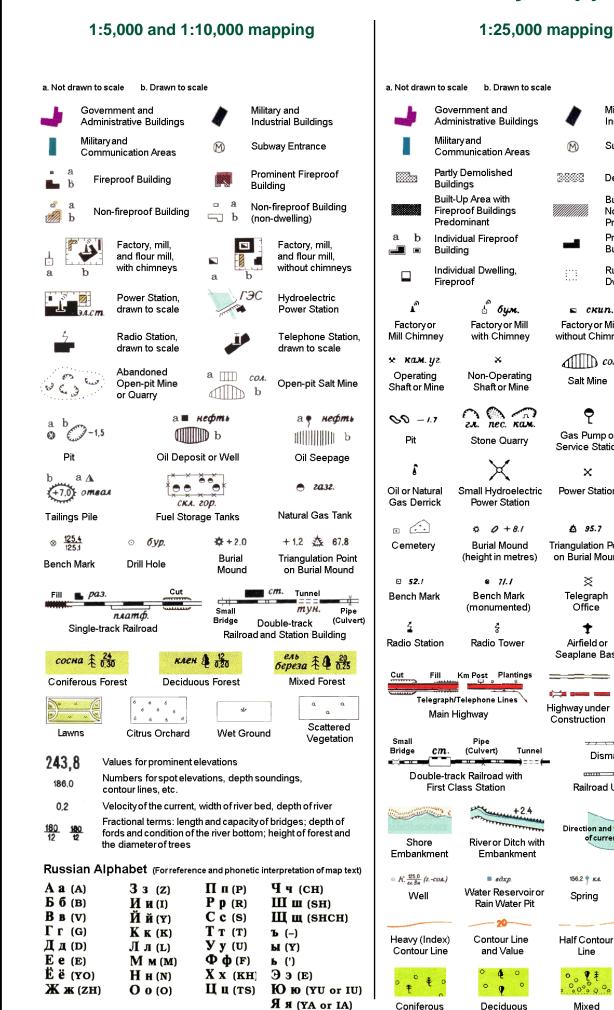
Direction and velocity

Water Gauge

Water Level Mark

Isobath with value

o 347.1

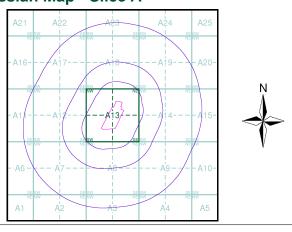

Spot Elevation

Value

Scrub

135.1

Steep Grade


Key to Numbers on Mapping

Intégral Géotechnique

Historical Mapping & Photography included:

Mapping Type	Scale	Date	Pg
Glamorganshire	1:10,560	1883	3
Carmarthenshire	1:10,560	1889	4
Glamorganshire	1:10,560	1900 - 1901	5
Carmarthenshire	1:10,560	1907 - 1908	6
Glamorganshire	1:10,560	1921	7
Carmarthenshire	1:10,560	1921	8
Carmarthenshire	1:10,560	1938 - 1953	9
Glamorganshire	1:10,560	1938	10
Carmarthenshire	1:10,560	1952	11
Glamorganshire	1:10,560	1952	12
Ordnance Survey Plan	1:10,000	1964 - 1965	13
Swansea	1:10,000	1976	14
Ordnance Survey Plan	1:10,000	1980 - 1988	15
Ordnance Survey Plan	1:10,000	1988	16
Ordnance Survey Plan	1:10,000	1991 - 1993	17
10K Raster Mapping	1:10,000	1999	18
10K Raster Mapping	1:10,000	2006	19
VectorMap Local	1:10,000	2022	20

Russian Map - Slice A

Order Details

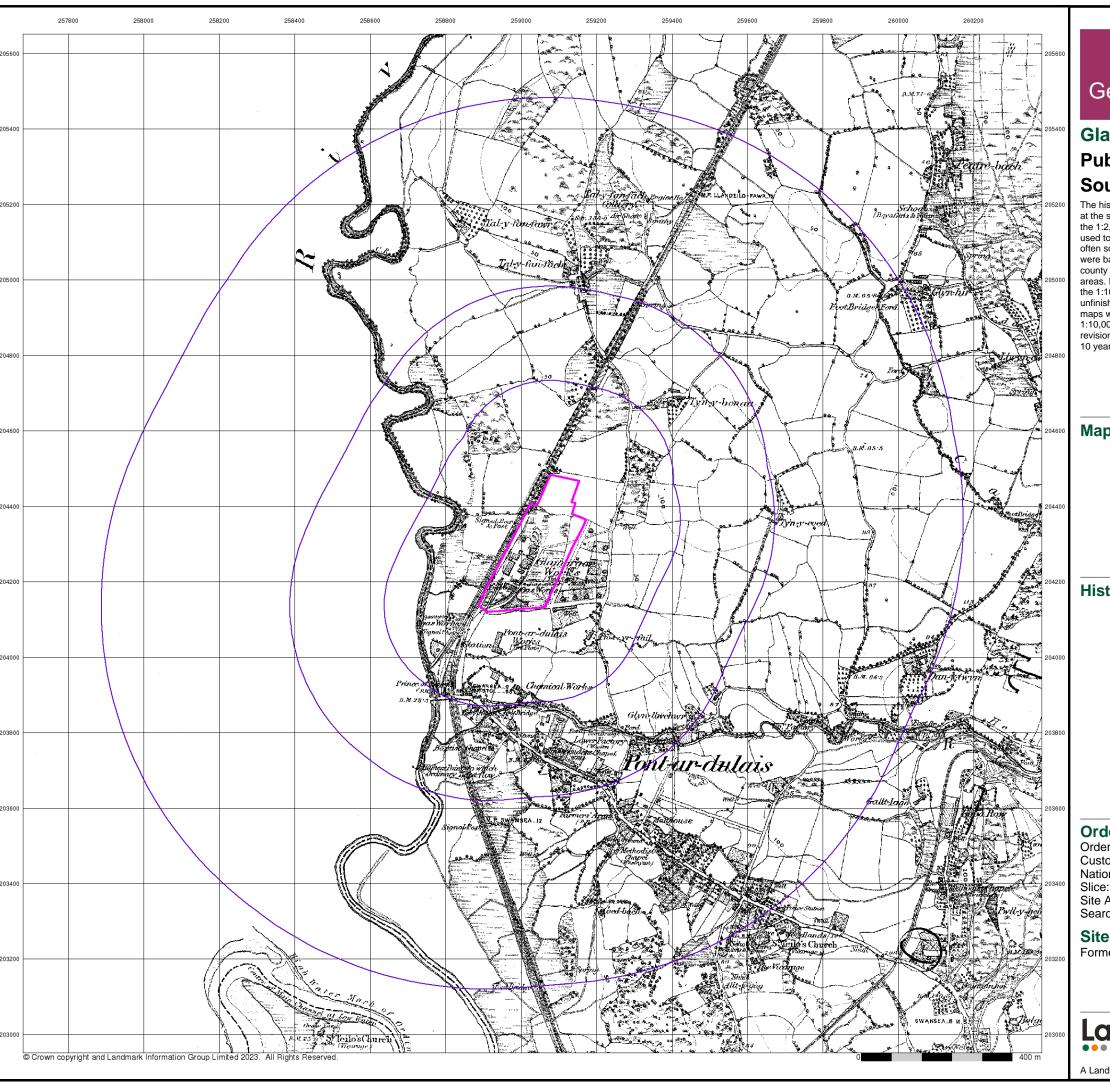
Order Number: 308357480_1_1 14180/LP Customer Ref:

Slice:

National Grid Reference: 259040, 204290

Site Area (Ha): Search Buffer (m):

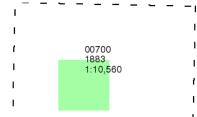
5.3 1000


Site Details

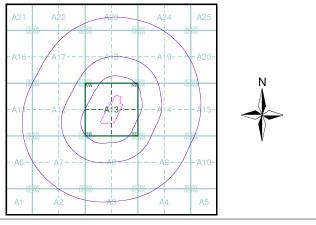
Former Tata Site, Pontarddulais, Swansea, SA4 8SH

0844 844 9952 0844 844 9951

A Landmark Information Group Service v50.0 09-Mar-2023 Page 2 of 20


Glamorganshire

Published 1883


Source map scale - 1:10,560

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

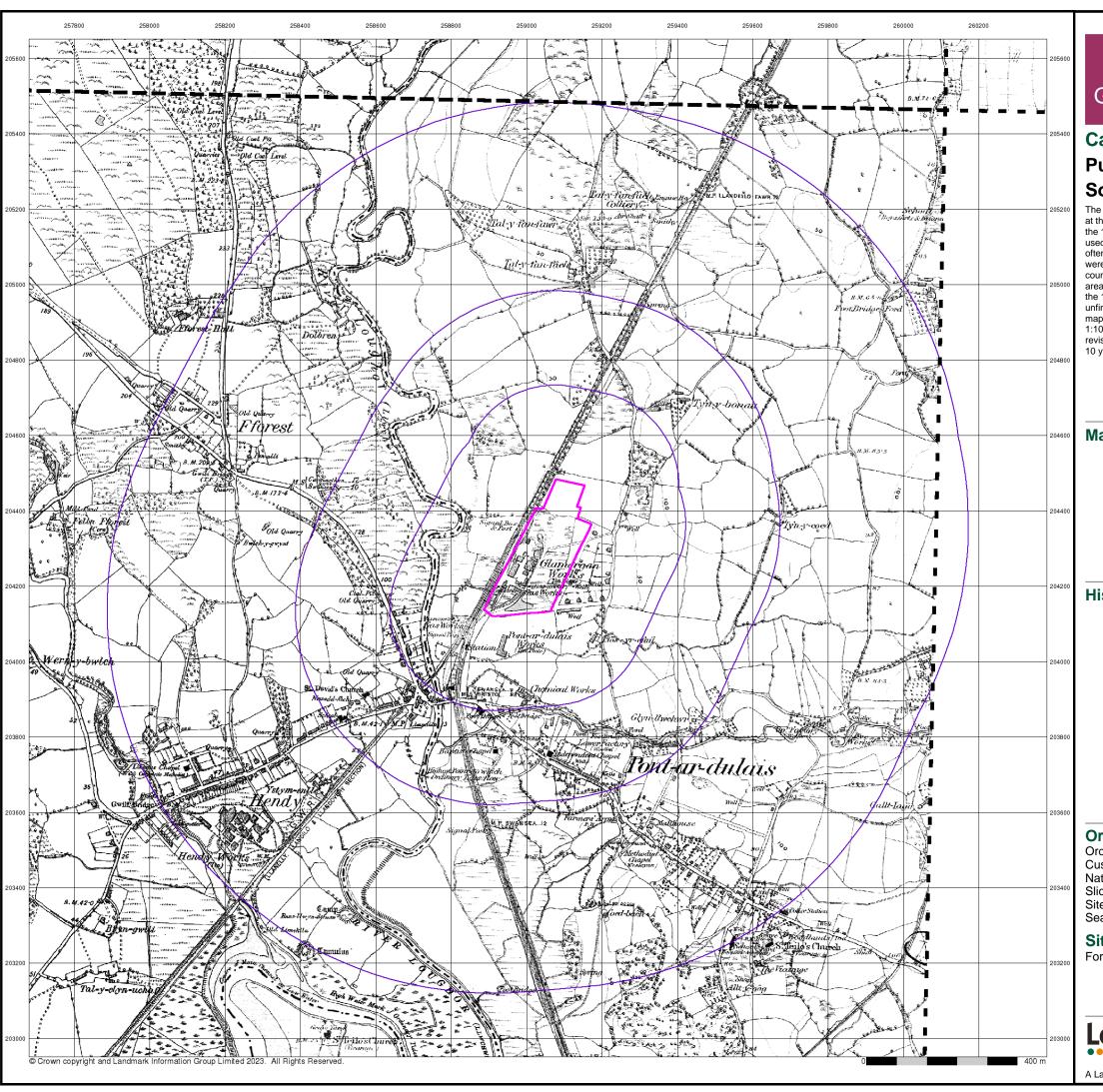
Map Name(s) and Date(s)

Historical Map - Slice A

Order Details

Order Number: 308357480_1_1 14180/LP Customer Ref: National Grid Reference: 259040, 204290

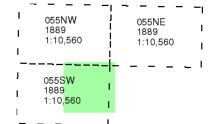
Site Area (Ha): Search Buffer (m): 1000


Site Details

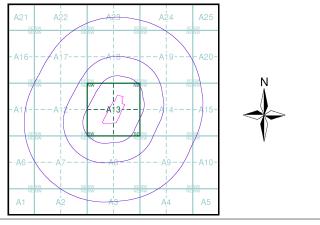
Former Tata Site, Pontarddulais, Swansea, SA4 8SH

0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v50.0 09-Mar-2023 Page 3 of 20


Carmarthenshire

Published 1889


Source map scale - 1:10,560

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

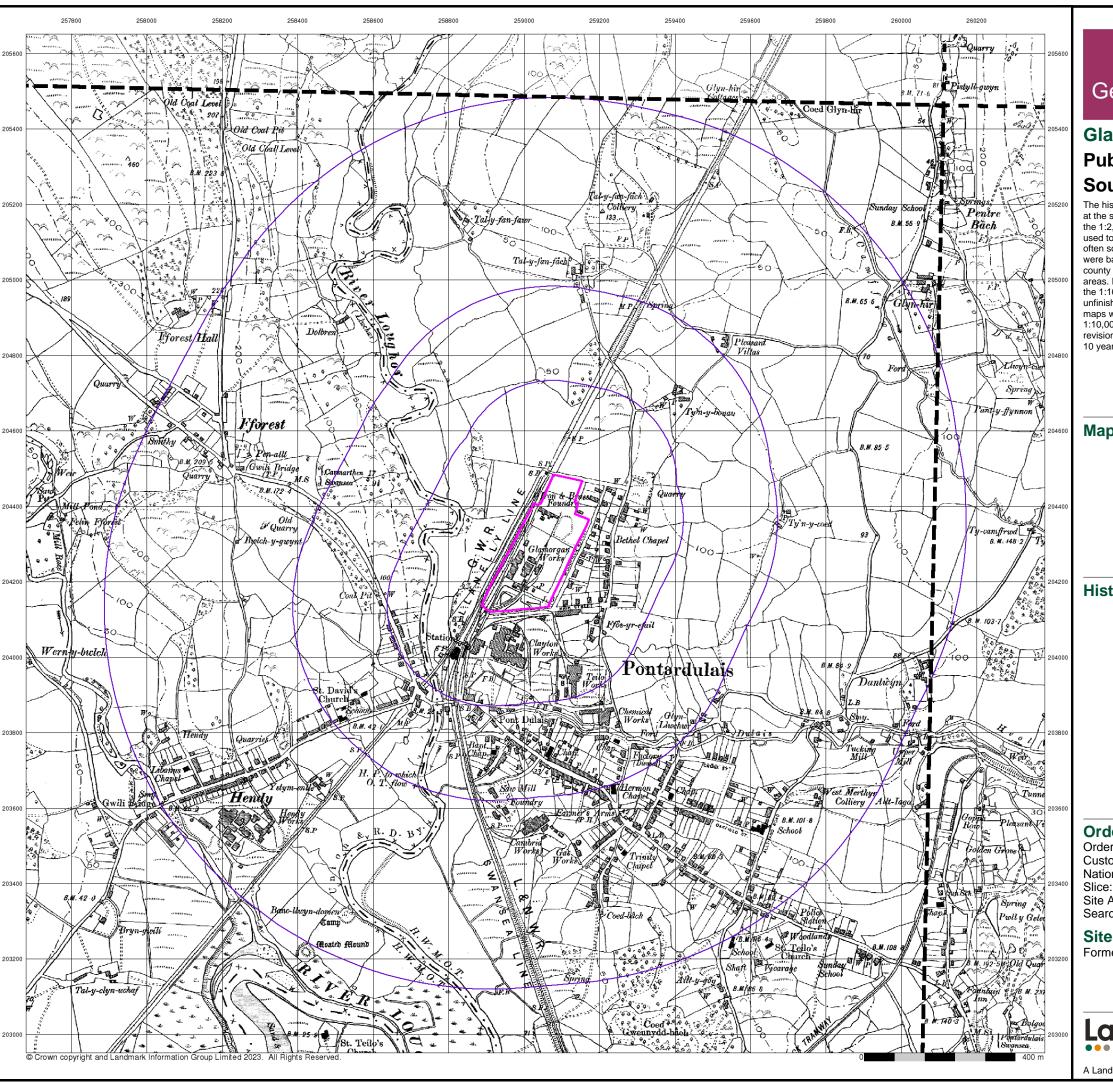
Map Name(s) and Date(s)

Historical Map - Slice A

Order Details

Order Number: 308357480_1_1 Customer Ref: 14180/LP National Grid Reference: 259040, 204290

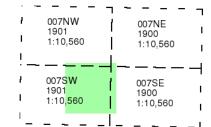
Site Area (Ha): Search Buffer (m): 1000


Site Details

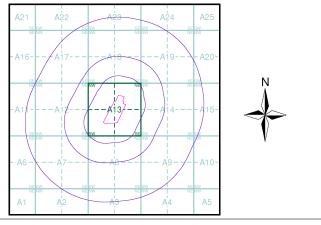
Former Tata Site, Pontarddulais, Swansea, SA4 8SH

0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v50.0 09-Mar-2023 Page 4 of 20



Glamorganshire


Published 1900 - 1901 Source map scale - 1:10,560

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

Map Name(s) and Date(s)

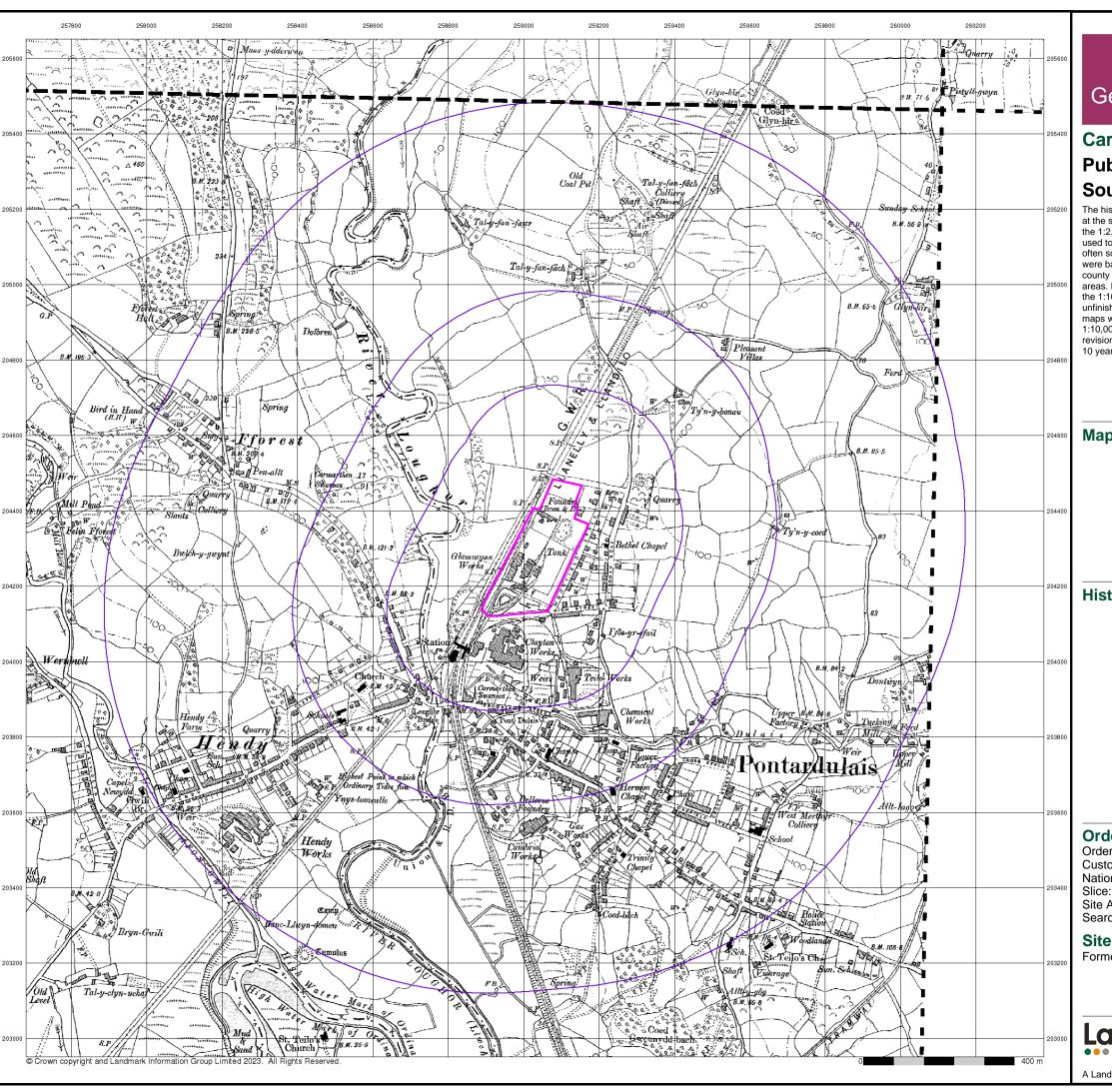
Historical Map - Slice A

Order Details

Order Number: 308357480_1_1
Customer Ref: 14180/LP
National Grid Reference: 259040, 204290

e: A

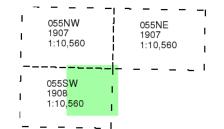
Site Area (Ha): 5.3 Search Buffer (m): 1000


Site Details

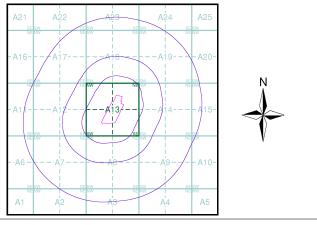
Former Tata Site, Pontarddulais, Swansea, SA4 8SH

Fel: 0844 844 9952 Fax: 0844 844 9951 Veb: www.envirocheck.co.uk

A Landmark Information Group Service v50.0 09-Mar-2023 Page 5 of 20



Carmarthenshire


Published 1907 - 1908 Source map scale - 1:10,560

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

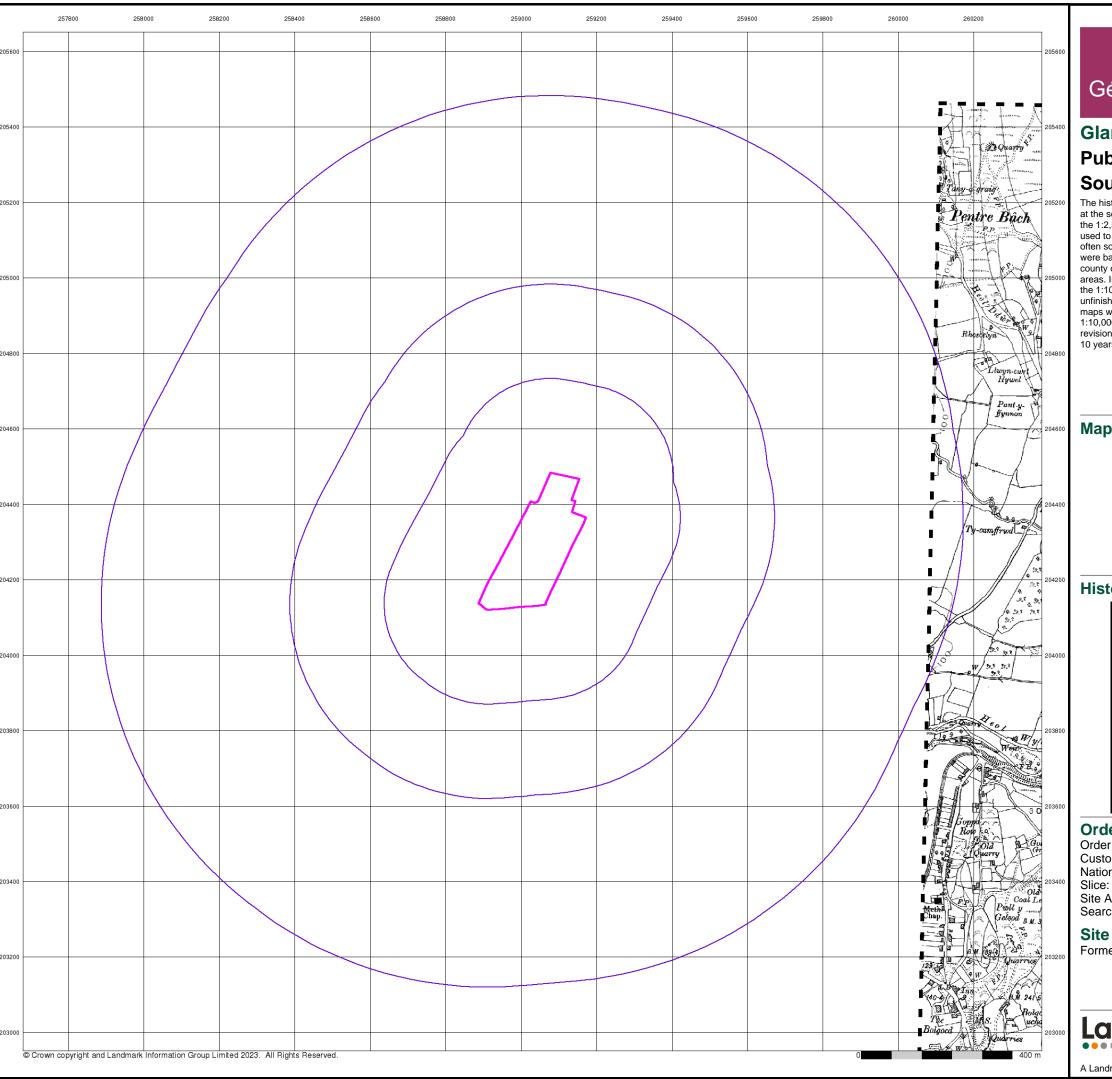
Map Name(s) and Date(s)

Historical Map - Slice A

Order Details

Order Number: 308357480_1_1
Customer Ref: 14180/LP
National Grid Reference: 259040, 204290

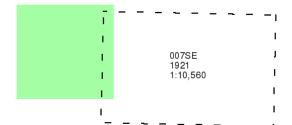
Site Area (Ha): 5.3 Search Buffer (m): 1000


Site Details

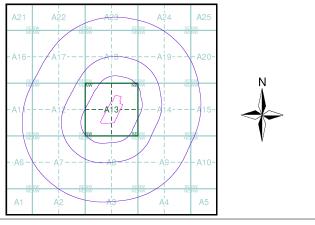
Former Tata Site, Pontarddulais, Swansea, SA4 8SH

l: 0844 844 9952 x: 0844 844 9951 eb: www.envirocheck.co.uk

A Landmark Information Group Service v50.0 09-Mar-2023 Page 6 of 20


Glamorganshire

Published 1921


Source map scale - 1:10,560

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

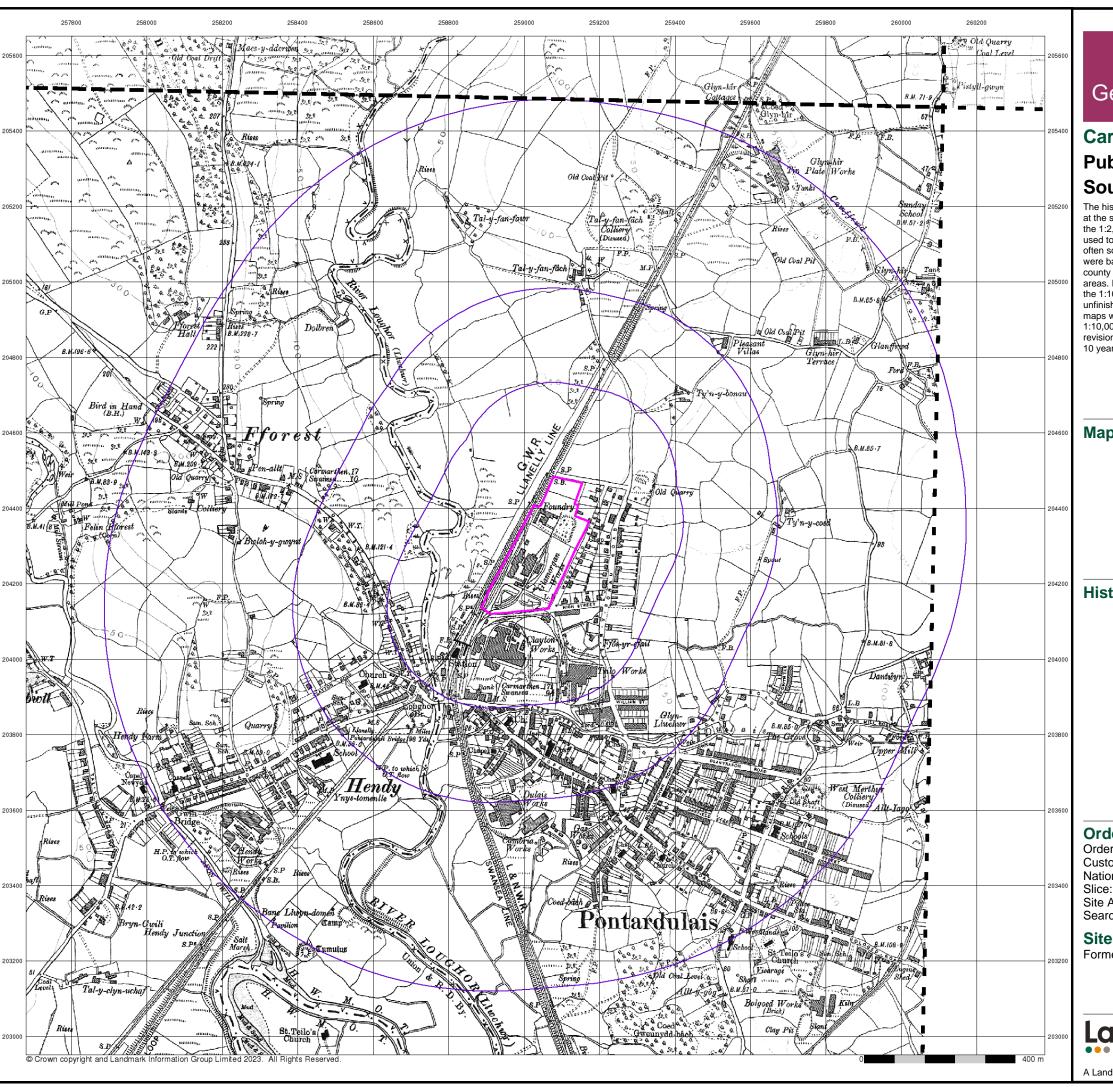
Map Name(s) and Date(s)

Historical Map - Slice A

Order Details

Order Number: 308357480_1_1 Customer Ref: 14180/LP National Grid Reference: 259040, 204290

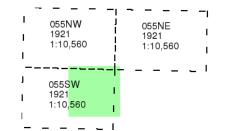
Site Area (Ha): 5.3 Search Buffer (m): 1000


Site Details

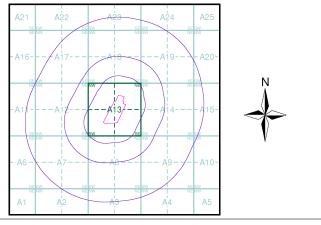
Former Tata Site, Pontarddulais, Swansea, SA4 8SH

0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v50.0 09-Mar-2023 Page 7 of 20


Carmarthenshire

Published 1921


Source map scale - 1:10,560

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

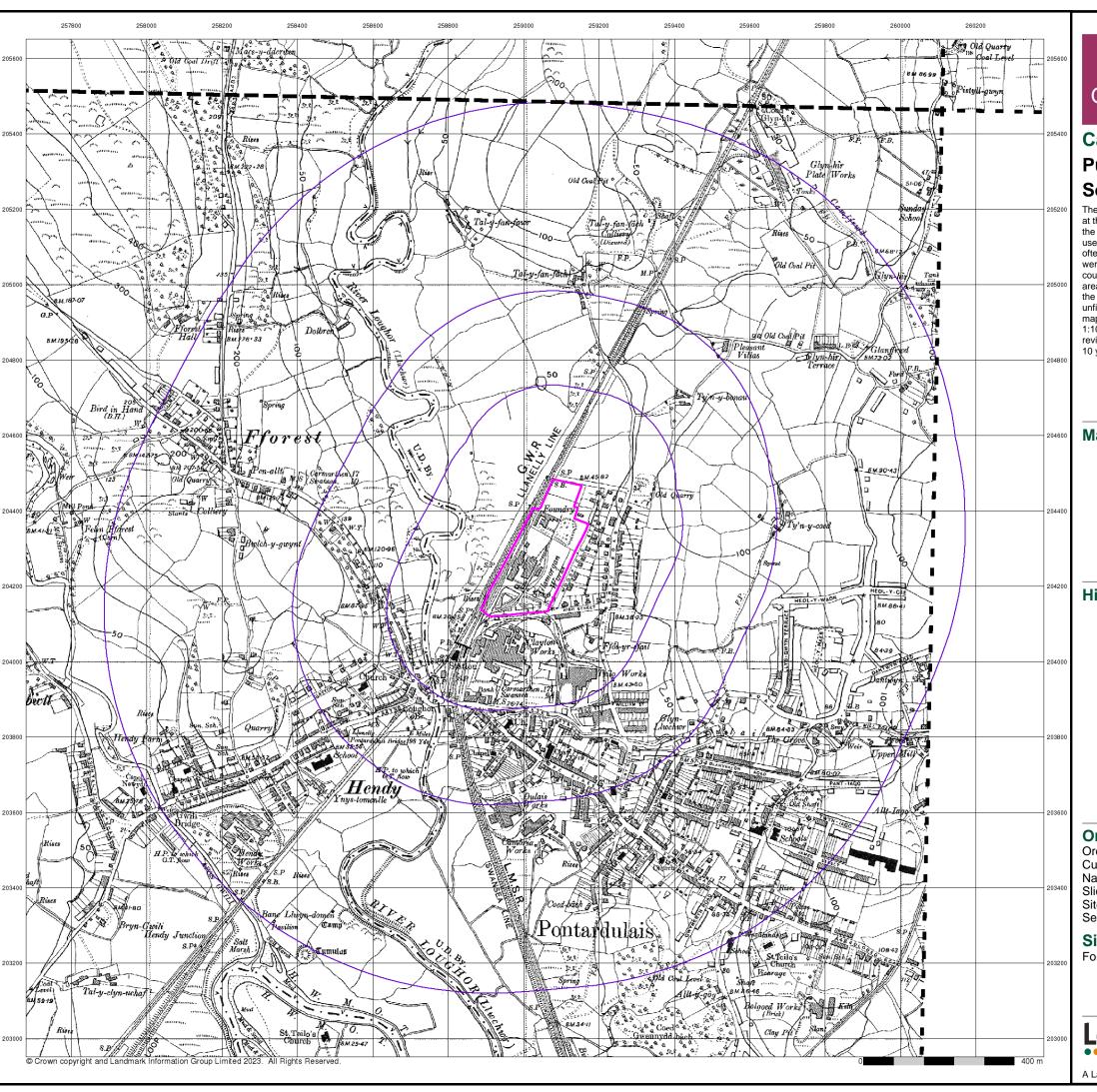
Map Name(s) and Date(s)

Historical Map - Slice A

Order Details

Order Number: 308357480_1_1 Customer Ref: 14180/LP National Grid Reference: 259040, 204290

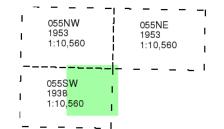
Site Area (Ha): Search Buffer (m): 5.3 1000


Site Details

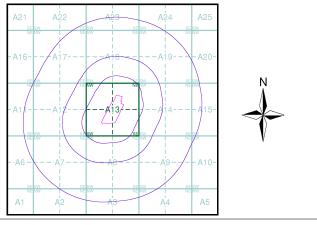
Former Tata Site, Pontarddulais, Swansea, SA4 8SH

0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v50.0 09-Mar-2023 Page 8 of 20



Carmarthenshire


Published 1938 - 1953 Source map scale - 1:10,560

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

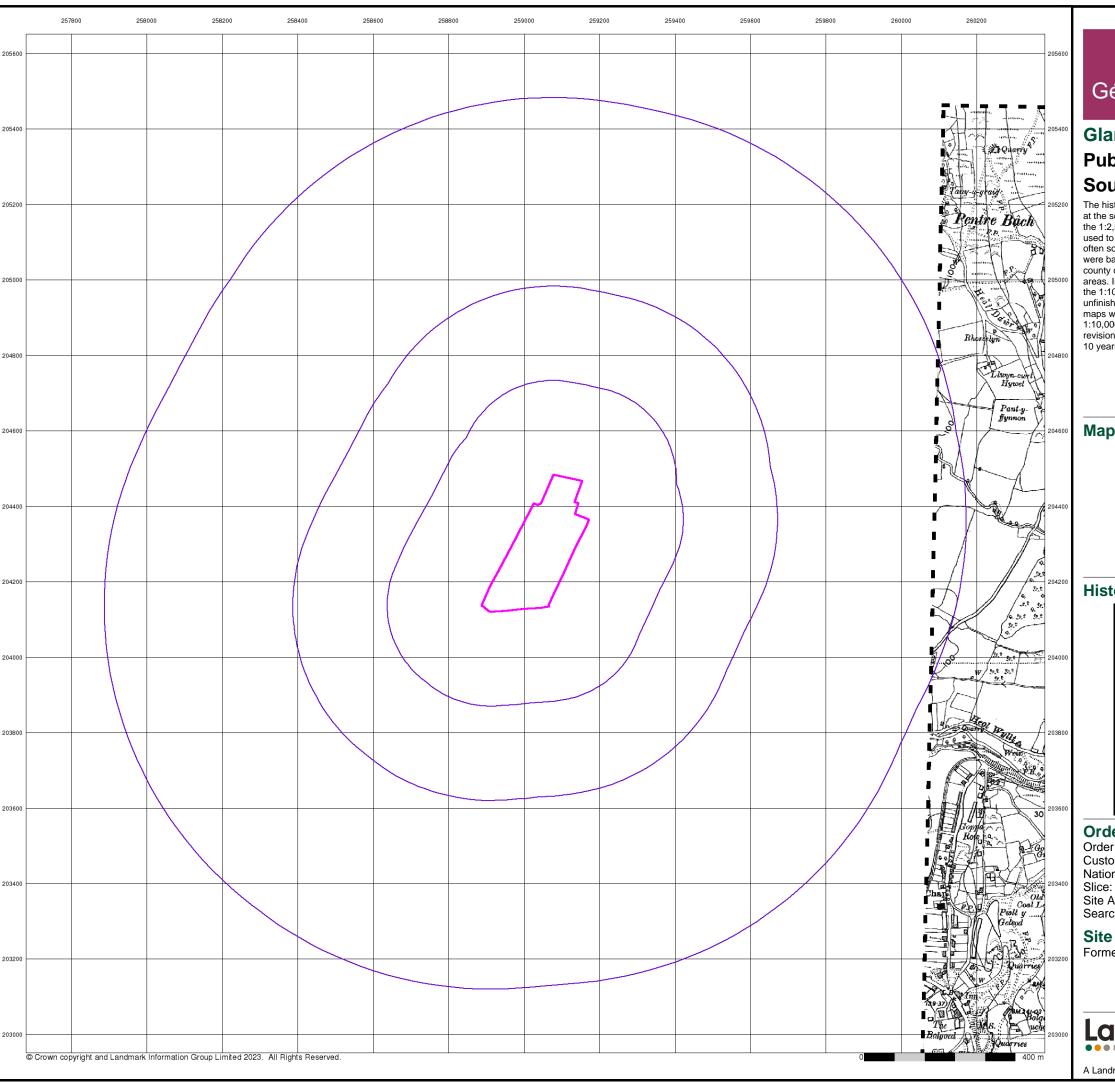
Map Name(s) and Date(s)

Historical Map - Slice A

Order Details

Order Number: 308357480_1_1 Customer Ref: 14180/LP National Grid Reference: 259040, 204290

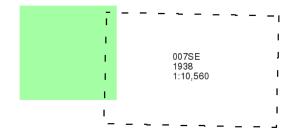
Site Area (Ha): Search Buffer (m): 1000


Site Details

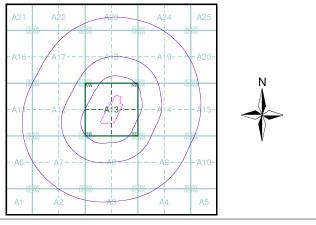
Former Tata Site, Pontarddulais, Swansea, SA4 8SH

0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v50.0 09-Mar-2023 Page 9 of 20


Glamorganshire

Published 1938


Source map scale - 1:10,560

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

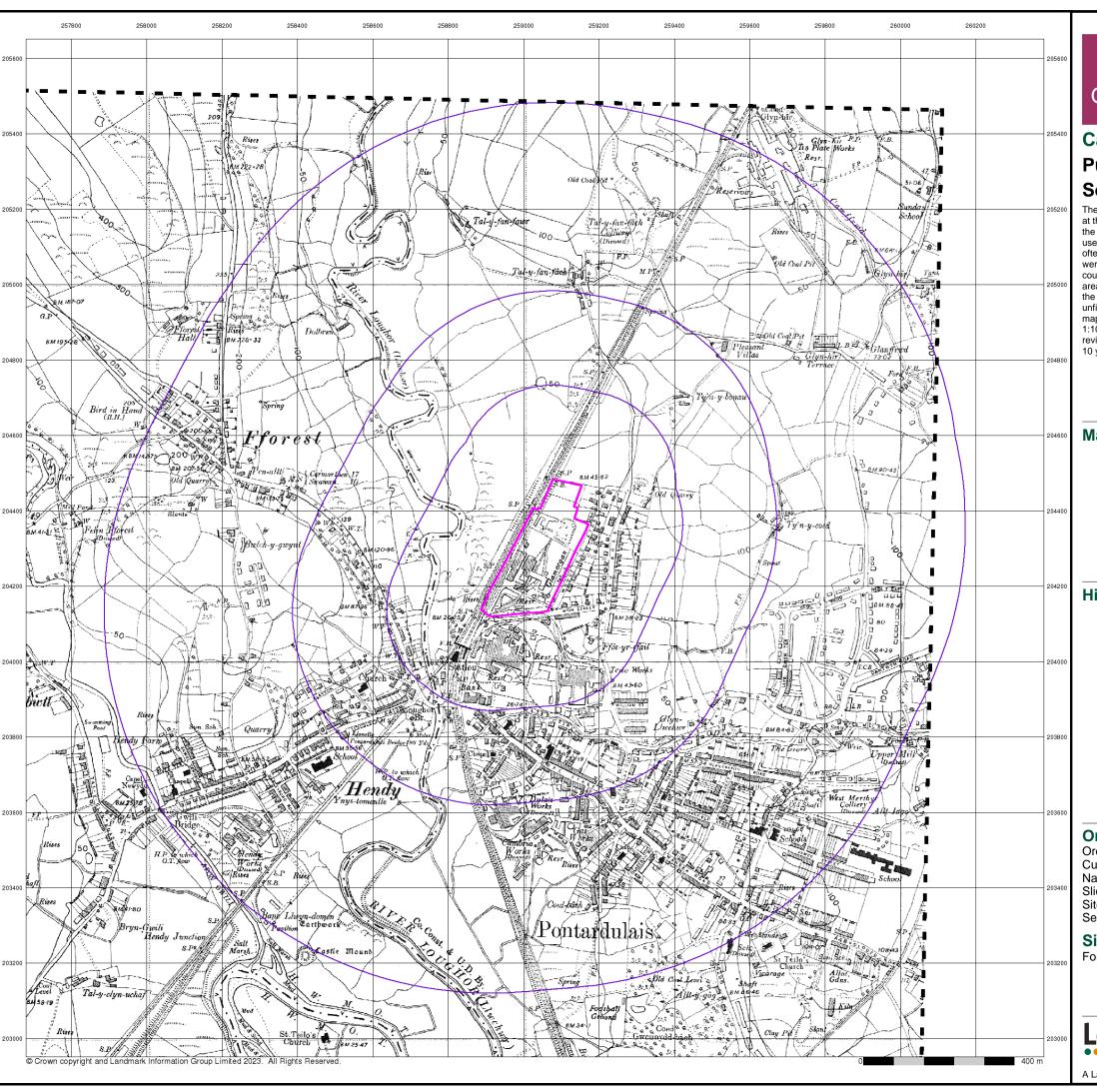
Map Name(s) and Date(s)

Historical Map - Slice A

Order Details

Order Number: 308357480_1_1 Customer Ref: 14180/LP National Grid Reference: 259040, 204290

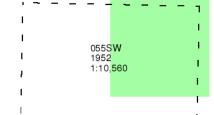
Site Area (Ha): 5.3 Search Buffer (m): 1000


Site Details

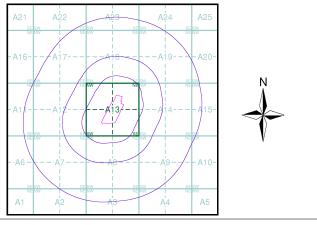
Former Tata Site, Pontarddulais, Swansea, SA4 8SH

0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v50.0 09-Mar-2023 Page 10 of 20


Carmarthenshire

Published 1952


Source map scale - 1:10,560

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

Map Name(s) and Date(s)

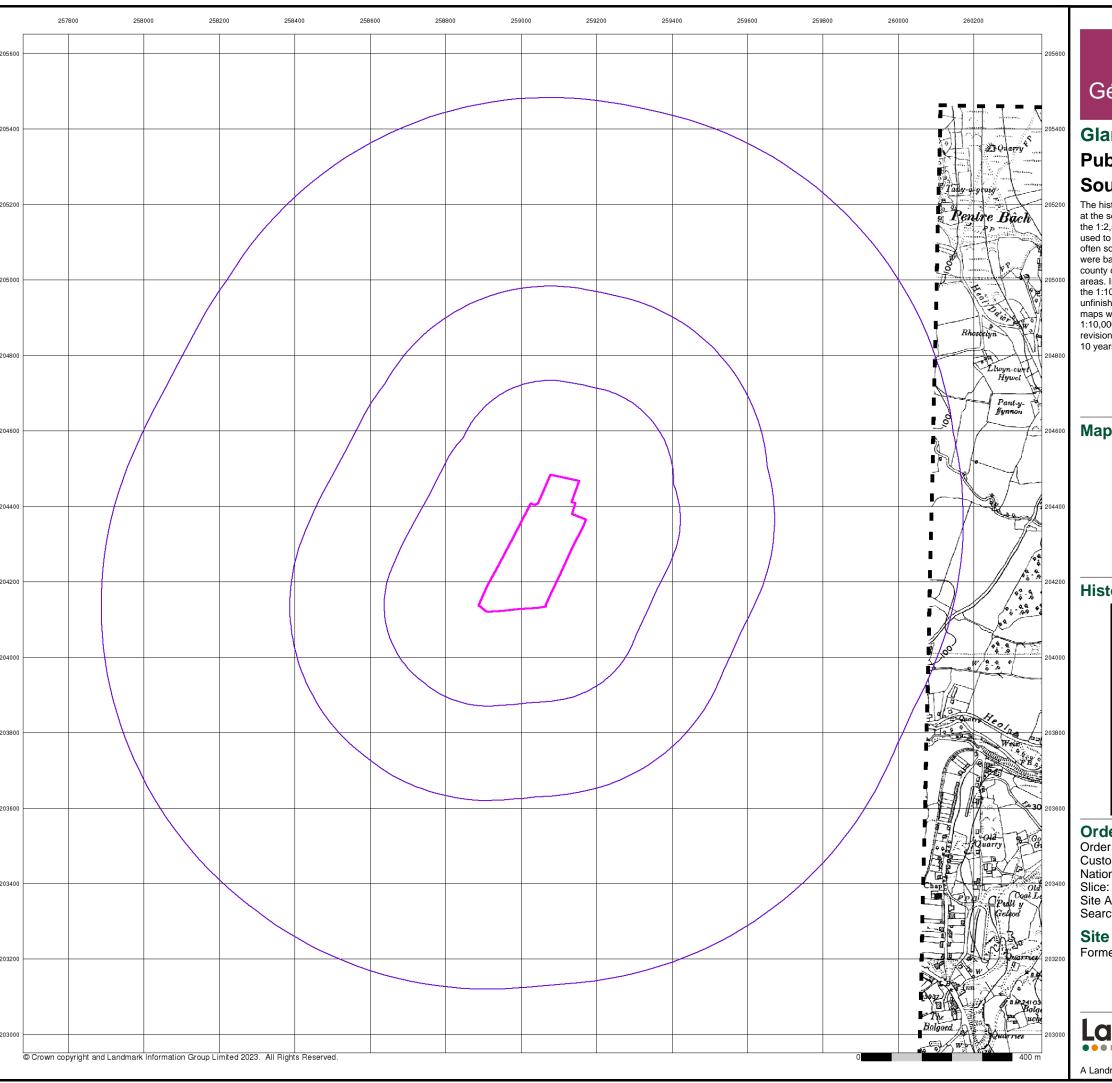
Historical Map - Slice A

Order Details

Order Number: 308357480_1_1 Customer Ref: 14180/LP National Grid Reference: 259040, 204290

5.3

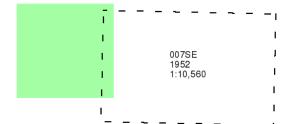
Site Area (Ha): Search Buffer (m): 1000


Site Details

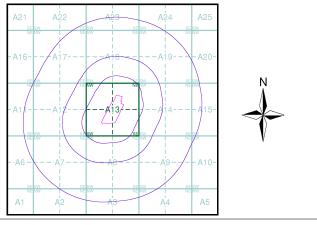
Former Tata Site, Pontarddulais, Swansea, SA4 8SH

0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v50.0 09-Mar-2023 Page 11 of 20


Glamorganshire

Published 1952


Source map scale - 1:10,560

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

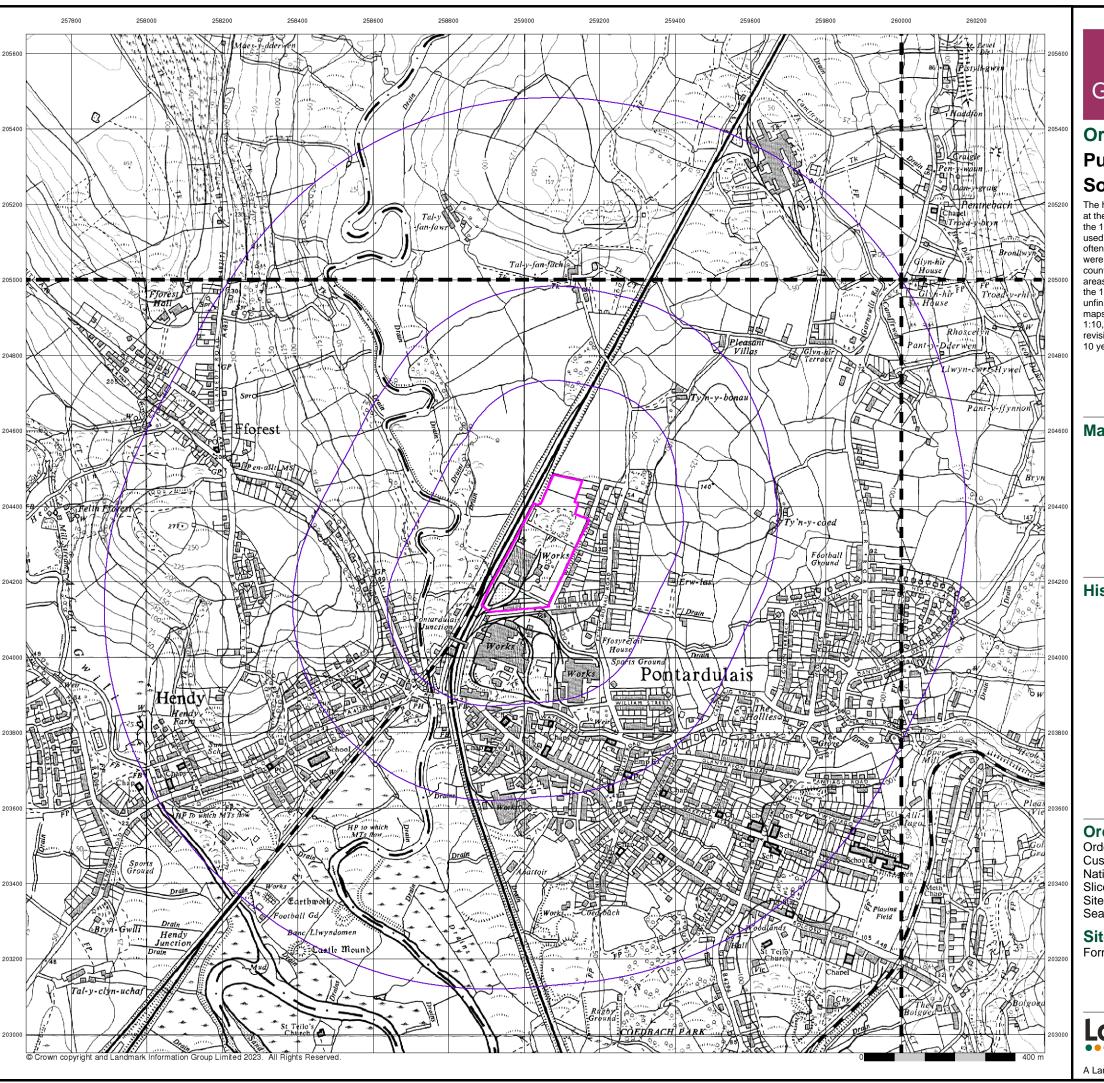
Map Name(s) and Date(s)

Historical Map - Slice A

Order Details

Order Number: 308357480_1_1 Customer Ref: 14180/LP National Grid Reference: 259040, 204290

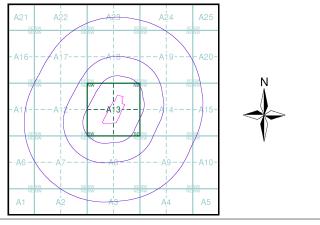
Site Area (Ha): Search Buffer (m): 5.3 1000


Site Details

Former Tata Site, Pontarddulais, Swansea, SA4 8SH

0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v50.0 09-Mar-2023 Page 12 of 20


Ordnance Survey Plan Published 1964 - 1965 Source map scale - 1:10,000

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

Map Name(s) and Date(s)

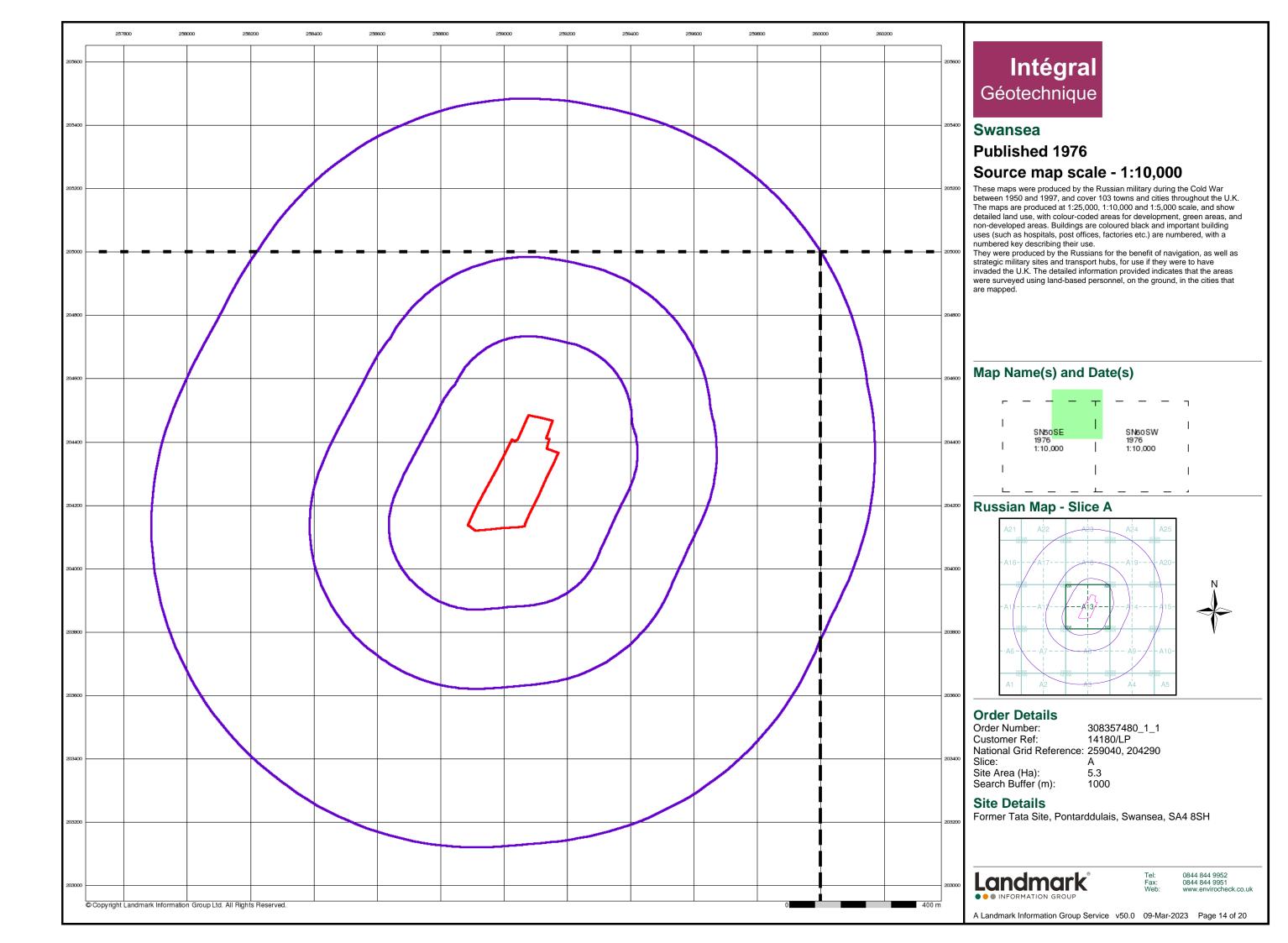
_	_				_
1	SN5	ONE	1	SN60NW	I
1	1965 1:10,		1	1965 1:10,560	ı
ı	1.10,	500	1	1.10,500	ı
_	_				_
		_	_		_
Ī	SN5	SE	ı	SN60SW	- I
 	1964		1	1964	-
1 1 1			1		

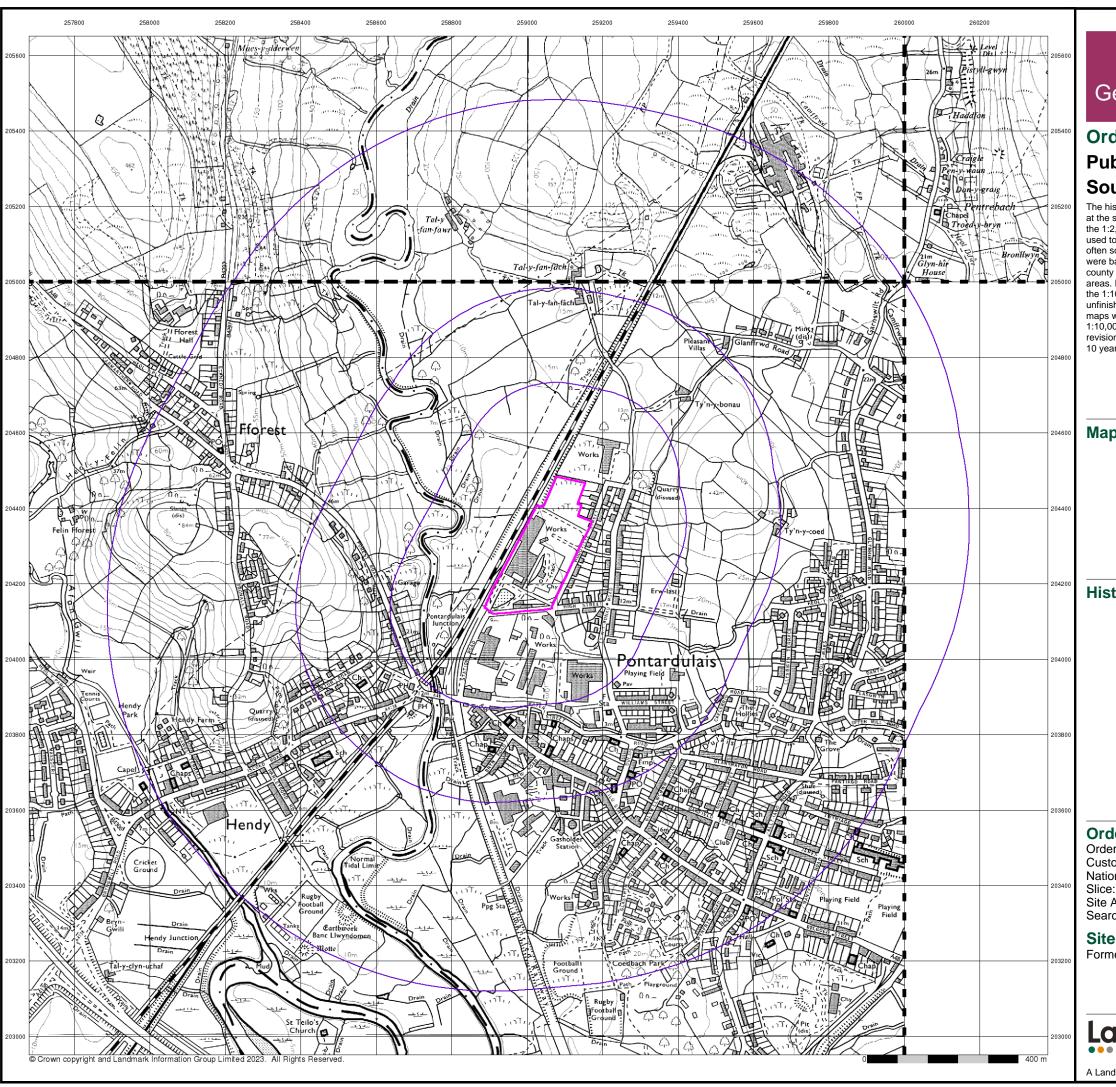
Historical Map - Slice A

Order Details

Order Number: 308357480_1_1 Customer Ref: 14180/LP National Grid Reference: 259040, 204290 Slice:

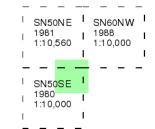
Site Area (Ha): Search Buffer (m): 1000

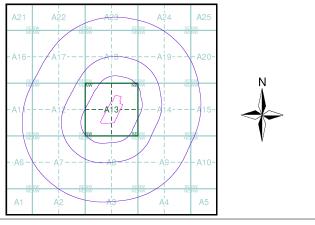

Site Details


Former Tata Site, Pontarddulais, Swansea, SA4 8SH

0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v50.0 09-Mar-2023 Page 13 of 20




Ordnance Survey Plan Published 1980 - 1988 Source map scale - 1:10,000

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

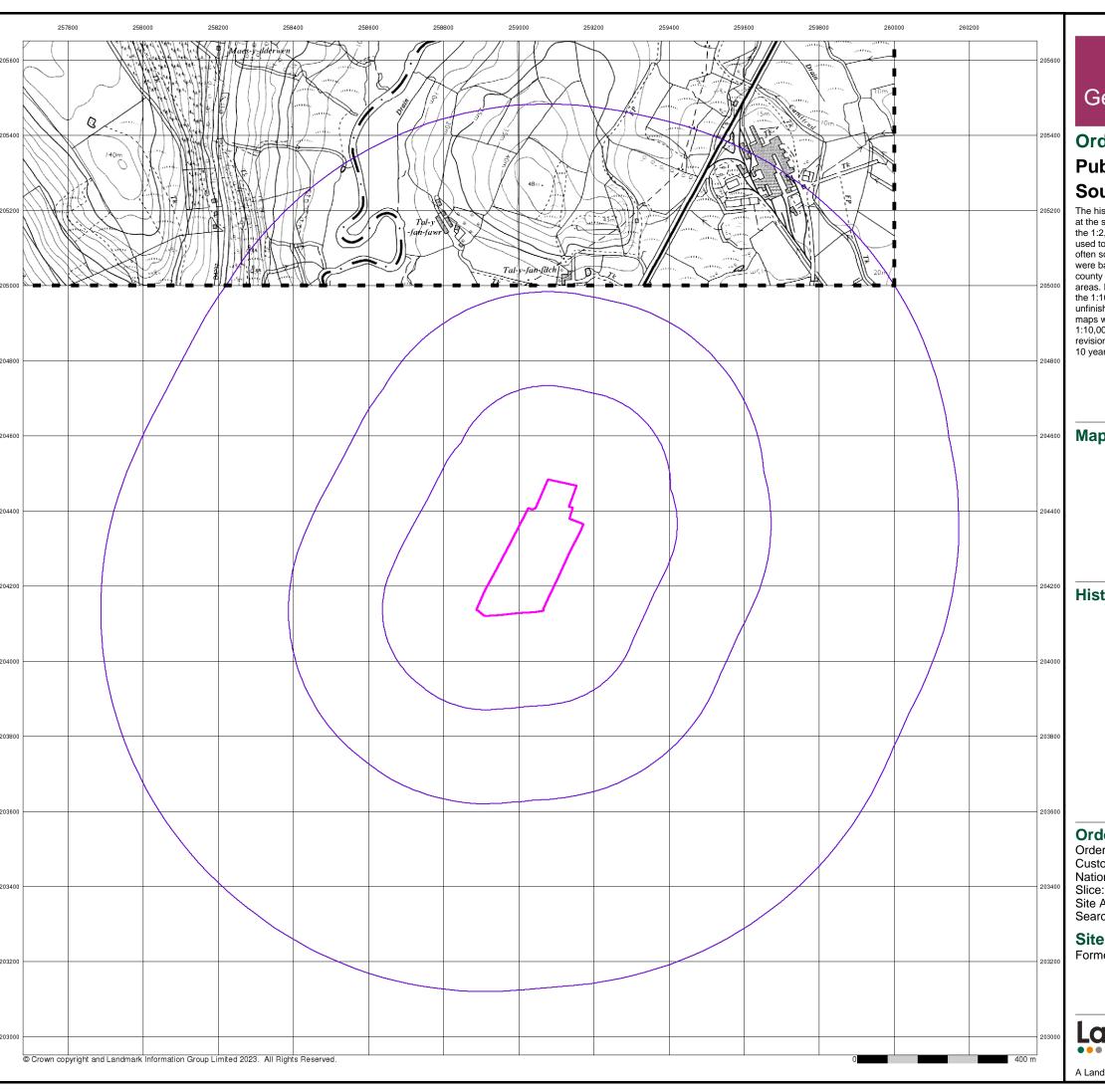
Map Name(s) and Date(s)

Historical Map - Slice A

Order Details

Order Number: 308357480_1_1 Customer Ref: 14180/LP National Grid Reference: 259040, 204290

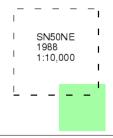
Site Area (Ha): Search Buffer (m): 1000


Site Details

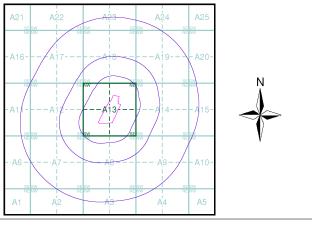
Former Tata Site, Pontarddulais, Swansea, SA4 8SH

0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v50.0 09-Mar-2023 Page 15 of 20



Ordnance Survey Plan Published 1988


Source map scale - 1:10,000

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

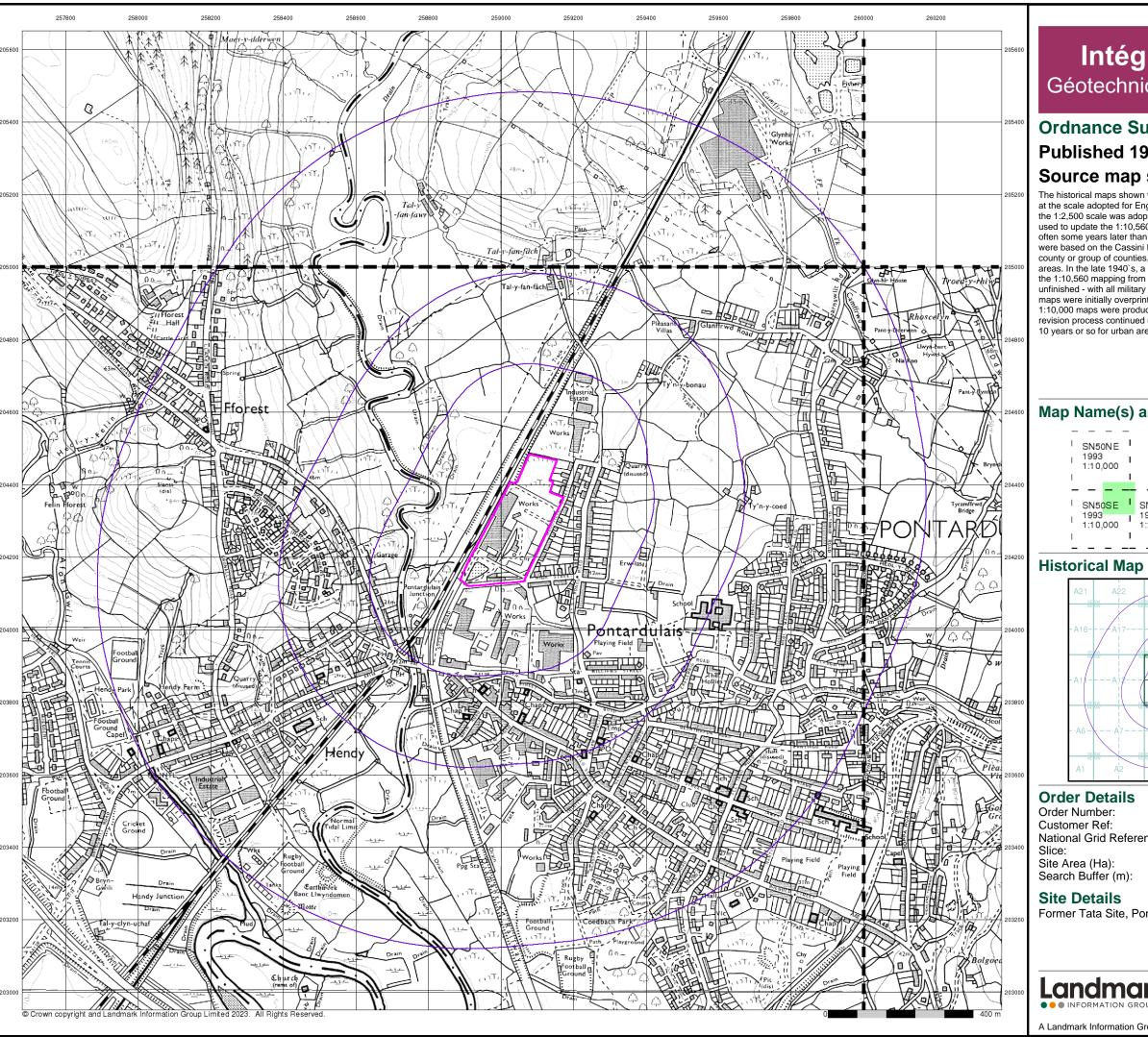
Map Name(s) and Date(s)

Historical Map - Slice A

Order Details

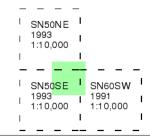
Order Number: 308357480_1_1 Customer Ref: 14180/LP National Grid Reference: 259040, 204290

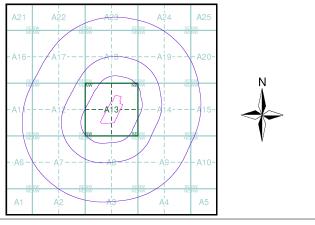
Site Area (Ha): Search Buffer (m): 5.3 1000


Site Details

Former Tata Site, Pontarddulais, Swansea, SA4 8SH

0844 844 9951 www.envirocheck.co.uk


A Landmark Information Group Service v50.0 09-Mar-2023 Page 16 of 20

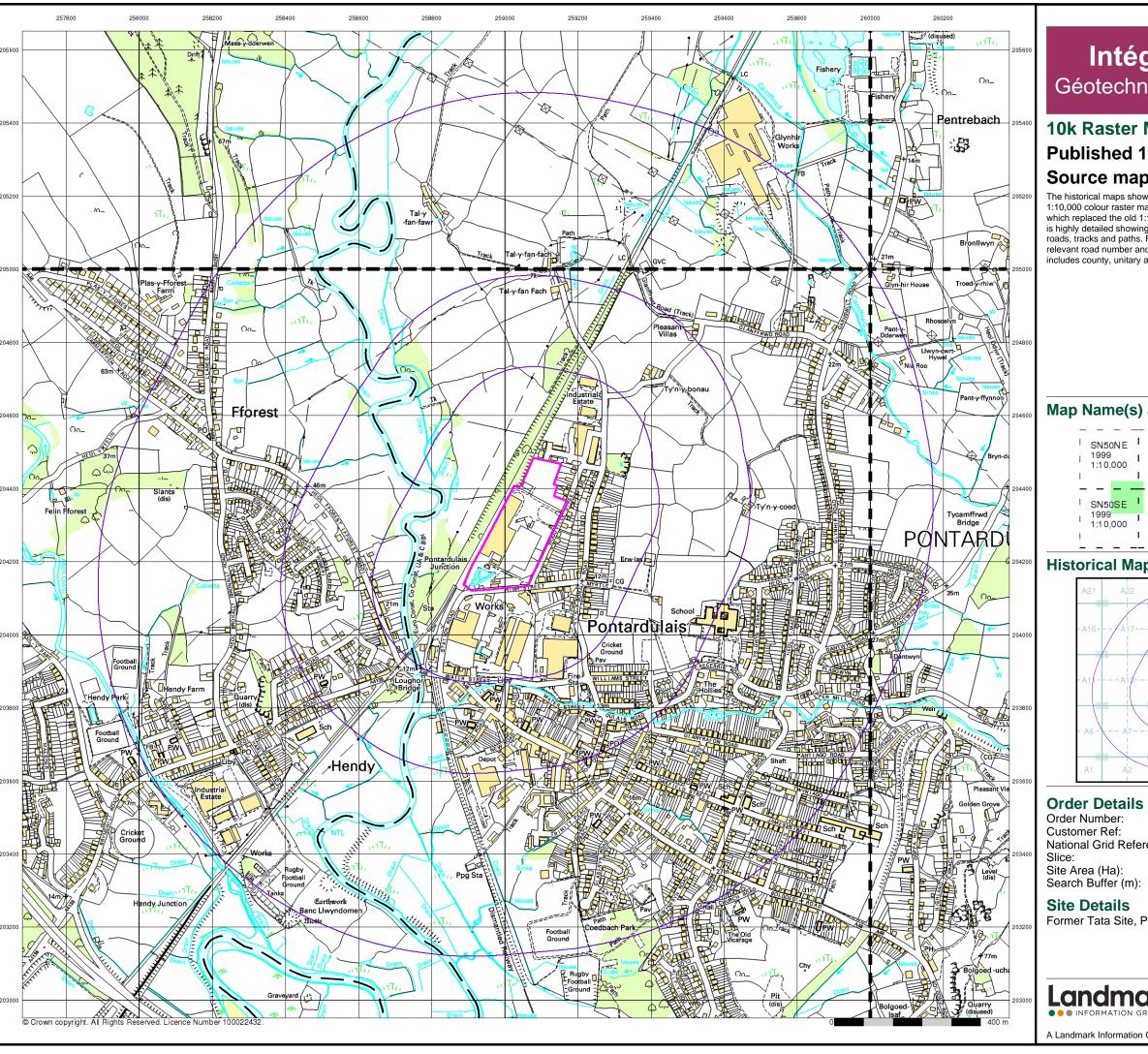

Ordnance Survey Plan Published 1991 - 1993 Source map scale - 1:10,000

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

Map Name(s) and Date(s)

Historical Map - Slice A

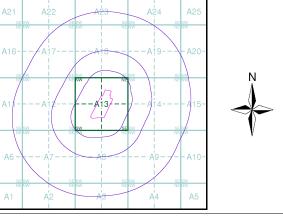
308357480_1_1 14180/LP National Grid Reference: 259040, 204290


1000

Former Tata Site, Pontarddulais, Swansea, SA4 8SH

0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v50.0 09-Mar-2023 Page 17 of 20


10k Raster Mapping **Published 1999** Source map scale - 1:10,000

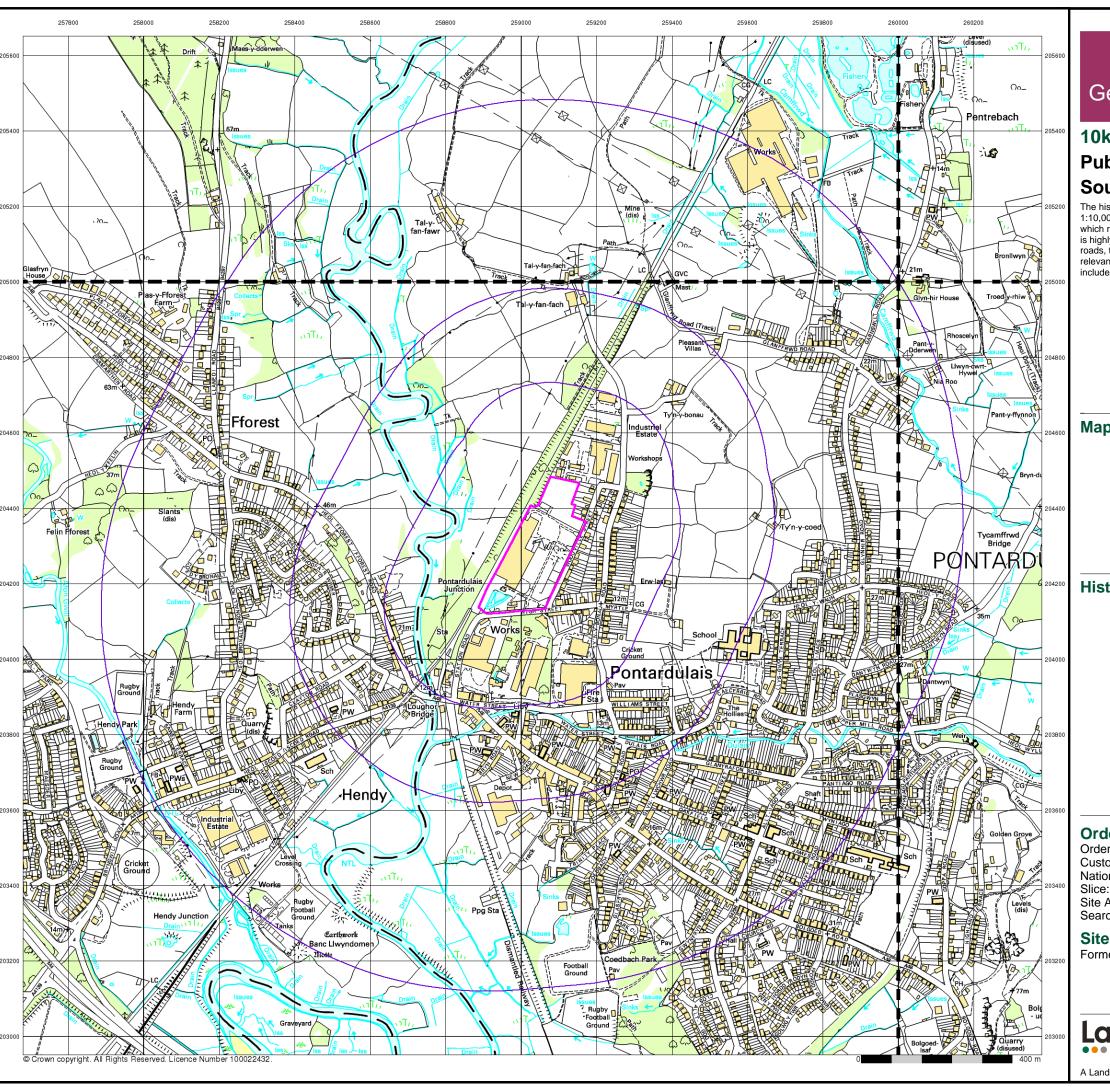
The historical maps shown were produced from the Ordnance Survey's 1:10,000 colour raster mapping. These maps are derived from Landplan which replaced the old 1:10,000 maps originally published in 1970. The data is highly detailed showing buildings, fences and field boundaries as well as all roads, tracks and paths. Road names are also included together with the relevant road number and classification. Boundary information depiction includes county, unitary authority, district, civil parish and constituency.

Map Name(s) and Date(s)

SN50	ONE	-1	SN60NW	I
1999		-1	1999	I
1.10,	000	1	1.10,000	I
_	_	-		_
SN50		1	SN60SW	- I
SN50 1999 1:10,		1	SN60SW 1999 1:10,000	-
	1999	SN50NE 1999 1:10,000	1999	1999 1999

Historical Map - Slice A

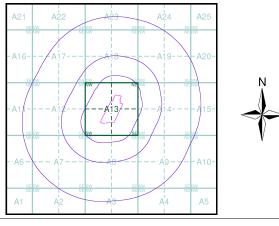
308357480_1_1 14180/LP National Grid Reference: 259040, 204290


1000

Former Tata Site, Pontarddulais, Swansea, SA4 8SH

0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v50.0 09-Mar-2023 Page 18 of 20


10k Raster Mapping Published 2006 Source map scale - 1:10,000

The historical maps shown were produced from the Ordnance Survey's 1:10,000 colour raster mapping. These maps are derived from Landplan which replaced the old 1:10,000 maps originally published in 1970. The data is highly detailed showing buildings, fences and field boundaries as well as all roads, tracks and paths. Road names are also included together with the relevant road number and classification. Boundary information depiction includes county, unitary authority, district, civil parish and constituency.

Map Name(s) and Date(s)

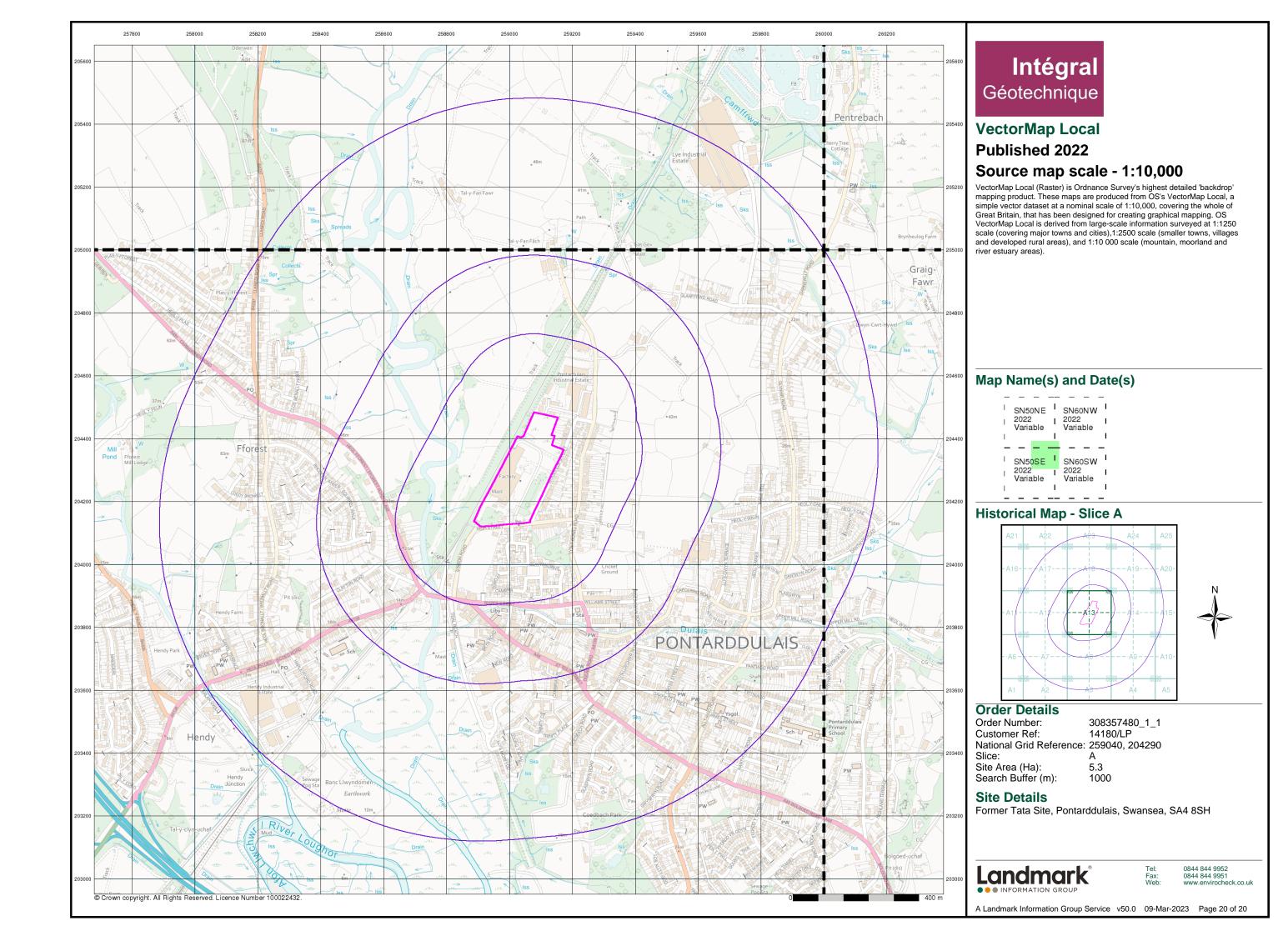
_	_	_		_	_	_
1	SN5	ONE	-1	SN6	ONW	, т
1	2006		1	2006	0.000	ı
1	1.10	000	1	1.10	,000	I
_	_	_	_	_	_	_
1	SN5		-1		iosw	, 1
1	2006		Т	1:10	6),000	I
1			-1			ı

Historical Map - Slice A

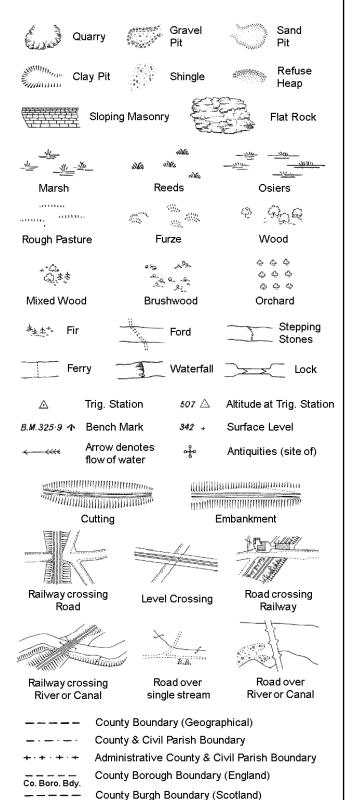
Order Details

Order Number: 308357480_1_1 Customer Ref: 14180/LP National Grid Reference: 259040, 204290

Site Area (Ha): Search Buffer (m): 1000


Site Details

Former Tata Site, Pontarddulais, Swansea, SA4 8SH


0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v50.0 09-Mar-2023 Page 19 of 20

Historical Mapping Legends

Ordnance Survey County Series and Ordnance Survey Plan 1:2,500

Co. Burgh Bdy.

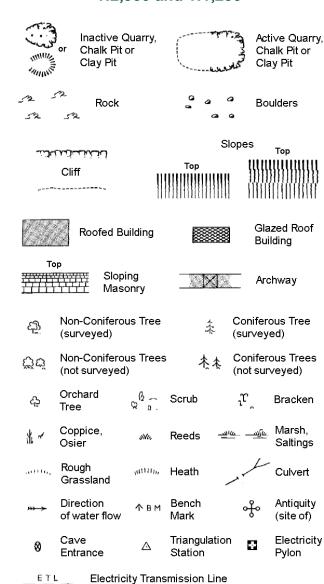
Bridle Road

Foot Bridge

Mile Stone

M.P.M.R. Mooring Post or Ring

Electricity Pylor


B.R.

E.P

F.B.

M.S

Ordnance Survey Plan, Additional SIMs and Large-Scale National Grid Data 1:2,500 and **Supply of Unpublished Survey Information** 1:2,500 and 1:1,250

o A.	Symbol mark mereing cha		where boundary
вн	Beer House	Р	Pillar, Pole or Post
BP, BS	Boundary Post or Stone	PO	Post Office
Cn, C	Capstan, Crane	PC	Public Convenience
Chy	Chimney	PH	Public House
D Fn	Drinking Fountain	Pp	Pump
EIP	Electricity Pillar or Post	SB, S Br	Signal Box or Bridge
FAP	Fire Alarm Pillar	SP, SL	Signal Post or Light
FB	Foot Bridge	Spr	Spring
GP	Guide Post	Tk	Tank or Track
Н	Hydrant or Hydraulic	TCB	Telephone Call Box
LC	Level Crossing	TCP	Telephone Call Post
МН	Manhole	Tr	Trough
MP	Mile Post or Mooring Post	WrPt,WrT	Water Point, Water Tap
MS	Mile Stone	W	Well

Wd Pp

Wind Pump

County Boundary (Geographical) County & Civil Parish Boundary

Admin. County or County Bor. Boundary

FΒ

Filter Bed

Fn / D Fn Fountain / Drinking Ftn.

Gas Governer

Guide Post

Manhole

Gas Valve Compound

Mile Post or Mile Stone

Civil Parish Boundary

London Borough Boundary

L B Bdy

NTL

Normal Tidal Limit

Police Call Box

Telephone Call Box

Signal Post

Pump

Sluice

Spring

Trough

Well

S.P

Sl.

 T_{T}

1:1,250

			SIA	nnee		
مالاند	لكنابك		Slopes _{Top}			
	Cliff		Гор	<u> </u>		
				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
		[][[]][]	шааши	[[]][]][][][][][][][][][][][][][][][][][
523	Rock		23	Rock (scattered)		
	Boulders		<i>\triangle</i>	Boulders (scattered)		
	Positioned	l Boulder		Scree		
<u>කු</u>	Non-Conif (surveyed	erous Tree)	丰	Coniferous Tree (surveyed)		
ర్లోల్	Non-Conif (not surve	erous Trees yed)	春春	Coniferous Trees (not surveyed)		
දා	Orchard Tree	ç ⁶ a. So	rub	_ໃ ໃ Bracken		
* ~	Coppice, Osier	.₩. Re	eds 👊	<u>ட அம்</u> Marsh, Saltings		
assur,	Rough Grassland	_{ишин} , Не	eath	Culvert		
>>>	Direction of water flo		angulation ation	Antiquity (site of)		
E_TL	Electric	city Transmissio	n Line	Electricity Pylon		
/ k / вм	231.60m E	Bench Mark		Buildings with Building Seed		
	Roofe	ed Building		Glazed Roof Building		
		Ci∨il parish/co	mmunity h	oundarv		
		District bound		,		
			-			
_ ·		County bound	=			
٥	1	Boundary post	/stone			
£				ol (note: these ed pairs or groups		
Bks	Barracks		Р	Pillar, Pole or Post		
Bty	Battery		PO	Post Office		
Cemy	Cemetery		PC	Public Convenience		
Chy	Chimney		Рр	Pump		
Cis	Cistern		Ppg Sta	Pumping Station		
Dismtd F	Rly Disman	itled Railway	PW	Place of Worship		
El Gen S	Station		Sewage P	pg Sta Sewage Pumping Station		
EIP	Electricity	Pole, Pillar	SB, S Br	Signal Box or Bridge		
El Sub S	ta Electricity	Sub Station	SP, SL	Signal Post or Light		

Spr

Tr

Wd Pp

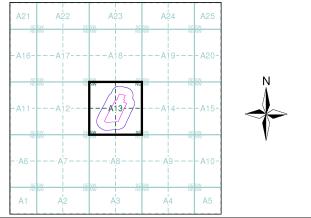
Wks

Spring

Trough

Wind Pump Wr Pt. Wr T Water Point, Water Tap

Tank or Track


Works (building or area)

Intégral Géotechnique

Historical Mapping & Photography included:

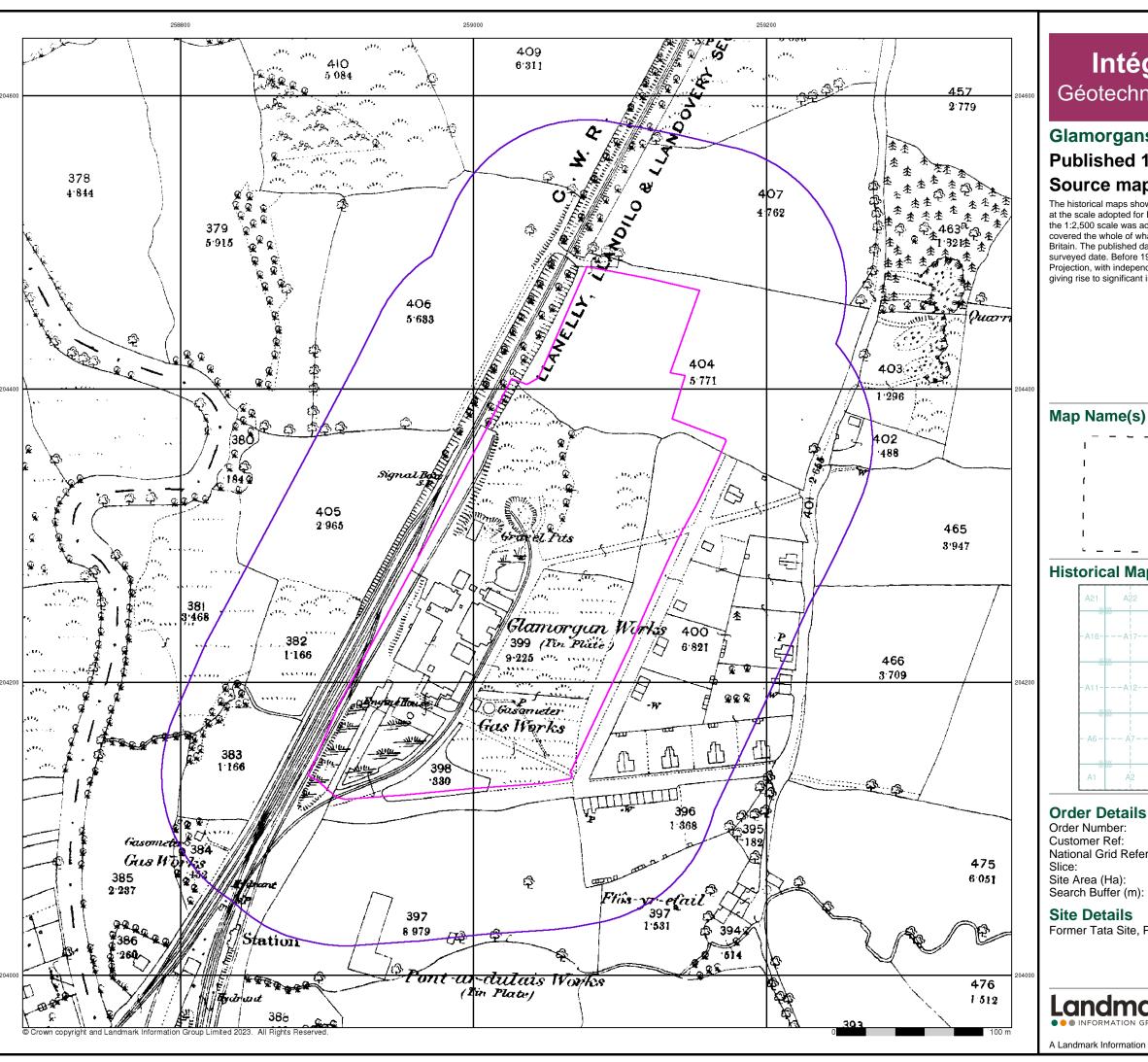
Mapping Type	Scale	Date	Pg
Glamorganshire	1:2,500	1879	2
Glamorganshire	1:2,500	1899	3
Carmarthenshire	1:2,500	1906	4
Carmarthenshire	1:2,500	1916	5
Ordnance Survey Plan	1:2,500	1960	6
Ordnance Survey Plan	1:2,500	1972 - 1974	7
Additional SIMs	1:2,500	1978 - 1988	8
Additional SIMs	1:2,500	1988 - 1992	9
Ordnance Survey Plan	1:2,500	1992	10
Large-Scale National Grid Data	1:2,500	1993	11
Large-Scale National Grid Data	1:2,500	1993 - 1994	12
Large-Scale National Grid Data	1:2,500	1996	13
Historical Aerial Photography	1:2,500	2001	14

Historical Map - Segment A13

Order Details

Order Number: 308357480_1_1 14180/LP Customer Ref: National Grid Reference: 259040, 204290 Slice:

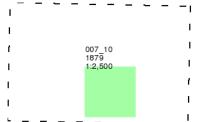
Site Area (Ha): 5.3 Search Buffer (m): 100


Site Details

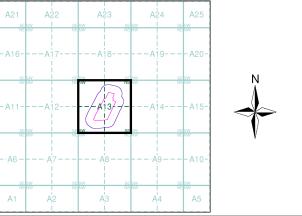
Former Tata Site, Pontarddulais, Swansea, SA4 8SH

0844 844 9952

A Landmark Information Group Service v50.0 09-Mar-2023 Page 1 of 14


Glamorganshire

Published 1879

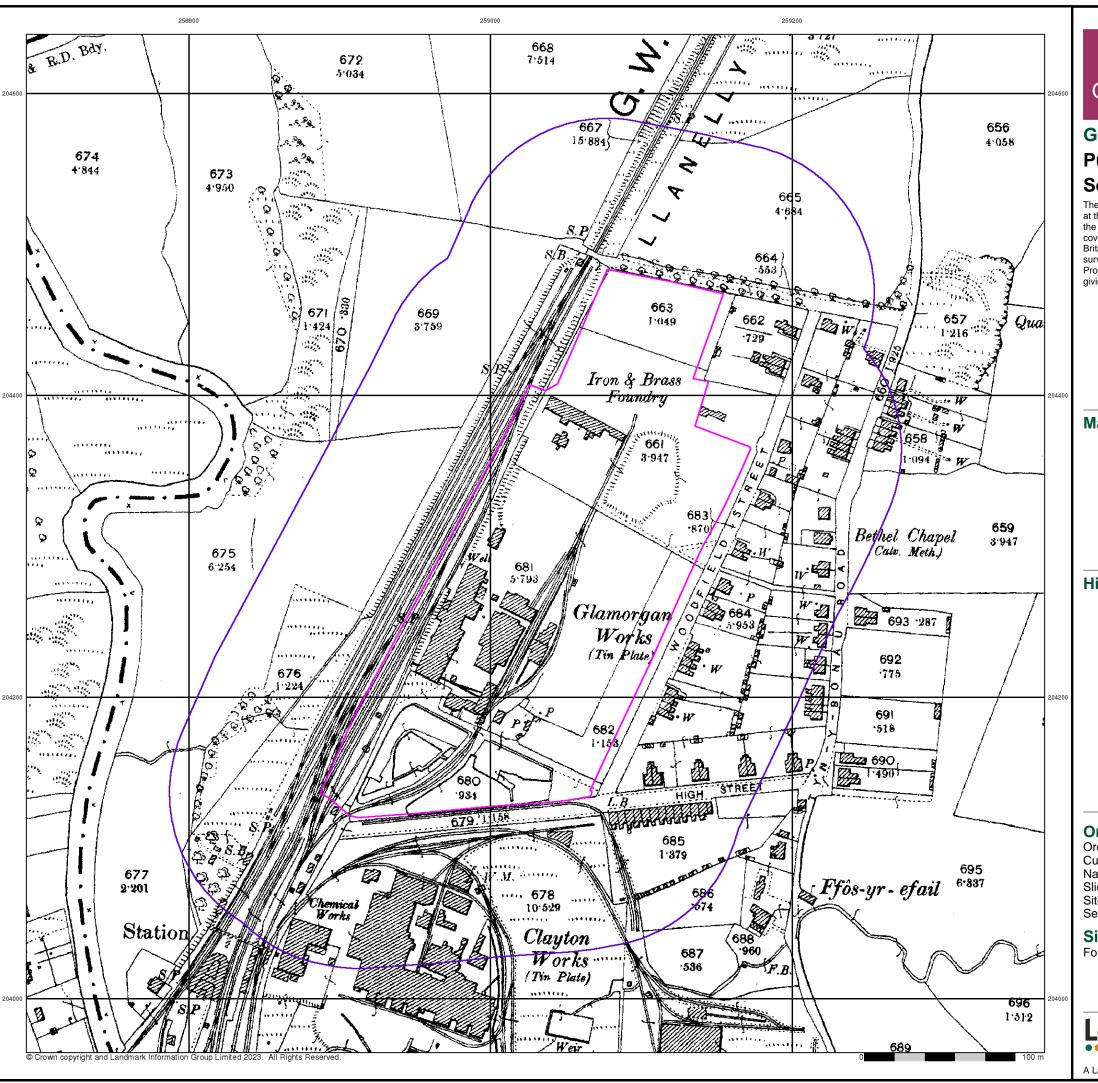

Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

Historical Map - Segment A13

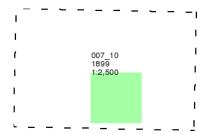
308357480_1_1 14180/LP National Grid Reference: 259040, 204290


> 5.3 100

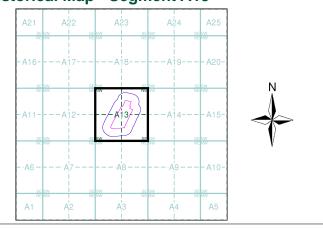
Former Tata Site, Pontarddulais, Swansea, SA4 8SH

0844 844 9952

A Landmark Information Group Service v50.0 09-Mar-2023 Page 2 of 14


Glamorganshire

Published 1899


Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

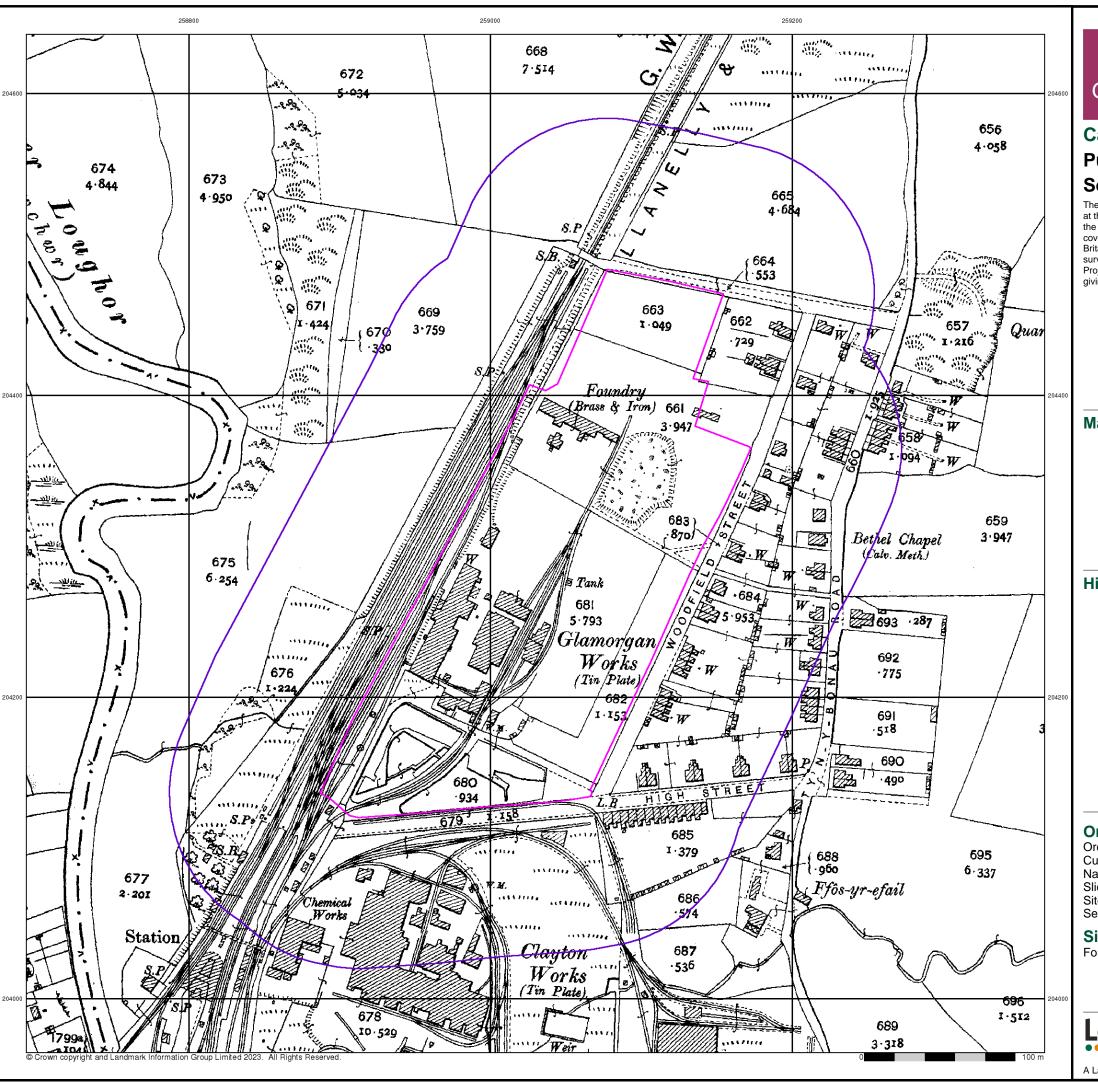
Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

Order Number: 308357480_1_1 Customer Ref: 14180/LP National Grid Reference: 259040, 204290

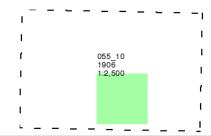
Site Area (Ha): Search Buffer (m): 5.3 100


Site Details

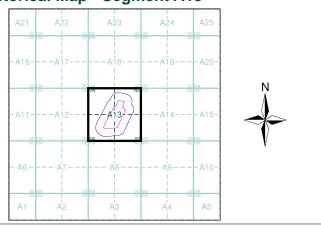
Former Tata Site, Pontarddulais, Swansea, SA4 8SH

0844 844 9952

A Landmark Information Group Service v50.0 09-Mar-2023 Page 3 of 14



Carmarthenshire


Published 1906 Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

Order Number: 308357480_1_1 Customer Ref: 14180/LP National Grid Reference: 259040, 204290

Slice:

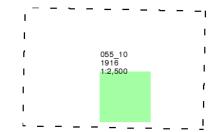
Site Area (Ha): Search Buffer (m): 5.3 100

Site Details

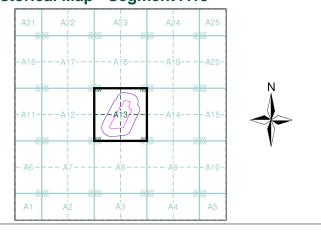
Former Tata Site, Pontarddulais, Swansea, SA4 8SH

0844 844 9952

A Landmark Information Group Service v50.0 09-Mar-2023 Page 4 of 14


Carmarthenshire

Published 1916


Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

Order Number: 308357480_1_1 14180/LP Customer Ref: National Grid Reference: 259040, 204290

Slice:

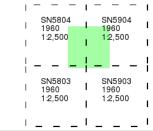
Site Area (Ha): Search Buffer (m): 5.3 100

Site Details

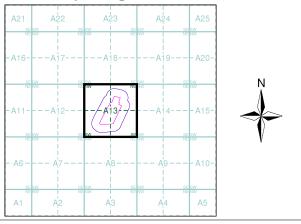
Former Tata Site, Pontarddulais, Swansea, SA4 8SH

0844 844 9952

A Landmark Information Group Service v50.0 09-Mar-2023 Page 5 of 14


Ordnance Survey Plan

Published 1960


Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

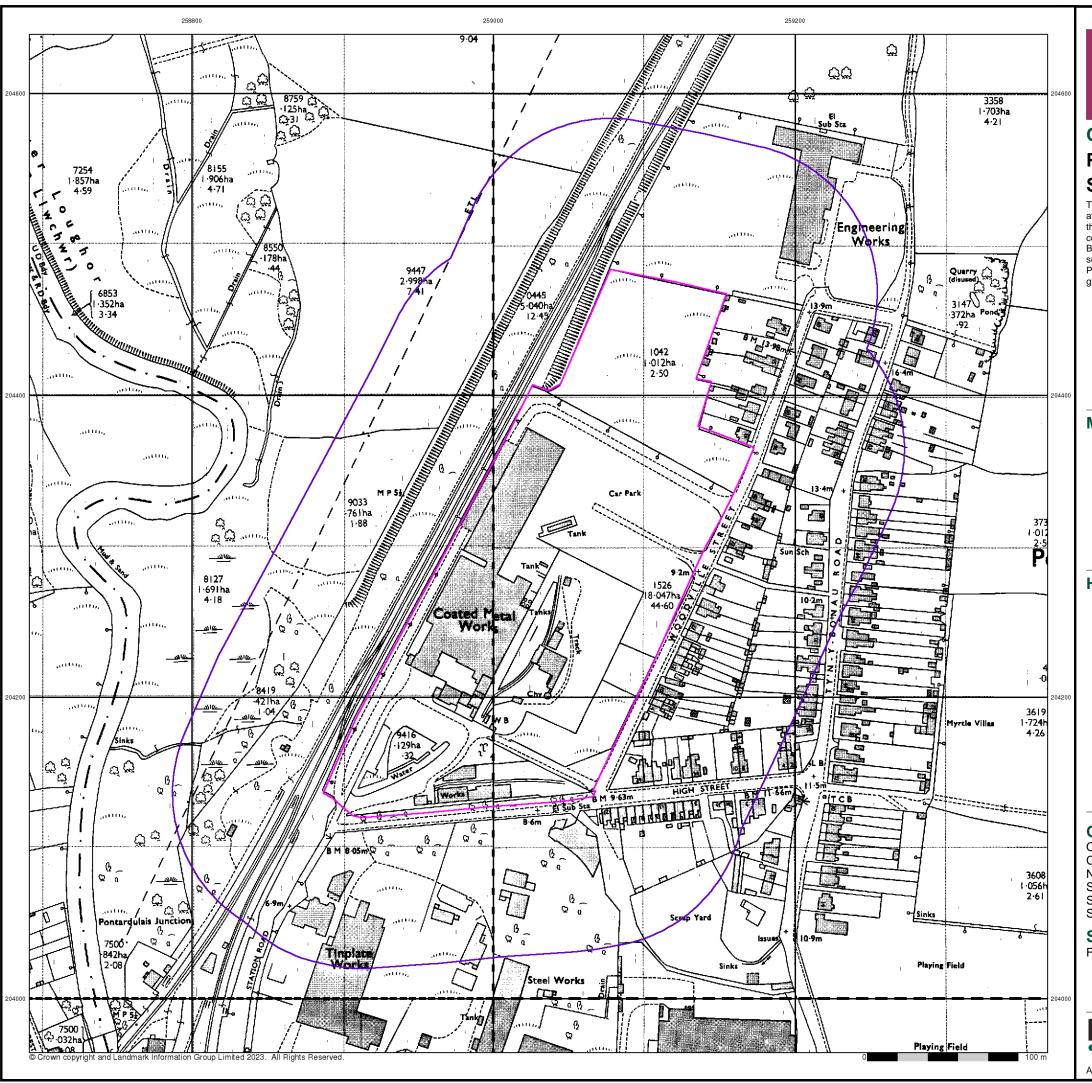
Historical Map - Segment A13

Order Details

Order Number: 308357480_1_1 Customer Ref: 14180/LP National Grid Reference: 259040, 204290

Slice:

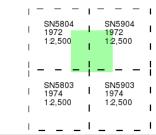
Site Area (Ha): Search Buffer (m): 5.3 100


Site Details

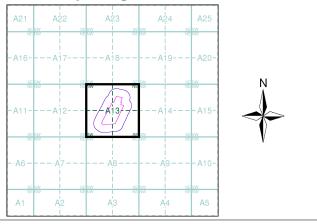
Former Tata Site, Pontarddulais, Swansea, SA4 8SH

0844 844 9952

A Landmark Information Group Service v50.0 09-Mar-2023 Page 6 of 14



Ordnance Survey Plan


Published 1972 - 1974 Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

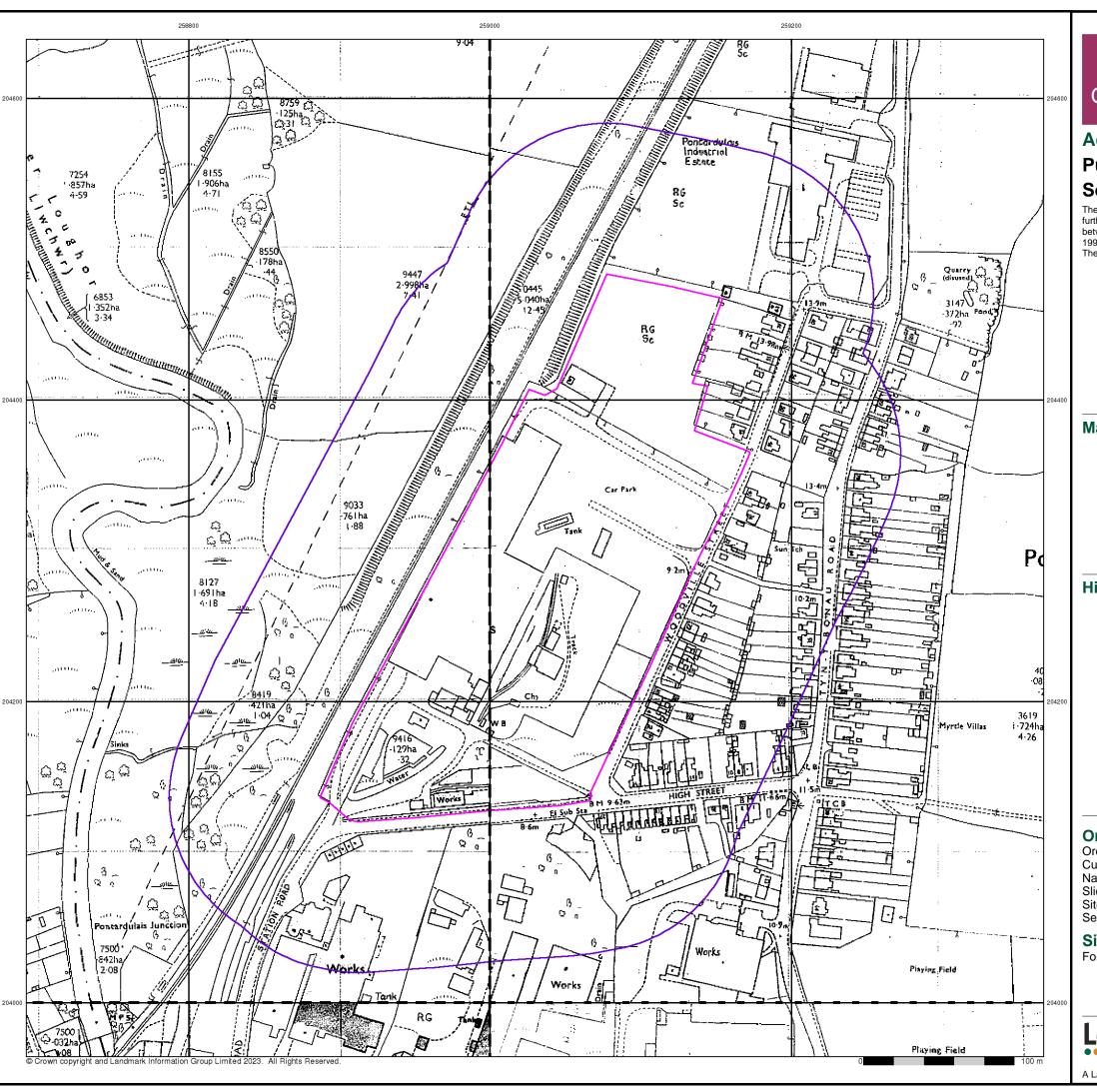
Historical Map - Segment A13

Order Details

Order Number: 308357480_1_1 Customer Ref: 14180/LP National Grid Reference: 259040, 204290

Slice:

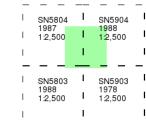
Site Area (Ha): Search Buffer (m): 5.3 100


Site Details

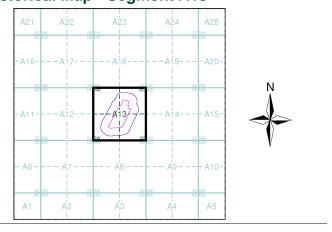
Former Tata Site, Pontarddulais, Swansea, SA4 8SH

0844 844 9952

A Landmark Information Group Service v50.0 09-Mar-2023 Page 7 of 14



Additional SIMs


Published 1978 - 1988 Source map scale - 1:2,500

The SIM cards (Ordnance Survey's `Survey of Information on Microfilm') are further, minor editions of mapping which were produced and published in between the main editions as an area was updated. They date from 1947 to 1994, and contain detailed information on buildings, roads and land-use. These maps were produced at both 1:2,500 and 1:1,250 scales.

Map Name(s) and Date(s)

Historical Map - Segment A13

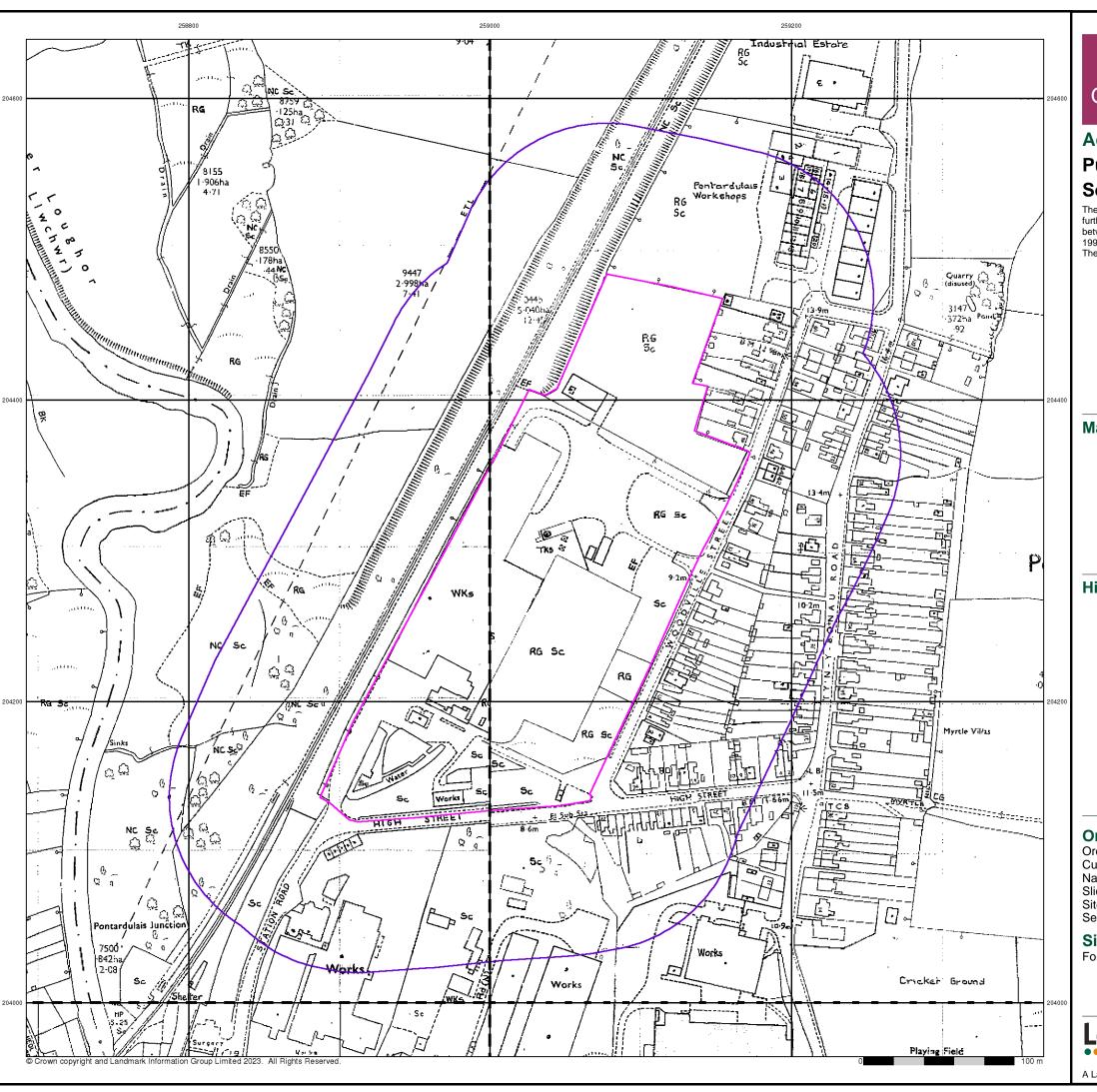
Order Details

Order Number: 308357480_1_1 Customer Ref: 14180/LP National Grid Reference: 259040, 204290

Slice:

Site Area (Ha): 5.3 Search Buffer (m): 100

Site Details

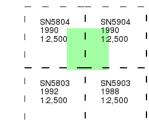

Former Tata Site, Pontarddulais, Swansea, SA4 8SH

Landmark

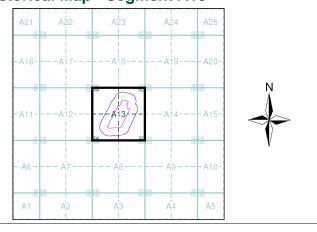
INFORMATION GROUP

Tel: 0844 844 9952 Fax: 0844 844 9951 Web: www.envirocheck

A Landmark Information Group Service v50.0 09-Mar-2023 Page 8 of 14



Additional SIMs


Published 1988 - 1992 Source map scale - 1:2,500

The SIM cards (Ordnance Survey's `Survey of Information on Microfilm') are further, minor editions of mapping which were produced and published in between the main editions as an area was updated. They date from 1947 to 1994, and contain detailed information on buildings, roads and land-use. These maps were produced at both 1:2,500 and 1:1,250 scales.

Map Name(s) and Date(s)

Historical Map - Segment A13

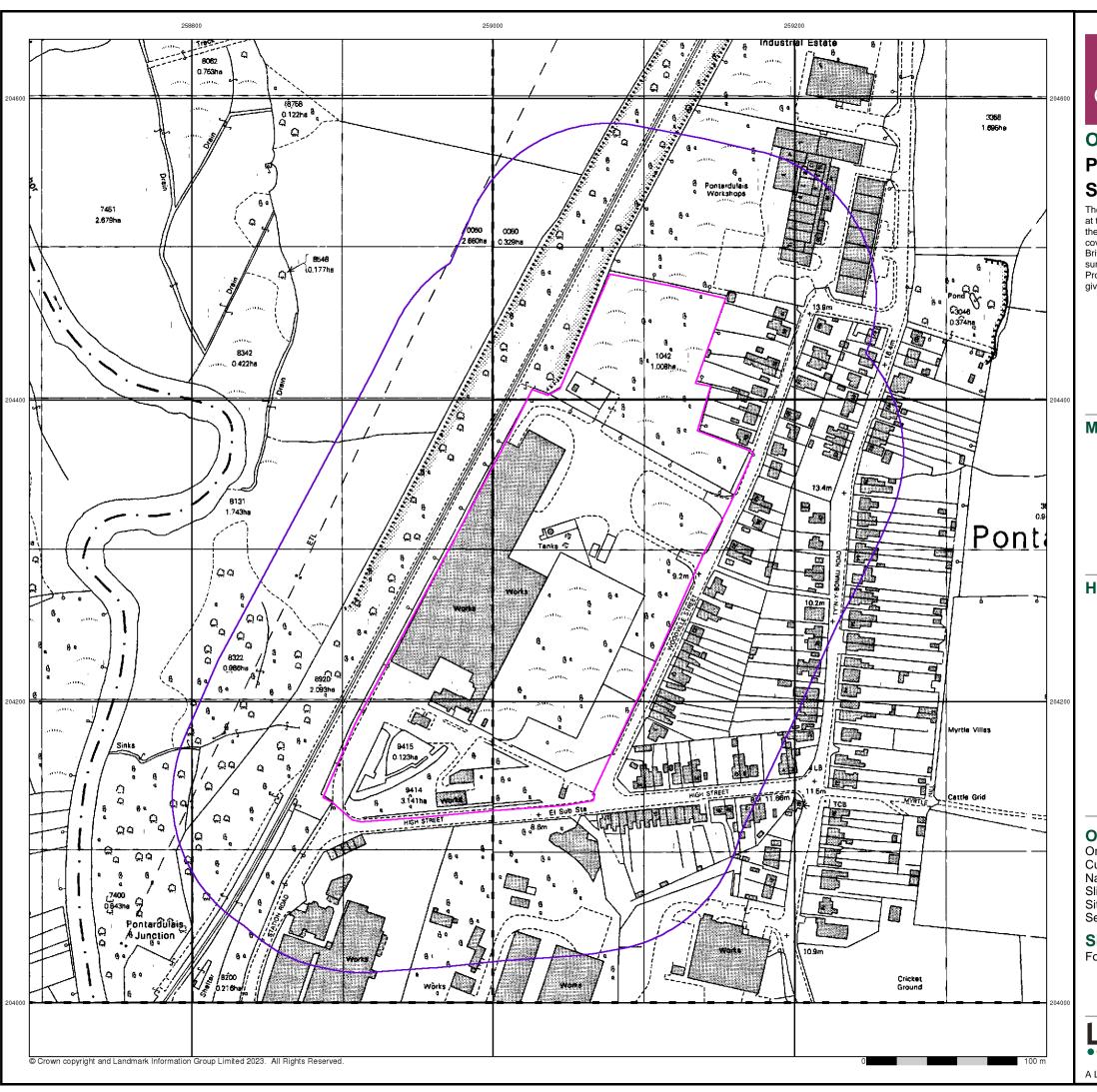
Order Details

Order Number: 308357480_1_1
Customer Ref: 14180/LP
National Grid Reference: 259040, 204290

Slice:

Site Area (Ha): 5.3 Search Buffer (m): 100

Site Details

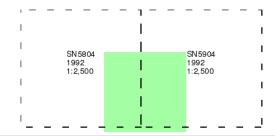

Former Tata Site, Pontarddulais, Swansea, SA4 8SH

Landmark

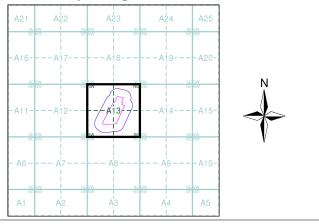
INFORMATION GROUP

Tel: 0844 844 9952 Fax: 0844 844 9951 Web: www.envirocheck

A Landmark Information Group Service v50.0 09-Mar-2023 Page 9 of 14


Ordnance Survey Plan

Published 1992


Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

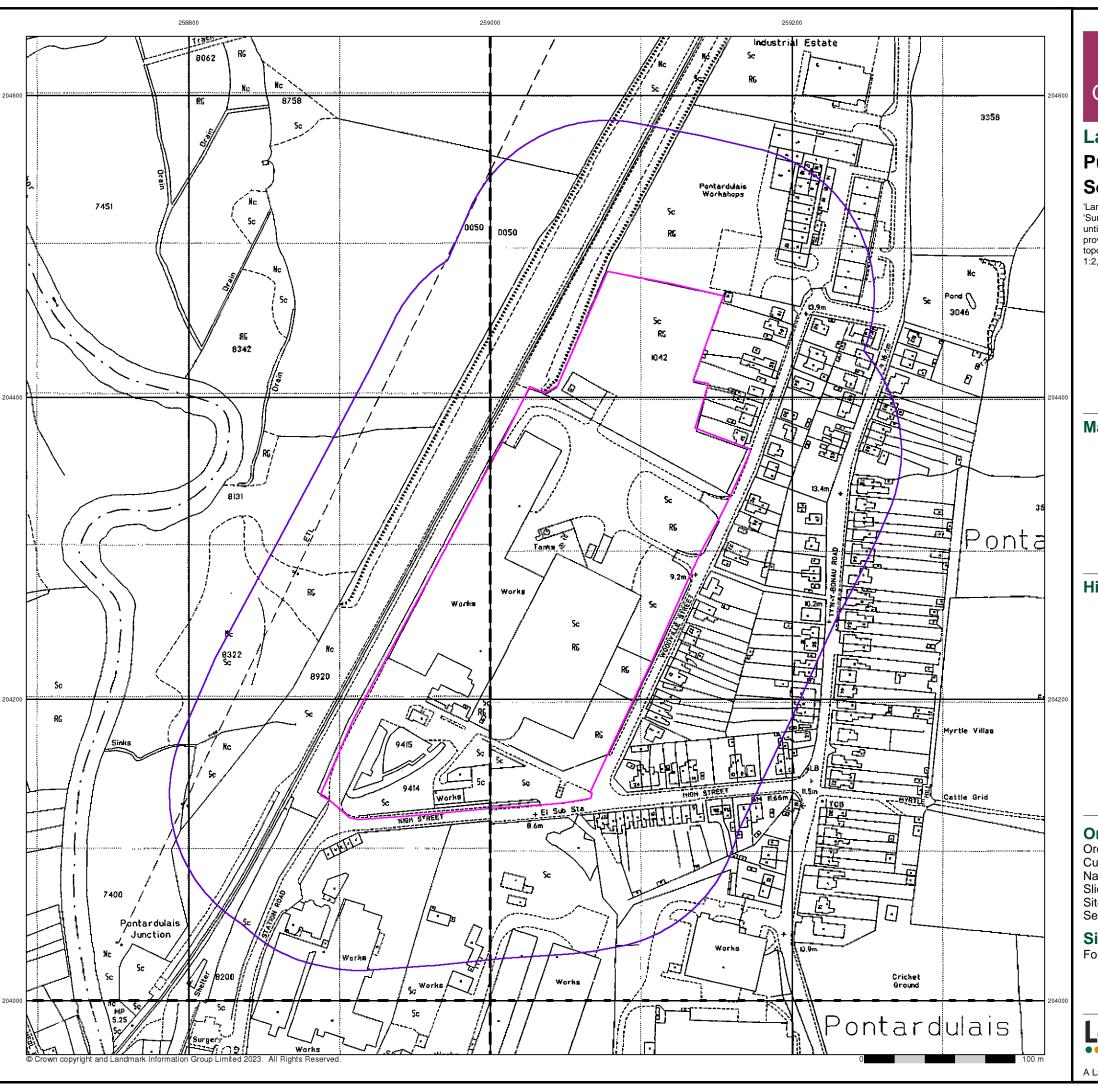
Historical Map - Segment A13

Order Details

Order Number: 308357480_1_1 Customer Ref: 14180/LP National Grid Reference: 259040, 204290

Slice:

Site Area (Ha): 5.3 Search Buffer (m): 100

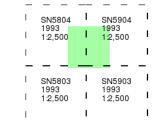

Site Details

Former Tata Site, Pontarddulais, Swansea, SA4 8SH

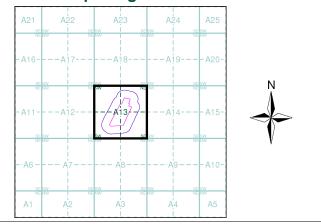
Landmark INFORMATION GROUP

Tel: 0844 844 9952 Fax: 0844 844 9951 Web: www.envirocheck

A Landmark Information Group Service v50.0 09-Mar-2023 Page 10 of 14


Large-Scale National Grid Data

Published 1993


Source map scale - 1:2,500

'Large Scale National Grid Data' superseded SIM cards (Ordnance Survey's 'Survey of Information on Microfilm') in 1992, and continued to be produced until 1999. These maps were the fore-runners of digital mapping and so provide detailed information on houses and roads, but tend to show less topographic features such as vegetation. These maps were produced at both 1:2,500 and 1:1,250 scales.

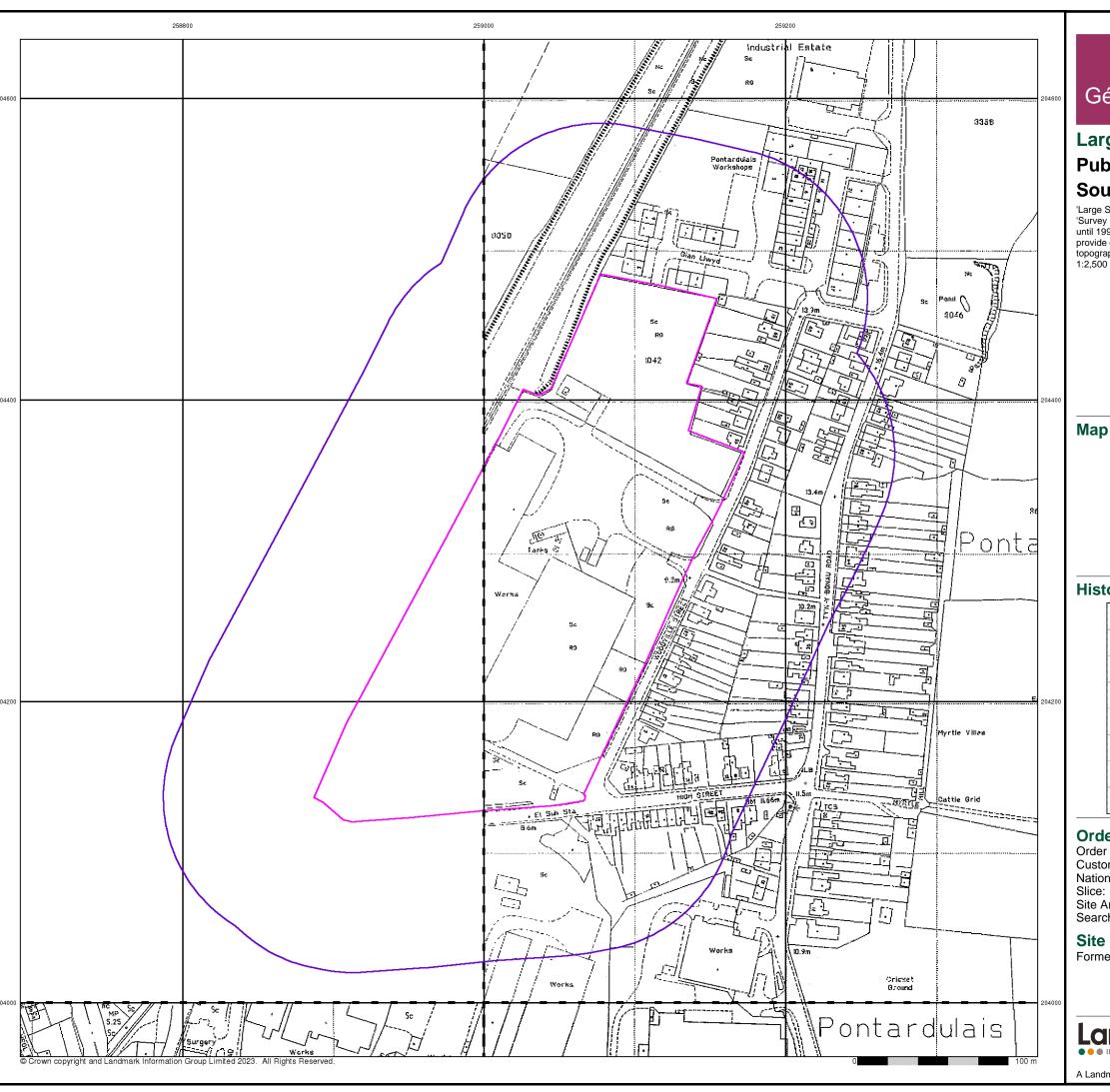
Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

Order Number: 308357480_1_1 Customer Ref: 14180/LP National Grid Reference: 259040, 204290

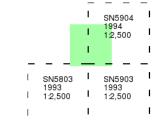
Site Area (Ha): Search Buffer (m): 5.3 100


Site Details

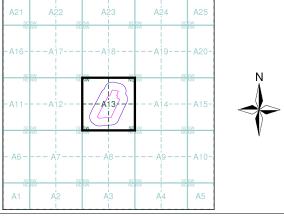
Former Tata Site, Pontarddulais, Swansea, SA4 8SH

0844 844 9952

A Landmark Information Group Service v50.0 09-Mar-2023 Page 11 of 14



Large-Scale National Grid Data


Published 1993 - 1994 Source map scale - 1:2,500

'Large Scale National Grid Data' superseded SIM cards (Ordnance Survey's 'Survey of Information on Microfilm') in 1992, and continued to be produced until 1999. These maps were the fore-runners of digital mapping and so provide detailed information on houses and roads, but tend to show less topographic features such as vegetation. These maps were produced at both 1:2,500 and 1:1,250 scales.

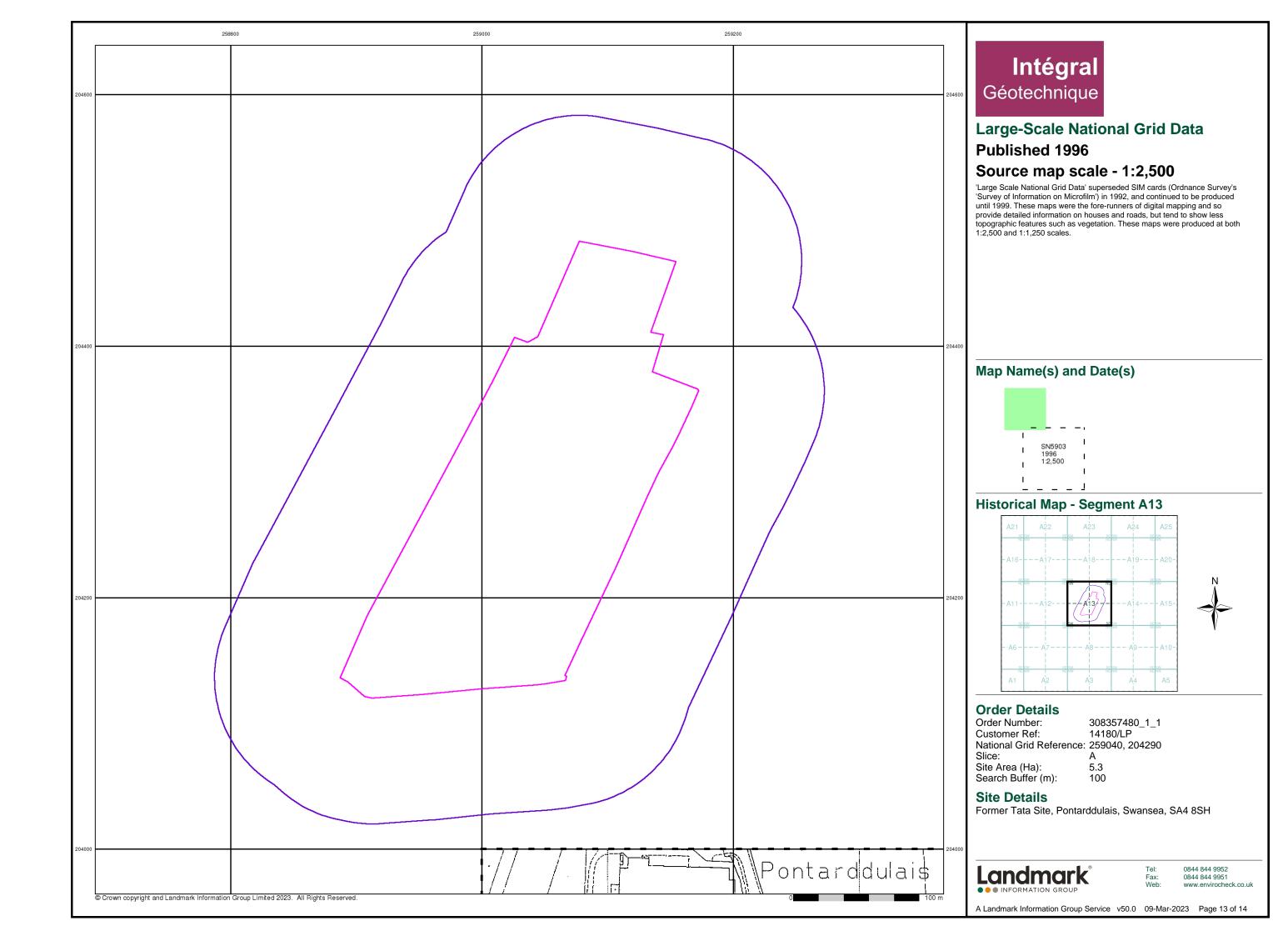
Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

Order Number: 308357480_1_1 Customer Ref: 14180/LP National Grid Reference: 259040, 204290

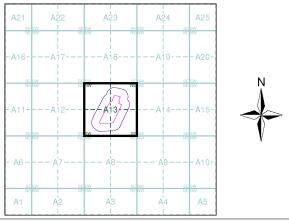
Site Area (Ha): Search Buffer (m): 5.3 100


Site Details

Former Tata Site, Pontarddulais, Swansea, SA4 8SH

0844 844 9952

A Landmark Information Group Service v50.0 09-Mar-2023 Page 12 of 14



Historical Aerial Photography Published 2001

This aerial photography was produced by Getmapping, these vertical aerial photographs provide a seamless, full colour survey of the whole of Great Britain

Historical Aerial Photography - Segment A13

Order Details
Order Number: Order Number: 308357480_1_1
Customer Ref: 14180/LP
National Grid Reference: 259040, 204290

Slice: Site Area (Ha): Search Buffer (m): A 5.3 100

Site Details

Former Tata Site, Pontarddulais, Swansea, SA4 8SH

Landmark®
••• INFORMATION GROUP

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v50.0 09-Mar-2023 Page 14 of 14

Envirocheck® Report:

Mining and Ground Stability Datasheet

Order Details:

Order Number:

308357480_1_1

Customer Reference:

14180/LP

National Grid Reference:

259040, 204290

Slice:

Α

Site Area (Ha):

5.3

Search Buffer (m):

1000

Site Details:

Former Tata Site Pontarddulais Swansea SA4 8SH

Client Details:

MR H Pritchard Integral Geotechnique Integral House 7 Beddau Way Castlegate Business Park Caerphilly CF83 2AX

Order Number: 308357480_1_1 Date: 09-Mar-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service

Report Se	ection and Details	Page Number
Summary		-

The Summary section provides an overview of the data contained within the report, detailing the number of data set features or the existence of a data set in relation to the buffer selected.

For ease of reference, the report is broken down into 4 sections of data; Mining and Natural Cavities Data, Historical Land Use Information (1:2,500), Historical Land Use Information (1:10,000) and Ground Stability Data (1:50,000).

Mining and Natural Cavities Data

1

The Mining and Natural Cavities Data section features data sets related to the existence of mining areas and their potential hazards; and details of naturally formed cavities.

Data sets within this section are not plotted, with the exception of BGS Recorded Mineral Sites and Potential Mining Areas which feature on the Historical Land Use Information (1:10,000) map.

Historical Land Use Information (1:2,500)

6

The Historical Land Use Information (1:2,500) section contains data captured from analysis carried out by Landmark of 1:1,250 and 1:2,500 scale historical Ordnance Survey mapping, identifying areas where, historically, the land uses were potentially contaminative.

For the purpose of this Envirocheck module, only historical data relating to mining and ground stability has been included and plotted on the corresponding Historical Land Use Information (1:2,500) map. This section also includes the Subterranean Features data set, which details various man-made and man-used underground spaces obtained from the Subterranea Britannica society.

Historical Land Use Information (1:10,000)

9

The Historical Land Use (1:10,000) section covers data captured from the systematic analysis carried out by Landmark of 1:10, 560 and 1:10,000 scale historical Ordnance Survey mapping dating back to the mid-19th century, identifying potentially contaminative past industrial land uses.

For the purpose of this Envirocheck module, only data relating to mining and ground stability has been included and plotted on the accompanying Historical Land Use Information (1:10,000) map.

Ground Stability Data (1:50,000)

13

The Ground Stability (1:50,000) section includes the BGS Geosure data suite, reporting features to 250m and plotted onto 3 separate maps. Also reported is brine subsidence, brine mining and salt mining data sets, of which Brine Pumping and Salt Mining Related Features are plotted, and subsidence insurance claims and insurance investigations data, which is not plotted.

Historical Map List 15

The Historical Map List section details the historical mapping that has been analysed for your site, in relation to the Historical Land Use Information sections.

Data Currency	17
Data Suppliers	18
Useful Contacts	19

Copyright Notice

© Landmark Information Group Limited 2023. The Copyright on the information and data and its format as contained in this Envirocheck® Report ("Report") is the property of Landmark Information Group Limited ("Landmark") and several other Data Providers, including (but not limited to) Ordnance Survey, British Geological Survey, and the Environment Agency/Natural Resources Wales, and must not be reproduced in whole or in part by photocopying or any other method. The Report is supplied under Landmark's Terms and Conditions accepted by the Customer. A copy of Landmark's Terms and Conditions can be found with the Index Map for this report. Additional copies of the Report may be obtained from Landmark, subject to Landmark's charges in force from time to time. The Copyright, design rights and any other intellectual rights shall remain the exclusive property of Landmark and /or other Data providers, whose Copyright material has been included in this Report.

© Copyright Stantec UK Limited. All rights reserved.

The brine subsidence data relating to the Driotwich area as provided in this report is derived from JPB studies and physical monitoring undertaken annually over more than 35 years. For more detailed interpretation contact enquiries@jpb.co.uk. JPB retain the copyright and intellectual rights to this data and accept no liability for any loss or damage, including in direct or consequential loss, arising from the use of this data.

The Mining Instability data was obtained on licence from Ove Arup & Partners Limited (for further information, contact mining.review@arup.com). No reproduction or further use of such Data is to be made without the prior written consent of Ove Arup & Partners Limited. The supplied Mining Instability data is derived from publicly available records and other third party sources and neither Ove Arup & Partners nor Landmark warrant the accuracy or completeness of such information or data.

Report Version v53.0

Data Type	Page Number	On Site	0 to 250m	251 to 500m	501 to 1000m
Mining and Natural Cavities Data					
BGS Recorded Mineral Sites	pg 1		1	3	14
Coal Mining Affected Areas	pg 4	Yes	n/a	n/a	n/a
Man Made Mining Cavities					
Mining Instability	pg 4	Yes	n/a	n/a	n/a
Natural Cavities					
Non Coal Mining Areas of Great Britain				n/a	n/a
Potential Mining Areas	pg 4		7	4	5
Historical Land Use Information (1:2,500)					
Extractive Industries or Potential Excavations from 1855-1909 (100m)	pg 6	3	6	n/a	n/a
Extractive Industries or Potential Excavations from 1893-1915 (100m)	pg 6	3	8	n/a	n/a
Extractive Industries or Potential Excavations from 1906-1937 (100m)	pg 7	2	1	n/a	n/a
Extractive Industries or Potential Excavations from 1924-1949 (100m)				n/a	n/a
Extractive Industries or Potential Excavations from 1950-1980 (100m)	pg 8	6		n/a	n/a
Subterranean Features (100m)				n/a	n/a
Historical Land Use Information (1:10,000)					
Air Shafts	pg 9				1
Disturbed Ground					
General Quarrying	pg 9		1	2	5
Heap, unknown constituents	pg 9	1			
Mineral Railway					
Mining & quarrying general	pg 9				2
Mining of coal & lignite	pg 9			1	7
Quarrying of sand & clay, operation of sand & gravel pits					
Former Marshes	pg 9		1		2
Potentially Infilled Land (Non-Water)	pg 10			3	13
Potentially Infilled Land (Water)	pg 10	1	9	5	28
Ground Stability Data (1:50,000)					
CBSCB Compensation District			n/a	n/a	n/a
Brine Pumping Related Features					
Brine Subsidence Solution Area					
Potential for Collapsible Ground Stability Hazards	pg 13	Yes	Yes	n/a	n/a
Potential for Compressible Ground Stability Hazards	pg 13	Yes	Yes	n/a	n/a
Potential for Ground Dissolution Stability Hazards	pg 13	Yes		n/a	n/a
Potential for Landslide Ground Stability Hazards	pg 13	Yes	Yes	n/a	n/a
Potential for Running Sand Ground Stability Hazards	pg 13	Yes	Yes	n/a	n/a
Potential for Shrinking or Swelling Clay Ground Stability Hazards	pg 13	Yes	Yes	n/a	n/a
Salt Mining Related Features					

Report Version v53.0

Summary

Order Number: 308357480_1_1 Date: 09-Mar-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service

Mining and Natural Cavities Data

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
1	BGS Recorded Mine Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	Ty'N-Y-Bonau Pontarddulais, Ammanford, Glamorgan British Geological Survey, National Geoscience Information Service 151464 Opencast Ceased Unknown Operator Not Supplied Carboniferous Swansea Member Sandstone Located by supplier to within 10m	A13NE (NE)	152	1	259306 204467
2	BGS Recorded Mine Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	St. David'S Church Fforest, Llanelli, Carmarthenshire British Geological Survey, National Geoscience Information Service 101515 Opencast Ceased Unknown Operator Not Supplied Carboniferous Swansea Member Sandstone Located by supplier to within 10m	A12SE (W)	282	1	258606 204152
2	BGS Recorded Mine Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	St. David'S Church Fforest, Llanelli, Carmarthenshire British Geological Survey, National Geoscience Information Service 101416 Underground Ceased Unknown Operator Not Supplied Carboniferous Swansea Member Coal - Deep Located by supplier to within 10m	A12SE (W)	307	1	258587 204197
3	BGS Recorded Mine Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	eral Sites St. David'S Church Fforest, Llanelli, Carmarthenshire British Geological Survey, National Geoscience Information Service 101516 Opencast Ceased Unknown Operator Not Supplied Carboniferous Swansea Member Sandstone Located by supplier to within 10m	A12SE (SW)	333	1	258591 203986
4	BGS Recorded Mine Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity:		A19SW (NE)	617	1	259623 204868
5	BGS Recorded Mine Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	Bwlch-Y-Gwynt Fforest, Llanelli, Carmarthenshire British Geological Survey, National Geoscience Information Service 101514 Opencast Ceased Unknown Operator Not Supplied Carboniferous Swansea Member Sandstone Located by supplier to within 10m	A12NW (W)	629	1	258301 204362

Order Number: 308357480_1_1 Date: 09-Mar-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
6	BGS Recorded Mine Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	Hendy Hendy, Llanelli, Carmarthenshire British Geological Survey, National Geoscience Information Service 101517 Opencast Ceased Unknown Operator Not Supplied Carboniferous Swansea Member Sandstone Located by supplier to within 10m	A7NW (SW)	639	1	258339 203810
7	BGS Recorded Mine Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	Tal-Y-Fan-Fach Colliery Pontarddulais, Ammanford, Glamorgan British Geological Survey, National Geoscience Information Service 151467 Underground Ceased Unknown Operator Not Supplied Carboniferous Hughes Member Coal - Deep Located by supplier to within 10m	A18NE (N)	759	1	259307 205210
7	BGS Recorded Mine Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	Tal-Y-Fan-Fach Colliery Pontarddulais, Ammanford, Glamorgan British Geological Survey, National Geoscience Information Service 151463 Underground Ceased Unknown Operator Not Supplied Carboniferous Hughes Member Coal - Deep Located by supplier to within 10m	A18NE (N)	774	1	259339 205218
8	BGS Recorded Mine Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	Hendy Hendy, Llanelli, Carmarthenshire British Geological Survey, National Geoscience Information Service 101518 Opencast Ceased Unknown Operator Not Supplied Carboniferous Swansea Member Sandstone Located by supplier to within 10m	A7NW (SW)	771	1	258190 203808
9	BGS Recorded Mine Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	eral Sites Tal-Y-Fan-Fach Colliery Pontarddulais, Ammanford, Glamorgan British Geological Survey, National Geoscience Information Service 151466 Underground Ceased Unknown Operator Not Supplied Carboniferous Brithdir Member Coal - Deep Located by supplier to within 10m	A18NE (N)	776	1	259163 205254
10	BGS Recorded Mine Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	eral Sites Gwili Bridge Fforest, Llanelli, Carmarthenshire British Geological Survey, National Geoscience Information Service 100481 Opencast Ceased Unknown Operator Not Supplied Carboniferous Hughes Member Sandstone Located by supplier to within 10m	A12NW (W)	779	1	258183 204469

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
11	BGS Recorded Mine Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	Pleasant Villas Pontarddulais, Ammanford, Glamorgan British Geological Survey, National Geoscience Information Service 151469 Underground Ceased Unknown Operator Not Supplied Carboniferous Hughes Member Coal - Deep Located by supplier to within 10m	A19NW (NE)	794	1	259666 205074
12	BGS Recorded Mine Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	Forest Fforest, Llanelli, Carmarthenshire British Geological Survey, National Geoscience Information Service 100428 Underground Ceased Unknown Operator Not Supplied Carboniferous Hughes Member Coal - Deep Located by supplier to within 10m	A12NW (W)	799	1	258141 204422
12	BGS Recorded Mine Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	Forest Fforest Fforest, Llanelli, Carmarthenshire British Geological Survey, National Geoscience Information Service 100464 Underground Ceased Unknown Operator Not Supplied Carboniferous Hughes Member Coal - Deep Located by supplier to within 10m	A12NW (W)	834	1	258102 204415
13	BGS Recorded Mine Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	Forest Fforest Fforest, Llanelli, Carmarthenshire British Geological Survey, National Geoscience Information Service 100479 Opencast Ceased Unknown Operator Not Supplied Carboniferous Hughes Member Sandstone Located by supplier to within 10m	A17SW (NW)	840	1	258215 204668
14	BGS Recorded Mine Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	West Merthyr Colliery Pontarddulais, Ammanford, Glamorgan British Geological Survey, National Geoscience Information Service 151468 Underground Ceased Unknown Operator Not Supplied Carboniferous Grovesend Formation Coal - Deep Located by supplier to within 10m	A9SE (SE)	877	1	259778 203623
15	BGS Recorded Mine Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	Fforest Fforest, Llanelli, Carmarthenshire British Geological Survey, National Geoscience Information Service 100478 Opencast Ceased Unknown Operator Not Supplied Carboniferous Hughes Member Sandstone Located by supplier to within 10m	A17SW (W)	971	1	258076 204686

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Coal Mining Affects Description:	ln an area which may be affected by coal mining activity. It is recommended that a coal mining report is obtained from the Coal Authority. Contact details are included in the Useful Contacts section of this report.	A13SE (E)	0	2	259038 204289
	Mining Instability Mining Evidence: Source: Boundary Quality:	Inconclusive Coal Mining Ove Arup & Partners As Supplied	A13SE (E)	0	3	259038 204289
	Non Coal Mining Ar No Hazard	reas of Great Britain				
16	Potential Mining Ar Name: Ceased Operation: Commodity: Reference: Alternate Name/Mine: Custodian:	Benallt	A13SW (W)	12	4	258879 204282
17	Potential Mining Ar Name: Ceased Operation: Commodity: Reference: Alternate Name/Mine: Custodian:	eas Benallt Not Supplied Coal; Benallt or Fiery Not Supplied Not Supplied Thos. Williams and Sons, Llangennech.	A13SW (W)	12	4	258879 204282
18	Potential Mining Ar Name: Ceased Operation: Commodity: Reference: Alternate Name/Mine: Custodian:	eas Benallt or Forest 1897 Coal; Benallt or Forest 3724 Not Supplied Not Supplied	A13SW (W)	12	4	258879 204282
19	Potential Mining Ar Name: Ceased Operation: Commodity: Reference: Alternate Name/Mine: Custodian:	eas Benallt 1897 Coal; Seam unnamed Not Supplied Not Supplied J. Davies and Son, The Pines, Pembrey.	A13SW (W)	12	4	258879 204292
20	Potential Mining Ar Name: Ceased Operation: Commodity: Reference: Alternate Name/Mine: Custodian:		A18SE (NE)	248	4	259290 204675
21	Potential Mining Ar Name: Ceased Operation: Commodity: Reference: Alternate Name/Mine: Custodian:		A18SE (NE)	248	4	259290 204675
22	Potential Mining Ar Name: Ceased Operation: Commodity: Reference: Alternate Name/Mine: Custodian:	eas Cae 1929 Coal; Fiery or possibly Swansea Three Feet 10126 formerly Talyfan Not Supplied	A18SE (NE)	248	4	259290 204675

Order Number: 308357480_1_1 Date: 09-Mar-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 4 of 19

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Potential Mining Ar	reas				
23	Name: Ceased Operation: Commodity: Reference: Alternate Name/Mine: Custodian:	Benallt 1923 Coal; Benallt 7711 Not Supplied	A12SE (W)	414	4	258477 204301
	Potential Mining Ar					
24	Potential Mining Ar Name: Ceased Operation: Commodity: Reference: Alternate Name/Mine: Custodian:	Benallt Not Supplied Coal; Benallt Not Supplied Not Supplied Not Supplied Francis Hobbs, Beaufort Estate Office, 7 Picton Place, Swansea.	A12SE (W)	414	4	258477 204301
	Potential Mining Ar	reas				
25	Name: Ceased Operation: Commodity: Reference: Alternate Name/Mine: Custodian:	Benallt Not Supplied Coal; Benallt Not Supplied Not Supplied Not Supplied Roberts and Stewart, 28 Fisher Street, Swansea.	A12SE (W)	414	4	258477 204301
	Potential Mining Ar	reas				
26	Name: Ceased Operation: Commodity: Reference: Alternate Name/Mine: Custodian:	Benallt 1908 Coal; Seam unnamed Not Supplied Not Supplied H. Lynch Blosse, Worcester Chambers, Swansea.	A12SE (W)	414	4	258477 204301
	Potential Mining Ar	2020				
27	Name: Ceased Operation: Commodity: Reference: Alternate Name/Mine: Custodian:	Tal-y-Fan-Fach 1901 Coal; Seam unnamed Not Supplied Not Supplied J. Davies and Son, Cowell House, Cowell Street, Llanelly.	A18NE (N)	599	4	259055 205083
28	Potential Mining Ar Name: Ceased Operation: Commodity: Reference: Alternate Name/Mine: Custodian:	Merthyr West Not Supplied Coal Not Supplied Not Supplied Not Supplied	A9NW (SE)	667	4	259674 203862
	Potential Mining Ar	reas				
29	Name: Ceased Operation: Commodity: Reference: Alternate Name/Mine: Custodian:	Bolgoed 1882 Coal; Seam unnamed Not Supplied Not Supplied J. Davies and Son, Cowell House, Cowell Street, Llanelly.	A8SE (S)	695	4	259264 203469
	Potential Mining Ar	reas				
30	Name: Ceased Operation: Commodity: Reference: Alternate Name/Mine: Custodian:	Forest Hall 1922 Coal; Forest 8144 Not Supplied Not Supplied	A17NE (NW)	846	4	258494 205095
	Potential Mining Ar	reas				
31	Name: Ceased Operation: Commodity: Reference: Alternate Name/Mine: Custodian:	Llanedy Not Supplied Coal Not Supplied Not Supplied Not Supplied Not Supplied	A17NE (NW)	846	4	258494 205095

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
32	Extractive Industries or Potential Excavations from 1855-1909 Use: Railway Cutting First Map Published 1879 Date: Last Map Published Not Applicable Date:	A13NW (N)	0	-	259012 204372
33	Extractive Industries or Potential Excavations from 1855-1909 Use: Gravel Pits First Map Published 1879 Date: Last Map Published Not Applicable Date:	A13SE (NW)	0	-	259032 204301
34	Extractive Industries or Potential Excavations from 1855-1909 Use: Gasometer First Map Published 1879 Date: Last Map Published Not Applicable Date:	A13SW (S)	0	-	259010 204183
35	Extractive Industries or Potential Excavations from 1855-1909 Use: W First Map Published 1879 Date: Last Map Published Not Applicable Date:	A13SE (SE)	30	-	259120 204185
36	Extractive Industries or Potential Excavations from 1855-1909 Use: W First Map Published 1879 Date: Last Map Published Not Applicable Date:	A13SE (S)	42	-	259101 204113
37	Extractive Industries or Potential Excavations from 1855-1909 Use: W First Map Published 1879 Date: Last Map Published Not Applicable Date:	A13NE (E)	92	-	259261 204346
38	Extractive Industries or Potential Excavations from 1855-1909 Use: Gasometer First Map Published 1879 Date: Last Map Published Not Applicable Date:	A13SW (SW)	95	-	258805 204091
39	Extractive Industries or Potential Excavations from 1855-1909 Use: Quarries First Map Published 1879 Date: Last Map Published Not Applicable Date:	A13NE (NE)	98	-	259262 204402
40	Extractive Industries or Potential Excavations from 1855-1909 Use: W First Map Published 1879 Date: Last Map Published Not Applicable Date:	A13SE (SE)	100	-	259200 204190
41	Extractive Industries or Potential Excavations from 1893-1915 Use: Railway Cutting First Map Published 1899 Date: 1906 Date:	A13NW (NW)	0	-	258996 204310
42	Extractive Industries or Potential Excavations from 1893-1915 Use: Unspecified Deposited Material First Map Published 1899 Date: Last Map Published 1906 Date:	A13NE (NE)	0	-	259075 204327

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
43	Extractive Industries or Potential Excavations from 1893-1915 Use: Well First Map Published 1899 Date: Last Map Published 1906 Date:	A13SW (W)	0	-	258981 204288
44	Extractive Industries or Potential Excavations from 1893-1915 Use: W First Map Published 1899 Date: Last Map Published 1906 Date:	A13SE (SE)	32	-	259124 204187
45	Extractive Industries or Potential Excavations from 1893-1915 Use: W First Map Published 1899 Date: Last Map Published 1906 Date:	A13SE (E)	33	-	259175 204295
46	Extractive Industries or Potential Excavations from 1893-1915 Use: W First Map Published 1899 Date: Last Map Published 1906 Date:	A13SE (SE)	34	-	259141 204221
47	Extractive Industries or Potential Excavations from 1893-1915 Use: W First Map Published 1899 Date: Last Map Published 1906 Date:	A13SE (E)	68	-	259210 204285
48	Extractive Industries or Potential Excavations from 1893-1915 Use: Ws First Map Published 1899 Date: Last Map Published 1906 Date:	A13NE (NE)	84	-	259235 204449
49	Extractive Industries or Potential Excavations from 1893-1915 Use: W First Map Published 1899 Date: Last Map Published 1906 Date:	A13SE (E)	85	-	259216 204262
50	Extractive Industries or Potential Excavations from 1893-1915 Use: W First Map Published 1899 Date: Last Map Published 1906 Date:	A13SE (E)	93	-	259211 204233
51	Extractive Industries or Potential Excavations from 1893-1915 Use: Ws First Map Published 1899 Date: Last Map Published 1906 Date:	A13NE (NE)	97	-	259248 204443
52	Extractive Industries or Potential Excavations from 1906-1937 Use: Unspecified Deposited Material First Map Published 1916 Date: Last Map Published Not Applicable Date:	A13NE (NE)	0	-	259089 204385
53	Extractive Industries or Potential Excavations from 1906-1937 Use: Unspecified Deposited Material First Map Published 1916 Date: Last Map Published Not Applicable Date:	A13NE (NE)	0	-	259067 204327

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
54	Extractive Industries or Potential Excavations from 1906-1937 Use: Railway Cutting First Map Published 1916 Date: Last Map Published Not Applicable Date:	A13NE (N)	84	-	259112 204561
55	Extractive Industries or Potential Excavations from 1950-1980 Use: Railway Cutting First Map Published 1960 Date: Last Map Published 1964 Date:	A13NE (N)	0	-	259033 204403
56	Extractive Industries or Potential Excavations from 1950-1980 Use: Unspecified Deposited Material First Map Published 1960 Date: Last Map Published N/A Date:	A13SE (SE)	0	-	259081 204271
57	Extractive Industries or Potential Excavations from 1950-1980 Use: Unspecified Deposited Material First Map Published 1960 Date: Last Map Published N/A Date:	A13NE (NE)	0	-	259066 204329
58	Extractive Industries or Potential Excavations from 1950-1980 Use: Unspecified Pit First Map Published 1960 Date: Last Map Published N/A Date:	A13NE (N)	0	-	259032 204309
59	Extractive Industries or Potential Excavations from 1950-1980 Use: Unspecified Deposited Material First Map Published 1960 Date: Last Map Published N/A Date:	A13SE (SE)	0	-	259060 204258
60	Extractive Industries or Potential Excavations from 1950-1980 Use: Water First Map Published 1960 Date: Last Map Published N/A Date:	A13SW (SW)	0	-	258979 204180

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
61	Air Shafts Use: Not Supplied Date of Mapping: 1898 - 1908	A18NE (N)	732	-	259333 205177
62	General Quarrying Use: Not Supplied Date of Mapping: 1898 - 1908	A13NE (NE)	182	-	259335 204452
63	General Quarrying Use: Not Supplied Date of Mapping: 1898	A12SE (W)	262	-	258626 204149
64	General Quarrying Use: Not Supplied Date of Mapping: 1898	A12SE (SW)	316	-	258612 203981
65	General Quarrying Use: Not Supplied Date of Mapping: 1898 - 1952	A7NE (SW)	586	-	258365 203871
66	General Quarrying Use: Not Supplied Date of Mapping: 1898	A12NW (W)	607	-	258323 204358
67	General Quarrying Use: Not Supplied Date of Mapping: 1898 - 1908	A12NW (W)	765	-	258201 204476
68	General Quarrying Use: Not Supplied Date of Mapping: 1898	A17SW (NW)	822	-	258236 204669
69	General Quarrying Use: Not Supplied Date of Mapping: 1898	A17SW (NW)	950	-	258099 204684
70	Heap, unknown constituents Use: Not Supplied Date of Mapping: 1908 - 1921	A13NE (NE)	0	-	259109 204356
71	Mining & quarrying general Use: Not Supplied Date of Mapping: 1908 - 1952	A18NE (N)	748	-	259353 205188
71	Mining & quarrying general Use: Not Supplied Date of Mapping: 1908	A18NE (N)	761	-	259314 205211
72	Mining of coal & lignite Use: Not Supplied Date of Mapping: 1898	A12SE (W)	277	-	258614 204178
73	Mining of coal & lignite Use: Not Supplied Date of Mapping: 1921	A19SE (NE)	697	-	259732 204855
74	Mining of coal & lignite Use: Not Supplied Date of Mapping: 1898	A18NE (N)	778	-	259349 205220
75	Mining of coal & lignite Use: Not Supplied Date of Mapping: 1921	A19NW (NE)	798	-	259664 205080
76	Mining of coal & lignite Use: Not Supplied Date of Mapping: 1908	A9NE (SE)	810	-	259717 203654
77	Mining of coal & lignite Use: Not Supplied Date of Mapping: 1908	A18NE (N)	814	-	259240 205281
78	Mining of coal & lignite Use: Not Supplied Date of Mapping: 1908 - 1921	A12NW (W)	821	-	258120 204427
78	Mining of coal & lignite Use: Not Supplied Date of Mapping: 1908 - 1952	A12NW (W)	828	-	258105 204406
79	Former Marshes Use: Former Marsh Date of Mapping: 1908	A18SE (NE)	212	-	259233 204664

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
80	Former Marshes Use: Former Marsh Date of Mapping: 1965	A19NW (NE)	924	-	259544 205304
81	Former Marshes Use: Former Marsh Date of Mapping: 1921	A24SW (NE)	960	-	259605 205314
82	Potentially Infilled Land (Non-Water) Use: Unknown Filled Ground (Pit, quarry etc) Date of Mapping: 1993	A12SE (W)	262	-	258626 204149
83	Potentially Infilled Land (Non-Water) Use: Unknown Filled Ground (Pit, quarry etc) Date of Mapping: 1993	A12SE (W)	277	-	258614 204178
84	Potentially Infilled Land (Non-Water) Use: Unknown Filled Ground (Pit, quarry etc) Date of Mapping: 1993	A12SE (SW)	316	-	258612 203981
85	Potentially Infilled Land (Non-Water) Use: Unknown Filled Ground (Pit, quarry etc) Date of Mapping: 1993	A12NW (W)	607	-	258323 204358
86	Potentially Infilled Land (Non-Water) Use: Unknown Filled Ground (Pit, quarry etc) Date of Mapping: 1993	A19SE (NE)	697	-	259732 204855
87	Potentially Infilled Land (Non-Water) Use: Unknown Filled Ground (Pit, quarry etc) Date of Mapping: 1993	A18NE (N)	732	-	259333 205177
88	Potentially Infilled Land (Non-Water) Use: Unknown Filled Ground (Pit, quarry etc) Date of Mapping: 1993	A18NE (N)	748	-	259353 205188
89	Potentially Infilled Land (Non-Water) Use: Unknown Filled Ground (Pit, quarry etc) Date of Mapping: 1993	A18NE (N)	761	-	259314 205211
90	Potentially Infilled Land (Non-Water) Use: Unknown Filled Ground (Pit, quarry etc) Date of Mapping: 1993	A12NW (W)	765	-	258201 204476
91	Potentially Infilled Land (Non-Water) Use: Unknown Filled Ground (Pit, quarry etc) Date of Mapping: 1993	A18NE (N)	778	-	259349 205220
92	Potentially Infilled Land (Non-Water) Use: Unknown Filled Ground (Pit, quarry etc) Date of Mapping: 1993	A19NW (NE)	798	-	259664 205080
93	Potentially Infilled Land (Non-Water) Use: Unknown Filled Ground (Pit, quarry etc) Date of Mapping: 1993	A9NE (SE)	810	-	259717 203654
94	Potentially Infilled Land (Non-Water) Use: Unknown Filled Ground (Pit, quarry etc) Date of Mapping: 1993	A18NE (N)	814	-	259240 205281
95	Potentially Infilled Land (Non-Water) Use: Unknown Filled Ground (Pit, quarry etc) Date of Mapping: 1993	A12NW (W)	821	-	258120 204427
96	Potentially Infilled Land (Non-Water) Use: Unknown Filled Ground (Pit, quarry etc) Date of Mapping: 1993	A17SW (NW)	822	-	258236 204669
97	Potentially Infilled Land (Non-Water) Use: Unknown Filled Ground (Pit, quarry etc) Date of Mapping: 1993	A17SW (NW)	950	-	258099 204684
98	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1952	A13SW (S)	0	-	259006 204162
99	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1952	A13SW (W)	120	-	258799 204233
100	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1952	A13SE (S)	123	-	259078 204012

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
101	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1952	A13SE (S)	126	-	259088 204010
102	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1952	A13SE (SE)	148	-	259163 204024
103	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1952	A13SE (S)	150	-	259049 203982
104	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1964	A13SE (S)	154	-	259063 203978
105	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1964	A8NE (S)	185	-	259065 203947
106	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1952	A8NW (S)	188	-	258937 203934
107	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1964	A8NE (S)	239	-	259062 203893
108	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1952	A8NE (S)	256	-	259189 203911
109	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1964	A13SE (SE)	302	-	259358 204051
110	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1952	A12SE (W)	330	-	258574 204239
111	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1952	A12SE (W)	388	-	258527 204279
112	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1952	A8NW (S)	461	-	258926 203660
113	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1952	A18NE (N)	528	-	259180 205001
114	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1952	A18NE (N)	537	-	259185 205009
115	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1952	A8SE (S)	588	-	259068 203543
116	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1952	A8SE (S)	613	-	259039 203516
117	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1952	A8SE (S)	618	-	259265 203549
118	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1952	A8SE (S)	636	-	259058 203495
119	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1952	A7NE (SW)	642	-	258422 203694
120	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1952	A8SE (S)	646	-	259128 203491
121	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1908	A9NW (SE)	647	-	259610 203784

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Potentially Infilled Land (Water)				
122	Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1952	A8SE (S)	660	-	259043 203470
123	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1898	A9NW (SE)	664	-	259651 203821
124	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1952	A8SE (S)	668	-	259170 203475
125	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1921	A12NW (W)	669	-	258249 204337
126	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1952	A18NW (N)	693	-	258837 205133
127	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1898	A12NW (W)	699	-	258312 204551
128	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1952	A18NW (N)	709	-	258846 205153
129	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1952	A18NW (N)	748	-	258804 205179
130	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1952	A8SW (S)	767	-	258919 203354
131	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1952	A12NW (W)	800	-	258168 204487
132	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1952	A9NE (SE)	813	-	259796 203775
133	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1952	A12NW (W)	900	-	258074 204521
134	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1965	A19NW (NE)	904	-	259574 205268
135	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1964	A19SE (NE)	908	-	260005 204782
136	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1952	A9SW (SE)	914	-	259615 203404
137	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1952	A12NW (W)	940	-	258040 204543
138	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1898	A17SW (W)	985	-	258050 204666
139	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1964	A6NE (SW)	991	-	257993 203710
140	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1965	A24SW (NE)	999	-	259570 205375

Ground Stability Data (1:50,000)

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	CBSCB Compensation District				
	The site does not fall within the brine compensation area.				
	Brine Subsidence Solution Area				
	The site does not fall within the brine subsidence solution area.				
4.44	Potential for Collapsible Ground Stability Hazards	A13SE		4	050000
141	Hazard Potential: Very Low Source: Very Low British Geological Survey, National Geoscience Information Ser		0	1	259038 204289
	Potential for Collapsible Ground Stability Hazards				
142	Hazard Potential: Very Low	A13SW	177	1	258711
	Source: British Geological Survey, National Geoscience Information Ser	vice (W)			204261
	Potential for Collapsible Ground Stability Hazards	A13SW (SW)	0	1	258875 204219
	Potential for Compressible Ground Stability Hazards				
143	Hazard Potential: Moderate Source: British Geological Survey, National Geoscience Information Ser	vice A13SW (SW)	0	1	258875 204219
	Potential for Compressible Ground Stability Hazards				
	Hazard Potential: No Hazard Source: No Hazard British Geological Survey, National Geoscience Information Ser	vice A13SE (E)	0	1	259038 204289
	Potential for Compressible Ground Stability Hazards				
	Hazard Potential: No Hazard Source: No Hazard British Geological Survey, National Geoscience Information Ser	A13SW (W)	177	1	258711 204261
	Potential for Ground Dissolution Stability Hazards	(VV)			204201
	Hazard Potential: No Hazard	A13SE	0	1	259038
	Source: British Geological Survey, National Geoscience Information Ser	vice (E)			204289
	Potential for Landslide Ground Stability Hazards				
144	Hazard Potential: Very Low Source: British Geological Survey, National Geoscience Information Ser	/ice A13SE	0	1	259038 204289
	Potential for Landslide Ground Stability Hazards				
145	Hazard Potential: Low	A13SW	122	1	258749
	Source: British Geological Survey, National Geoscience Information Ser	vice (W)			204258
146	Potential for Landslide Ground Stability Hazards Hazard Potential: Very Low	A13SW	137	1	258747
140	Source: British Geological Survey, National Geoscience Information Ser		137	'	204150
	Potential for Landslide Ground Stability Hazards				
147	Hazard Potential: Moderate Source: British Geological Survey, National Geoscience Information Ser	A13SW	168	1	258729
	Source: British Geological Survey, National Geoscience Information Ser Potential for Landslide Ground Stability Hazards	vice (W)			204254
148	Hazard Potential: Very Low	A13SW	177	1	258712
	Source: British Geological Survey, National Geoscience Information Ser				204162
	Potential for Landslide Ground Stability Hazards				
149	Hazard Potential: Moderate Source: Moderate British Geological Survey, National Geoscience Information Ser	vice A12SE (W)	242	1	258650 204182
	Potential for Running Sand Ground Stability Hazards				
150	Hazard Potential: Very Low	A13SE	0	1	259038
	Source: British Geological Survey, National Geoscience Information Ser	vice (E)			204289
454	Potential for Running Sand Ground Stability Hazards	4.400)4/			050075
151	Hazard Potential: Low Source: British Geological Survey, National Geoscience Information Ser	vice A13SW (SW)	0	1	258875 204219
	Potential for Running Sand Ground Stability Hazards				
152	Hazard Potential: Very Low	A13SW	178	1	258711
	Source: British Geological Survey, National Geoscience Information Ser	vice (W)			204261
	Potential for Running Sand Ground Stability Hazards Hazard Potential: No Hazard Source: British Geological Survey, National Geoscience Information Ser	A13SE (E)	145	1	259322 204293
	Potential for Running Sand Ground Stability Hazards				
	Hazard Potential: No Hazard Source: British Geological Survey, National Geoscience Information Ser	vice A13SW (W)	177	1	258712 204162
	Potential for Shrinking or Swelling Clay Ground Stability Hazards				
153	Hazard Potential: Very Low	A13SW	0	1	258987
	Source: British Geological Survey, National Geoscience Information Ser	vice (SW)			204169

Ground Stability Data (1:50,000)

Map ID	Details			Estimated Distance From Site	Contact	NGR
	Potential for Shrinking or Swelling Clay Ground Stability Hazards					
	Hazard Potential: Source:	No Hazard British Geological Survey, National Geoscience Information Service	A13SE (E)	0	1	259038 204289
	Potential for Shrink	king or Swelling Clay Ground Stability Hazards				
	Hazard Potential: Source:	No Hazard British Geological Survey, National Geoscience Information Service	A13SW (S)	73	1	258970 204024
	Potential for Shrink	king or Swelling Clay Ground Stability Hazards				
	Hazard Potential: Source:	No Hazard British Geological Survey, National Geoscience Information Service	A13SW (S)	135	1	258974 203976
	Potential for Shrink	king or Swelling Clay Ground Stability Hazards				
	Hazard Potential: Source:	No Hazard British Geological Survey, National Geoscience Information Service	A13SW (W)	177	1	258712 204162
	Potential for Shrink	king or Swelling Clay Ground Stability Hazards				
	Hazard Potential: Source:	No Hazard British Geological Survey, National Geoscience Information Service	A12SE (SW)	207	1	258686 204066

Historical Map List

The following mapping has been analysed for Historical Land Use Information (1:2,500):

1:2,500	Mapsheet	Published Date
Glamorganshire	007_10	1879
Glamorganshire	007_10	1899
Carmarthenshire	055_10	1906
Carmarthenshire	055_10	1916
Ordnance Survey Plan	SN5803	1960
Ordnance Survey Plan	SN5804	1960
Ordnance Survey Plan	SN5903	1960
Ordnance Survey Plan	SN5904	1960

Historical Map List

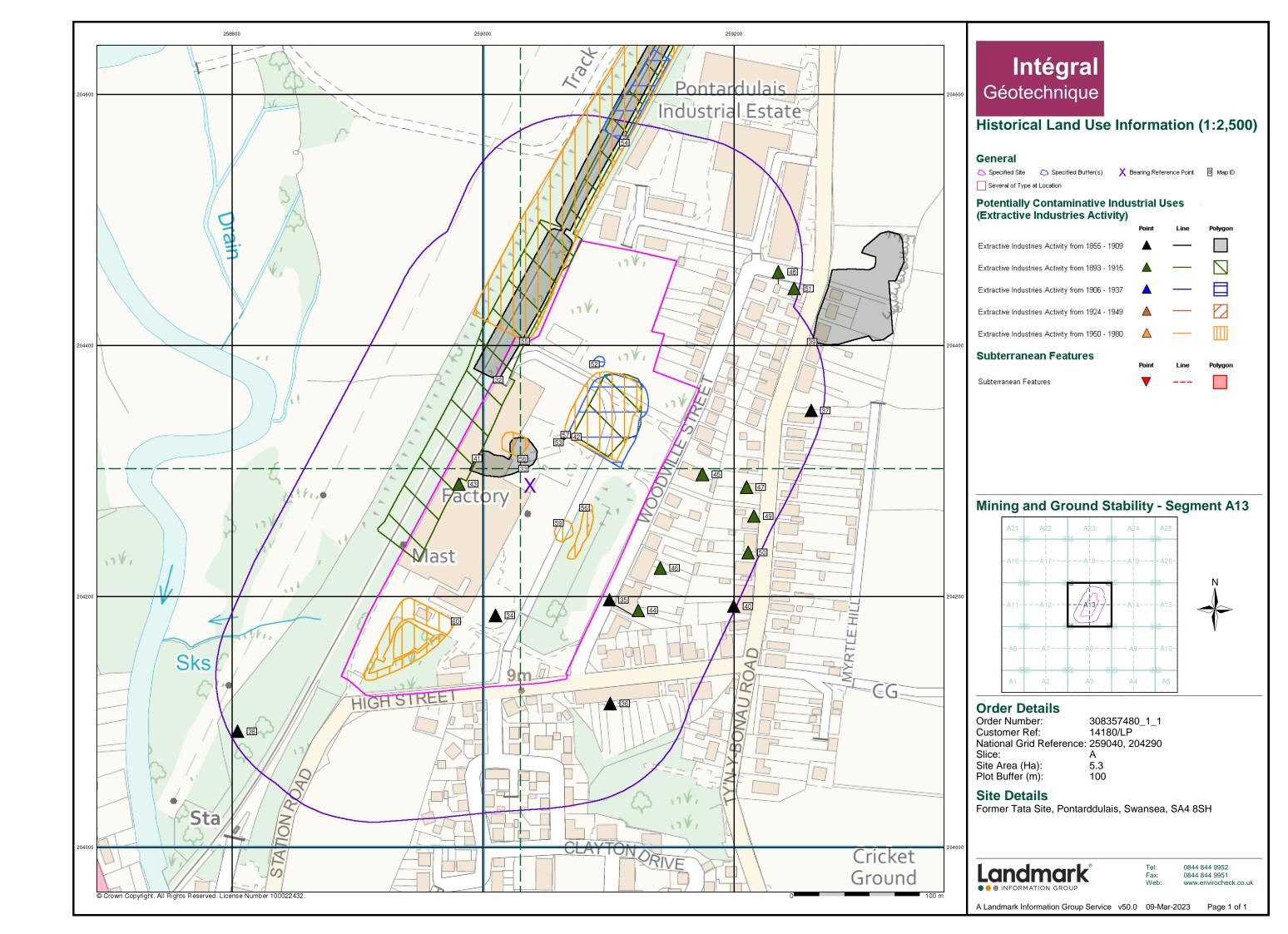
The following mapping has been analysed for Historical Land Use Information (1:10,000):

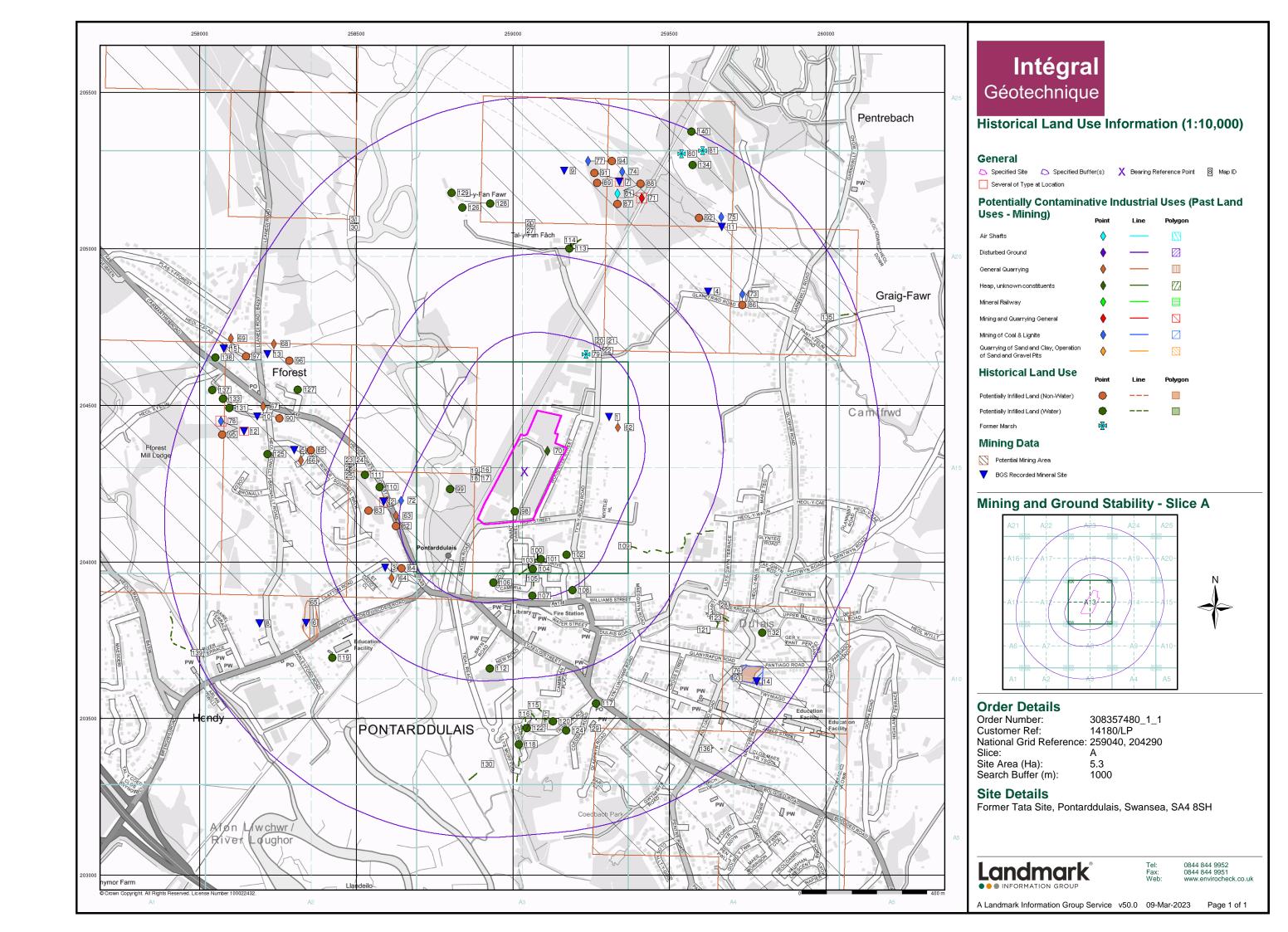
1:10,560	Mapsheet	Published Date
Glamorganshire	007_00	1883
Carmarthenshire	055_NE	1891
Carmarthenshire	055_NW	1891
Carmarthenshire	055_SW	1898
Glamorganshire	007_SE	1900
Glamorganshire	007_NE	1907
Glamorganshire	007_NW	1907
Carmarthenshire	055_NE	1907
Carmarthenshire	055_NW	1907
Glamorganshire	007_SW	1908
Carmarthenshire	055_SW	1908
Glamorganshire	007_NE	1921
Glamorganshire	007_NW	1921
Glamorganshire	007_SE	1921
Glamorganshire	007_SW	1921
Carmarthenshire	055_NE	1921
Carmarthenshire	055_NW	1921
Carmarthenshire	055_SW	1921
Glamorganshire	007_SE	1938
Glamorganshire	007_SW	1938
Carmarthenshire	055_SW	1952
Carmarthenshire	055_NE	1953
Carmarthenshire	055_NW	1953
Ordnance Survey Plan	SN50SE	1964
Ordnance Survey Plan	SN60SW	1964
Ordnance Survey Plan	SN50NE	1965
Ordnance Survey Plan	SN60NW	1965
1:10,000	Mapsheet	Published Date
Ordnance Survey Plan	SN60NW	1988
Ordnance Survey Plan	SN60SW	1991
Ordnance Survey Plan	SN50NE	1993
Ordnance Survey Plan	SN50SE	1993

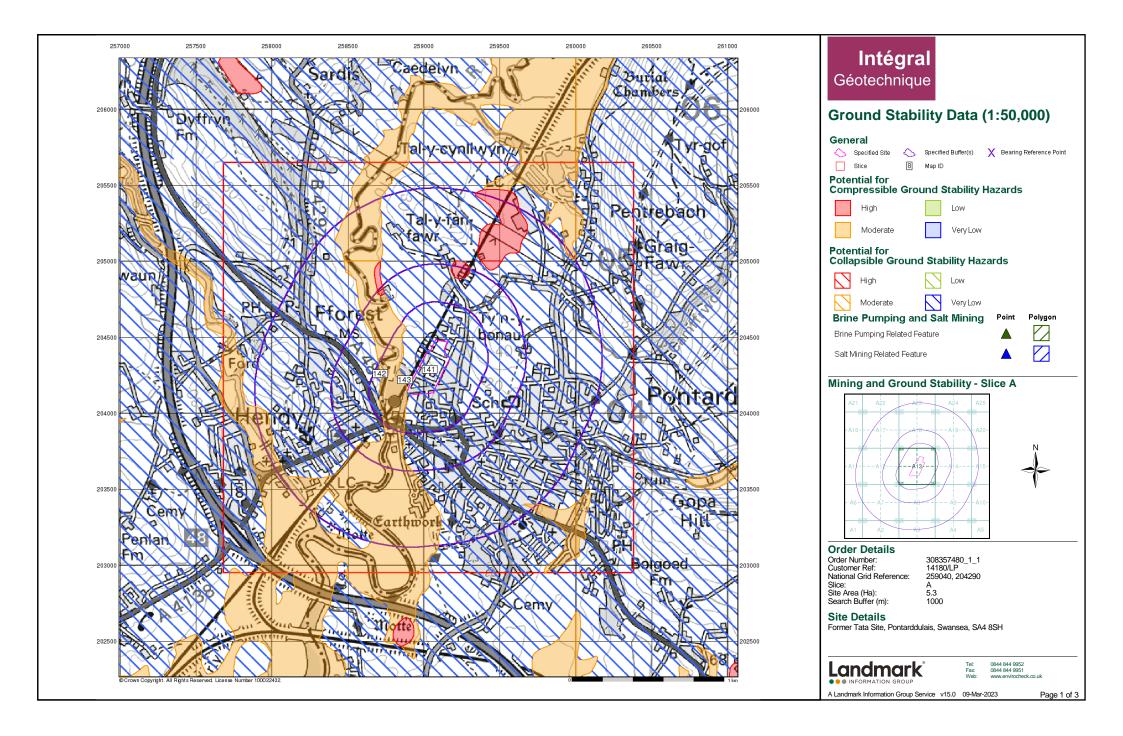
Data Currency

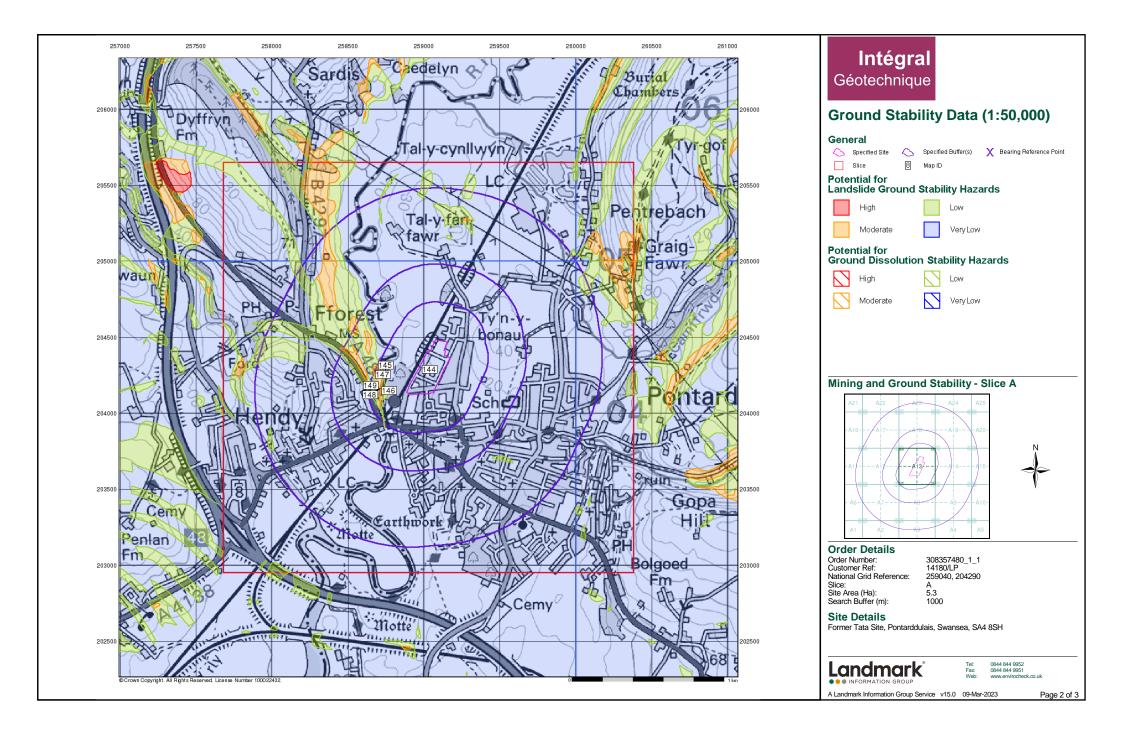
Mining and Cavities Data	Version	Update Cycle
BGS Recorded Mineral Sites		
British Geological Survey - National Geoscience Information Service	November 2022	Bi-Annually
Coal Mining Affected Areas The Coal Authority - Property Searches	February 2023	Annual Rolling Update
Man Made Mining Cavities Stantec UK Ltd	December 2022	Bi-Annually
Mining Instability Ove Arup & Partners	June 1998	Not Applicable
Natural Cavities Stantec UK Ltd	December 2022	Bi-Annually
Non Coal Mining Areas of Great Britain British Geological Survey - National Geoscience Information Service	May 2015	Not Applicable
Historical Land Use Information (1:2,500)	Version	Update Cycle
Subterranean Features		
Landmark Information Group Limited	June 2022	Bi-Annually
Ground Stability Data (1:50,000)	Version	Update Cycle
CBSCB Compensation District Cheshire Brine Subsidence Compensation Board (CBSCB) Cheshire Brine Subsidence Compensation Board (CBSCB)	August 2011 November 2020	As notified
Potential for Collapsible Ground Stability Hazards British Geological Survey - National Geoscience Information Service	April 2020	As notified
Potential for Compressible Ground Stability Hazards British Geological Survey - National Geoscience Information Service	January 2019	As notified
Potential for Ground Dissolution Stability Hazards British Geological Survey - National Geoscience Information Service	January 2019	As notified
Potential for Landslide Ground Stability Hazards British Geological Survey - National Geoscience Information Service	January 2019	As notified
Potential for Running Sand Ground Stability Hazards British Geological Survey - National Geoscience Information Service	January 2019	As notified
Potential for Shrinking or Swelling Clay Ground Stability Hazards British Geological Survey - National Geoscience Information Service	January 2019	As notified
Brine Subsidence Solution Area		<u> </u>

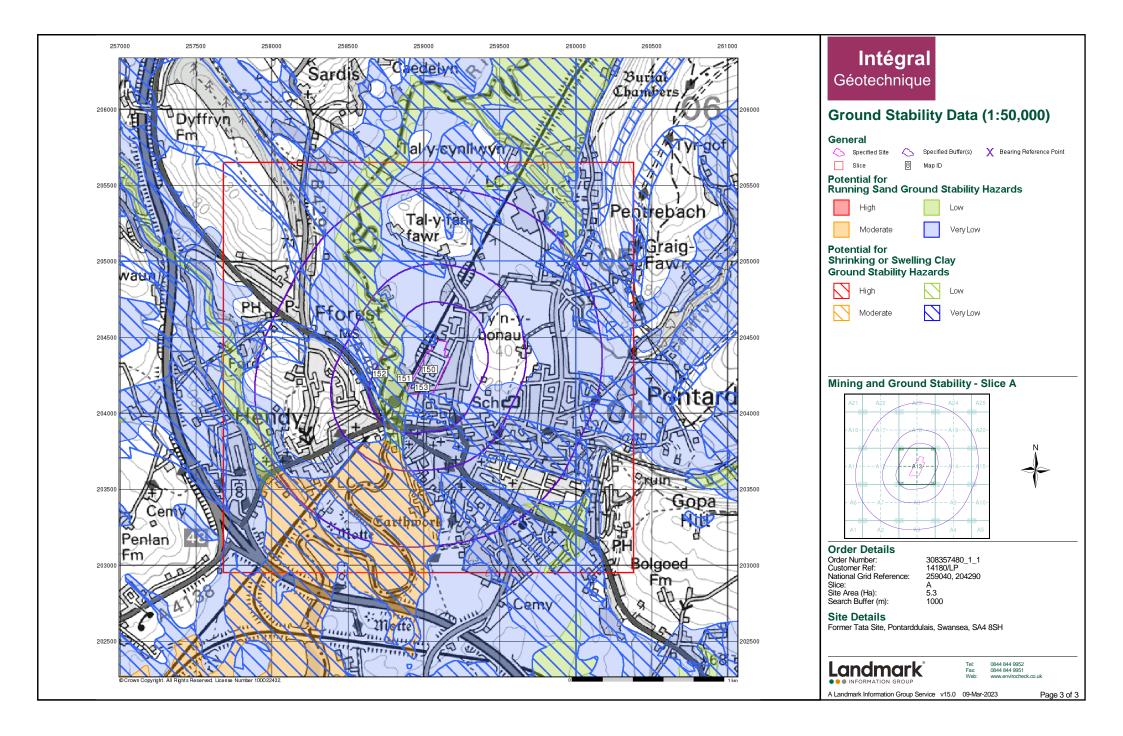
Data Suppliers


A selection of organisations who provide data within this report


Data Supplier	Data Supplier Logo		
Ordnance Survey	Map data		
British Geological Survey	British Geological Survey NATURAL ENVIRONMENT RESEARCH COUNCIL		
The Coal Authority	The Coal Authority		
Ove Arup	ARUP		
Stantec UK Ltd	Stantec		
Wardell Armstrong	wardell armstrong your earth our world		
Johnson Poole & Bloomer	JPB		




Useful Contacts


Contact	Name and Address	Contact Details
1	British Geological Survey - Enquiry Service British Geological Survey, Environmental Science Centre, Keyworth, Nottingham, Nottinghamshire, NG12 5GG	Telephone: 0115 936 3143 Fax: 0115 936 3276 Email: enquiries@bgs.ac.uk Website: www.bgs.ac.uk
2	The Coal Authority - Property Searches 200 Lichfield Lane, Mansfield, Nottinghamshire, NG18 4RG	Telephone: 0345 762 6848 Fax: 01623 637 338 Email: groundstability@coal.gov.uk Website: www2.groundstability.com
3	Ove Arup & Partners Central Square, Forth Street, Newcastle upon Tyne, Tyne and Wear, NE1 3PL	Telephone: 0191 261 6080 Fax: 0191 261 7879
4	Landmark Information Group Limited Imperium, Imperial Way, Reading, Berkshire, RG2 0TD	Telephone: 0844 844 9960 Fax: 0844 844 9951 Email: customerservice@promap.co.uk Website: www.landmarkinfo.co.uk
-	Landmark Information Group Limited Imperium, Imperial Way, Reading, Berkshire, RG2 0TD	Telephone: 0844 844 9952 Fax: 0844 844 9951 Email: customerservices@landmarkinfo.co.uk Website: www.landmarkinfo.co.uk

Intégral Géotechnique

Index Map

For ease of identification, your site and buffer have been split into Slices, Segments and Quadrants. These are illustrated on the Index Map opposite and explained further below.

Slice

Each slice represents a 1:10,000 plot area (2.7km x 2.7km) for your site and buffer. A large site and buffer may be made up of several slices (represented by a red outline), that are referenced by letters of the alphabet, starting from the bottom left corner of the slice "grid". This grid does not relate to National Grid lines but is designed to give best fit over the site and buffer.

Seamer

A segment represents a 1:2,500 plot area. Segments that have plot files associated with them are shown in dark green, others in light blue. These are numbered from the bottom left hand corner within each slice.

Quadrant

A quadrant is a quarter of a segment. These are labelled as NW, NE, SW, SE and are referenced in the datasheet to allow features to be quickly located on plots. Therefore a feature that has a quadrant reference of A7NW will be in Slice A, Segment 7 and the NW Quadrant.

A selection of organisations who provide data within this report:

Envirocheck reports are compiled from 136 different sources of data.

Client Details

MR H Pritchard, Integral Geotechnique, Integral House, 7 Beddau Way, Castlegate Business Park, Caerphilly, CF83

Order Details

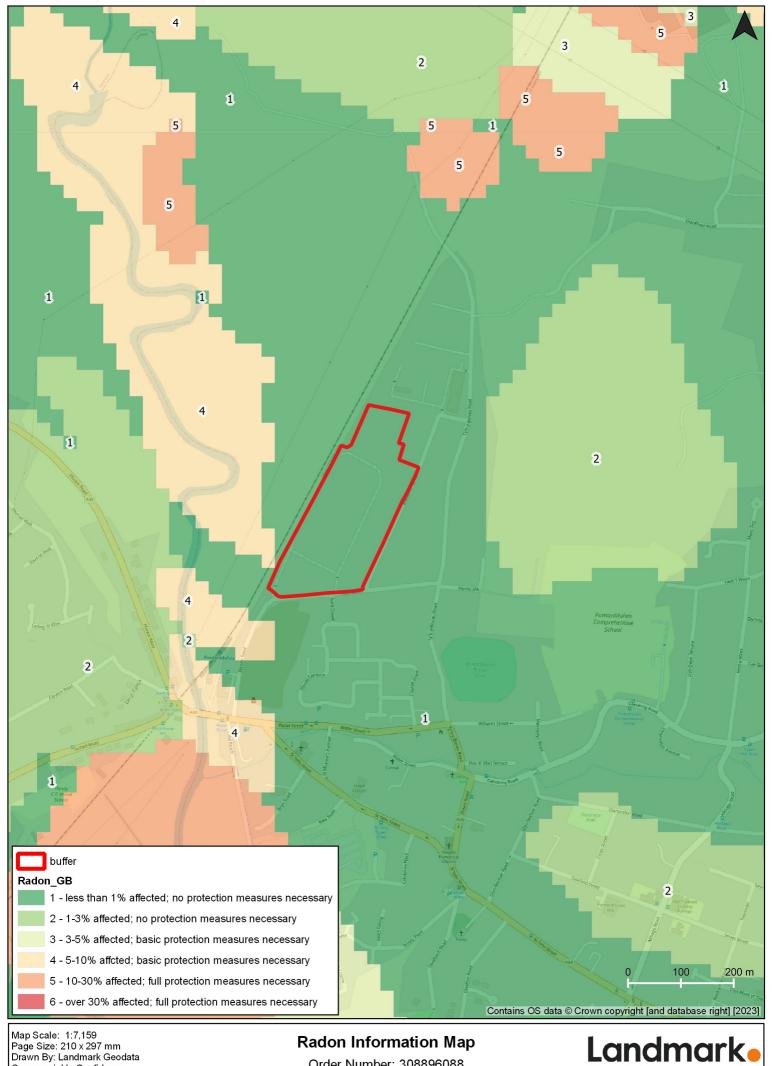
Order Number: 308357480_1_1
Customer Ref: 14180/LP
National Grid Reference: 259040, 204280

Site Area (Ha): 5.3 Search Buffer (m): 1000

Site Details

Former Tata Site, Pontarddulais, Swansea, SA4 8SH

Full Terms and Conditions can be found on the following link: http://www.landmarkinfo.co.uk/Terms/Show/515



Fel: 0844 844 9952 Fax: 0844 844 9951 Web: www.envirocheck.co.uk

A Landmark Information Group Service v50.0 09-Mar-2023 Page 1 of 1

APPENDIX B

LANDMARK RADON INFORMATION MAP

Commercial In Confidence Copyright Public Health England- all rights reserved

Order Number: 308896088 Date:22/03/2023

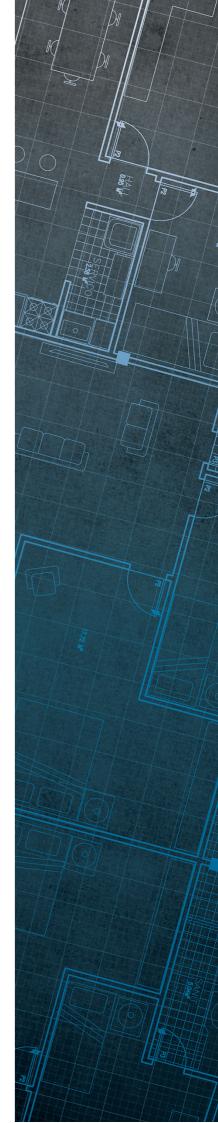
APPENDIX C CONSULTANTS COAL MINING REPORT FROM THE COAL AUTHORITY

Consultants Coal Mining Report

Former Tata Site Pontarddulais Swansea SA4 8SH

Date of enquiry:
Date enquiry received:

Issue date:


9 March 2023 9 March 2023

9 March 2023

Our reference: Your reference:

51003343235001

14180/LP

Consultants Coal Mining Report

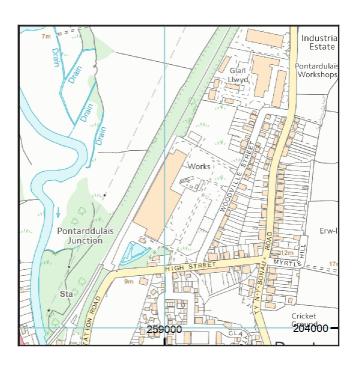
This report is based on and limited to the records held by the Coal Authority at the time the report was produced.

Client name

INTEGRAL GEOTECHNIQUE (WALES) LTD.

Enquiry address

Former Tata Site Pontarddulais Swansea SA4 8SH


How to contact us

0345 762 6848 (UK) +44 (0)1623 637 000 (International)

200 Lichfield Lane Mansfield Nottinghamshire NG18 4RG

www.groundstability.com

Approximate position of property

Reproduced by permission of Ordnance Survey on behalf of HMSO. © Crown copyright and database right 2018. All rights reserved.

Ordnance Survey Licence number: 100020315

Section 1 - Mining activity and geology

Past underground mining

No past mining recorded.

Probable unrecorded shallow workings

None.

Spine roadways at shallow depth

No spine roadway recorded at shallow depth.

Mine entries

None recorded within 100 metres of the enquiry boundary.

Abandoned mine plan catalogue numbers

None available.

Outcrops

Seam name	Mineral	Seam workable	Distance to outcrop (m)	Direction to outcrop	Bearing of outcrop
DARREN DDU	Coal	Yes	0.7	North-West	118
MYNYDDISLWYN LOWER LEAF	Coal	Yes	Within	N/A	111

Geological faults, fissures and breaklines

Please refer to the 'Summary of findings' map (on separate sheet) for details of any geological faults, fissures or breaklines either within or intersecting the enquiry boundary.

Faults under or close to the property recorded.

Opencast mines

None recorded within 500 metres of the enquiry boundary.

Coal Authority managed tips

None recorded within 500 metres of the enquiry boundary.

Section 2 - Investigative or remedial activity

Please refer to the 'Summary of findings' map (on separate sheet) for details of any activity within the area of the site boundary.

Site investigations

None recorded within 50 metres of the enquiry boundary.

Remediated sites

None recorded within 50 metres of the enquiry boundary.

Coal mining subsidence

The Coal Authority has not received a damage notice or claim for the subject property, or any property within 50 metres of the enquiry boundary, since 31 October 1994.

There is no current Stop Notice delaying the start of remedial works or repairs to the property.

The Coal Authority is not aware of any request having been made to carry out preventive works before coal is worked under section 33 of the Coal Mining Subsidence Act 1991.

Mine gas

None recorded within 500 metres of the enquiry boundary.

Mine water treatment schemes

None recorded within 500 metres of the enquiry boundary.

Section 3 - Licensing and future mining activity

Future underground mining

None recorded.

Coal mining licensing

None recorded within 200 metres of the enquiry boundary.

Court orders

None recorded.

Section 46 notices

No notices have been given, under section 46 of the Coal Mining Subsidence Act 1991, stating that the land is at risk of subsidence.

Withdrawal of support notices

The property is not in an area where a notice to withdraw support has been given.

The property is not in an area where a notice has been given under section 41 of the Coal Industry Act 1994, cancelling the entitlement to withdraw support.

Payments to owners of former copyhold land

The property is not in an area where a relevant notice has been published under the Coal Industry Act 1975/Coal Industry Act 1994.

Section 4 - Further information

Based on the responses in this report, no further information has been highlighted.

Future development

If development proposals are being considered, technical advice relating to both the investigation of coal and former coal mines and their treatment should be obtained before beginning work on site. All proposals should apply specialist engineering practice required for former mining areas. No development should be undertaken that intersects, disturbs or interferes with any coal or coal mines without first obtaining the permission of the Coal Authority.

MINE GAS: Please note, if there are no recorded instances of mine gas within 500m of the enquiry boundary, this does not mean that mine gas is not present within the vicinity. The Coal Authority Mine Gas data is limited to only those sites where a Mine Gas incident has been recorded. Developers should be aware that the investigation of coal seams, mine workings or mine entries may have the potential to generate and/or displace underground gases. Associated risks both to the development site and any neighbouring land or properties should be fully considered when undertaking any ground works. The need for effective measures to prevent gases migrating onto any land or into any properties, either during investigation or remediation work, or after development must also be assessed and properly addressed. In these instances, the Coal Authority recommends that a more detailed Gas Risk Assessment is undertaken by a competent assessor.

Section 5 - Data definitions

The datasets used in this report have limitations and assumptions within their results. For more guidance on the data and the results specific to the enquiry boundary, please **call us on 0345 762 6848** or **email us at groundstability@coal.gov.uk**.

Past underground coal mining

Details of all recorded underground mining relative to the enquiry boundary. Only past underground workings where the enquiry boundary is within 0.7 times the depth of the workings (zone of likely physical influence) allowing for seam inclination, will be included.

Probable unrecorded shallow workings

Areas where the Coal Authority believes there to be unrecorded coal workings that exist at or close to the surface (less than 30 metres deep).

Spine roadways at shallow depth

Connecting roadways either, working to working, or, surface to working, both in-seam and cross measures that exist at or close to the surface (less than 30 metres deep), either within or within 10 metres of the enquiry boundary.

Mine entries

Details of any shaft or adit either within, or within 100 metres of the enquiry boundary including approximate location, brief treatment details where known, the mineral worked from the mine entry and conveyance details where the mine entry has previously been sold by the Authority or its predecessors British Coal or the National Coal Board.

Abandoned mine plan catalogue numbers

Plan numbers extracted from the abandoned mines catalogue containing details of coal and other mineral abandonment plans deposited via the Mines Inspectorate in accordance with the Coal Mines Regulation Act and Metalliferous Mines Regulation Act 1872. A maximum of 9 plan extents that intersect with the enquiry boundary will be included. This does not infer that the workings and/or mine entries shown on the abandonment plan will be relevant to the site/property boundary.

Outcrops

Details of seam outcrops will be included where the enquiry boundary intersects with a conjectured or actual seam outcrop location (derived by either the British Geological Survey or the Coal Authority) or intersects with a defined 50 metres buffer on the coal (dip) side of the outcrop. An indication of whether the Coal Authority believes the seam to be of sufficient thickness and/or quality to have been worked will also be included.

Geological faults, fissures and breaklines

Geological disturbances or fractures in the bedrock. Surface fault lines (British Geological Survey derived data) and fissures and breaklines (Coal Authority derived data) intersecting with the enquiry boundary will be included. In some circumstances faults, fissures or breaklines have been known to contribute to surface subsidence damage as a consequence of underground coal mining.

Opencast mines

Opencast coal sites from which coal has been removed in the past by opencast (surface) methods and where the enquiry boundary is within 500 metres of either the licence area, site boundary, excavation area (high wall) or coaling area.

Coal Authority managed tips

Locations of disused colliery tip sites owned and managed by the Coal Authority, located within 500 metres of the enquiry boundary.

Site investigations

Details of site investigations within 50 metres of the enquiry boundary where the Coal Authority has received information relating to coal mining risk investigation and/or remediation by third parties.

Remediated sites

Sites where the Coal Authority has undertaken remedial works either within or within 50 metres of the enquiry boundary following report of a hazard relating to coal mining under the Coal Authority's Emergency Surface Hazard Call Out procedures.

Coal mining subsidence

Details of alleged coal mining subsidence claims made since 31 October 1994 either within or within 50 metres of the enquiry boundary. Where the claim relates to the enquiry boundary confirmation of whether the claim was accepted, rejected or whether liability is still being determined will be given. Where the claim has been discharged, whether this was by repair, payment of compensation or a combination of both, the value of the claim, where known, will also be given.

Details of any current 'Stop Notice' deferring remedial works or repairs affecting the property/site, and if so the date of the notice.

Details of any request made to execute preventative works before coal is worked under section 33 of the Coal Mining Subsidence Act 1991. If yes, whether any person withheld consent or failed to comply with any request to execute preventative works.

Mine gas

Reports of alleged mine gas emissions received by the Coal Authority, either within or within 500 metres of the enquiry boundary that subsequently required investigation and action by the Coal Authority to mitigate the effects of the mine gas emission. Please note, if there are no recorded instances of mine gas reported, this does not mean that mine gas is not present within the vicinity. The Coal Authority Mine Gas data is limited to only those sites where a Mine Gas incident has been recorded.

Mine water treatment schemes

Locations where the Coal Authority has constructed or operates assets that remove pollutants from mine water prior to the treated mine water being discharged into the receiving water body.

These schemes are part of the UK's strategy to meet the requirements of the Water Framework Directive. Schemes fall into 2 basic categories: Remedial – mitigating the impact of existing pollution or Preventative – preventing a future pollution incident.

Mine water treatment schemes generally consist of one or more primary settlement lagoons and one or more reed beds for secondary treatment. A small number are more specialised process treatment plants.

Future underground mining

Details of all planned underground mining relative to the enquiry boundary. Only those future workings where the enquiry boundary is within 0.7 times the depth of the workings (zone of likely physical influence) allowing for seam inclination will be included.

Coal mining licensing

Details of all licenses issued by the Coal Authority either within or within 200 metres of the enquiry boundary in relation to the under taking of surface coal mining, underground coal mining or underground coal gasification.

Court orders

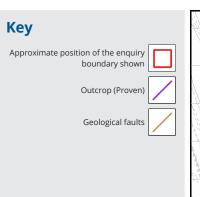
Orders in respect of the working of coal under the Mines (Working Facilities and Support) Acts of 1923 and 1966 or any statutory modification or amendment thereof.

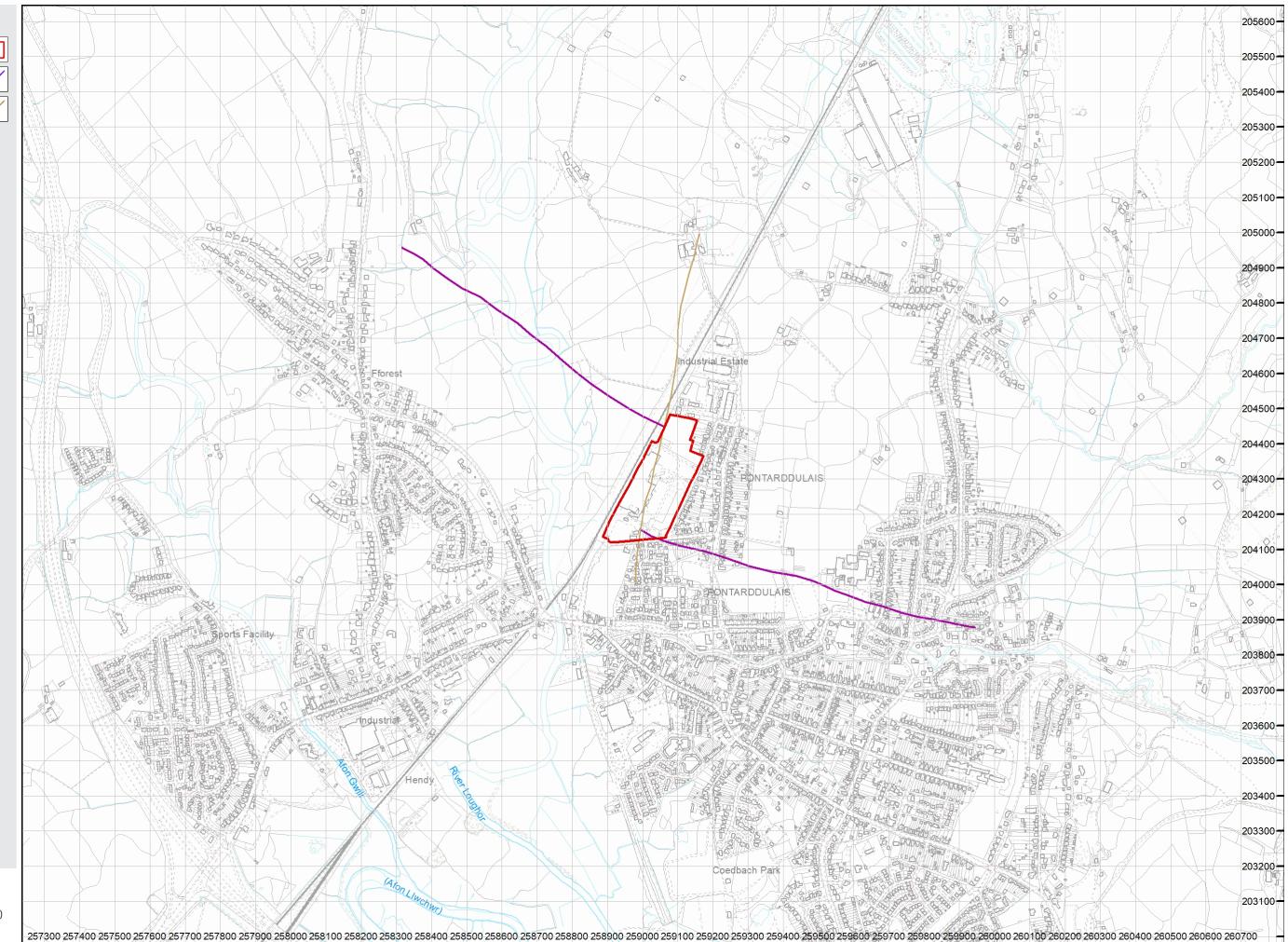
Section 46 notices

Notice of proposals relating to underground coal mining operations that have been given under section 46 of the Coal Mining Subsidence Act 1991.

Withdrawal of support notices

Published notices of entitlement to withdraw support and the date of the notice. Details of any revocation notice withdrawing the entitlement to withdraw support given under Section 41 of the Coal Industry Act 1994.


Payment to owners of former copyhold land


Relevant notices which may affect the property and any subsequent notice of retained interests in coal and coal mines, acceptance or rejection notices and whether any compensation has been paid to a claimant.

Summary of findings

Reproduced by permission of Ordnance Survey on behalf of HMSO.
© Crown copyright and database right 2018. All rights reserved.
Ordnance Survey Licence number: 100020315

The map highlights any specific surface or subsurface features within or near to the boundary of the site.

How to contact us

0345 762 6848 (UK) +44 (0)1623 637 000 (International) www.groundstability.com APPENDIX D

TRIAL PIT LOGS

Location: Pontarddulais Equipment: 20 Tonne Tracked Excavator Coordinates: 259081.70mE - 204463.83mN Date Excavated: 13/03/2023 Level: 11.29mAOD Samples & In-situ Testing Depth (m) Type Results (m) (m) AOD (m)	ar and sub-rounded of sand T with low cobble content o r to sub-rounded of sandsto	dstone and f sub-rounded one.
Equipment: 20 Tonne Tracked Excavator Coordinates: 259081.70mE - 204463.83mN Date Excavated: 13/03/2023 Level: 11.29mAOD Samples & In-situ Testing	Depth: E 2.70m 80 Description Shifty gravelly organic CLAY ar and sub-rounded of sand or to sub-rounded of sandstord of s	with frequent roots dstone and fsub-rounded one.
Date Excavated: 13/03/2023 Level: 11.29mAOD Samples & In-situ Testing Depth (m) Type Results 0.00 ES 0.20 11.09 Depth (m) Type Results Grass over soft blackish brown slightly silty slig and rootlets. Gravel is fine to coarse sub-angular mudstone. [Topsoil] Soft to firm orangish brown gravelly clayey SILT sandstone. Gravel is fine to coarse sub-angular mudstone. Gravel is fine to coarse sub-angular sandstone. Gravel is fine to coarse sub-angular rounded sandstone. Gravel is fine to coarse sub-angular gravely sandstone.	Depth: 82.70m 80 Description Shifty gravelly organic CLAY ar and sub-rounded of sand to r to sub-rounded of sandstood of s	with frequent roots dstone and f sub-rounded one. e content of sub- of sandstone.
Samples & In-situ Testing Depth (m) Type Results 0.00 ES 0.20 11.09 Depth (m) Type Results O.20 11.09 Depth (m) Type Results Grass over soft blackish brown slightly silty slig and rootlets. Gravel is fine to coarse sub-angular mudstone. [Topsoil] Soft to firm orangish brown gravelly clayey SILT sandstone. Gravel is fine to coarse sub-angular mudstone. Gravel is fine to coarse sub-angular sandstone. Gravel is fine to coarse sub-angular rounded sandstone. Gravel is fine to coarse sub-angular sandstone. Gravel is fine to coarse sub-angular rounded sandstone. Gravel is fine to coarse sub-angular sandstone. Gravel is fine to coarse sub-angular rounded sandstone. Gravel is fine to coarse sub-angular sandstone. Gravel is fine to coarse sub-angular rounded sandstone. Gravel is fine to coarse sub-angular rounded sandstone. Gravel is fine to coarse sub-angular sandstone.	Description Intly gravelly organic CLAY ar and sub-rounded of sand T with low cobble content o r to sub-rounded of sandsto	dstone and f sub-rounded one. e content of sub- of sandstone.
Depth (m) Type Results (m) (m AOD) Legend Stratum D 0.00 ES 0.20 11.09 Grass over soft blackish brown slightly silty slig and rootlets. Gravel is fine to coarse sub-angular mudstone. [Topsoil] Soft to firm orangish brown gravelly clayey SILT sandstone. Gravel is fine to coarse sub-angular mudstone. Gravel is fine to coarse sub-angular sandstone. Gravel is fine to coarse sub-angular rounded sandstone. Gravel is fine to coarse sub-angular gravely clayey silty sand rounded sandstone. Gravel is fine to coarse sub-angular gravely clayers and	phtly gravelly organic CLAY ar and sub-rounded of sand T with low cobble content or to sub-rounded of sandsto	dstone and f sub-rounded one. e content of sub- of sandstone.
0.00 ES 0.20 11.09 Grass over soft blackish brown slightly silty slig and rootlets. Gravel is fine to coarse sub-angular mudstone. [Topsoil] Soft to firm orangish brown gravelly clayey SILT sandstone. Gravel is fine to coarse sub-angular sandstone. Gravel is fine to coarse sub-angular mudstone. Gravel is fine to coarse sub-angular sandstone. Gravel is fine to coarse sub-angular rounded sandstone. Gravel is fine to coarse sub-angular sandstone.	ar and sub-rounded of sand T with low cobble content o r to sub-rounded of sandsto	dstone and f sub-rounded one. e content of sub- of sandstone.
2.70 8.59 End of Trials	pit at 2.70 m	-2
Remarks: 1. Trial pit terminated at 2.7m below ground level. 2. Soil infiltration testing undertaken within trial pit.	Key: D - Small disturbed sam, B - Bulk disturbed sample	

In Géotech	tégra l nnique	Intégral House, 7 Beddau Castlegate Business Park Caerphilly CF83 2AX Tel. 029 20807991 Fax. 029 20862176 mail@integralgeotec.com	k	Project Form	Name: er Tata	Site	Project No.: 14180	Trial Pit No.: TP02 Sheet 1 of 1
Location: Pontarddı		and the state of t		Client	:: Wal	ters Ltd	Logged By:	Scale 1:25
Equipment:	20 To	nne Tracked Excav	/ator	Coordin	nates:	259132.51mE - 204458.30mN	Dimensions	2.30m
Date Excava	ated:	13/03/2023		Level:	12.20m	AOD	Depth: 50 20 3.10m 8.0	
Sam Depth (m)	nples & I	n-situ Testing Results	Depth (m)	Level (m AOD)	Legend	Stratum D	escription	
0.20	ES					MADE GROUND: Vegetation over soft black sli cobble content of angular to sub-rounded block Gravel is fine to coarse sub-angular and sub-ro	y and platy sandstone, cond	crete and brick.
			0.80	11.40	XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX	Firm orangish brown slightly sandy clayey SILT.		- 1
			1.40	10.80		Medium dense grey clayey silty sandy GRAVEL angular and sub-rounded sandstone. Gravel is sandstone, limestone and quartzite.	with high coble and boulde fine to coarse sub-angular t	er content of sub- o sub-rounded of
			3.10	9.10	XX XX XX	End of Trialp	iit at 3.10 m	-3
								-4
Remarks: 1. Trial pit terr	i minated a	t 3.1m below ground le	level.	Groundwa	1. Sta	No groundwater encountered. ble in the short term with local instability associate e and boulder removal	Key: D - Small disturbed sample B - Bulk disturbed sample ES - Environmental soil si W - Water sample	ACC

In Géotech	tégral inique	Intégral House, 7 Beddau Castlegate Business Park Caerphilly CF83 2AX Tel. 029 20807991 Fax. 029 20862176 mail@integralgeotec.com	Way	Project Form	Name: er Tata	Site	Project No.: 14180	Trial Pit No.: TP03 Sheet 1 of 1
Location:		man@megraigeoteo.com		O.: 1			Logged By:	Scale
Pontarddu	ulais			Client	: Wal	ters Ltd	FG	1:25
Equipment:	20 Tor	nne Tracked Excava	ator	Coordir	nates:	259099.59mE - 204419.14mN	Dimensions	2.80m
Date Excava	ated:	13/03/2023		Level:	11.69m	AOD	Depth : 58 2.40m 8	
Sam Depth (m)	ples & Ir Type	n-situ Testing Results	Depth (m)	Level (m AOD)	Legend	Stratum D	escription	
0.10	ES	Results	()	(III/IOD)		Vegetation over soft brown slightly silty organic	CLAY with frequent roots a	nd rootlets.
0.10	ES		0.20	11.49		[Topsoil] Soft to firm orangish brown slightly sandy claye	y SILT.	
1.50	В		0.60	11.09	X X X X X X X X X X X X X X X X X X X	Medium dense grey slightly silty sandy GRAVE angular to rounded sandstone, limestone and c sub-rounded of sandstone, limestone and quar	uartzite. Gravel is fine to co	ider content of parse angular to
			2.40	9.29		End of Triali	sit at 2.40 m	-2
Domestic						4. No groundwater and a superior of	Wa	-4
Remarks:	ninoto	2.4m bolow arrived by		Groundwa	ter:	1. No groundwater encountered.	Key: D - Small disturbed samp	nle T T
i. iiiai pil lefr	ımıateti at	2.4m below ground le	-	Stability:	1. Ger	nerally stable in the short term with local instability iated with cobble and boulder removal.	B - Bulk disturbed sample	• ACC

Int Géotech	nique	Intégral House, 7 Beddau W Castlegate Business Park Caerphilly CF83 2AX Tel. 029 20807991 Fax. 029 20862176 mail@integralgeotec.com	/ay	Project Forme	Name: er Tata	Site	Project No.: 14180	Trial Pit No.: TP04 Sheet 1 of 1
Location:				Client	· \/\/al	Iters Ltd	Logged By:	Scale
Pontarddu	ılais			Cilent	. vvai	iters Liu	FG	1:25
Equipment:	20 Tor	ne Tracked Excavat	tor.	Coordin	nates:	259066.17mE - 204408.25mN	Dimensions	2.40m
Date Excava		13/03/2023		Level:	11.23m	AOD	Depth : E	
Sam Depth (m)	ples & In Type	-situ Testing Results	Depth (m)	Level (m AOD)	Legend	Stratum D	escription	
0.20	ES	Results				MADE GROUND: Loose brown slightly silty cla fine to coarse angular of limestone. [Hardcore]	yey GRAVEL with frequent	rootlets. Gravel is .
			2.00	9.23		Medium dense orangish brown sandy silty GRA sub-angular and sub-rounded of sandstone and rounded of sandstone and rounded of sandstone and limestone.	I limestone. Gravel is fine to	oulder content of coarse angular to
								-3
Remarks: 1. Trial pit term	ninated at	2.0m below ground lev	vel.	Groundwat	1. Sta	No groundwater encountered. able in the short term with local instability associate le and boulder removal.	Key: D - Small disturbed sample B - Bulk disturbed sample	ACC

In Géotech	tégral nnique	Intégral House, 7 Beddau Castlegate Business Park Caerphilly CF83 2AX Tel. 029 20807991 Fax. 029 20862176 mail@integralgeotec.com	(Project Form	Name: er Tata	Site	Project No.: 14180	Trial Pit No.: TP05 Sheet 1 of 1
Location:		man@megrangeotec.com	'	Client	·· \/\/al	ters Ltd	Logged By:	Scale
Pontarddı	ulais			Olicit	vvai	lors Liu	FG	1:25
Equipment:	20 To	nne Tracked Excav	ator	Coordin	nates:	259095.29mE - 204384.65mN	Dimensions	3.80m
Date Excava	ated:	13/03/2023		Level:	11.06m	AOD	Depth : 50 4.10m 80 0	
Sam Depth (m)	ples & II	n-situ Testing Results	Depth (m)	Level (m AOD)	Legend	Stratum D	·	
0.40	ES	T. COMIG	3.20	7.86 6.96		MADE GROUND: Vegetation over soft blackish and rootlets. MADE GROUND: Loose to medium dense been high cobble content of angular to sub-rounded to Gravel is fine to coarse angular to sub-rounded fine ash and clinker. Soft to firm orangish brown clayey sandy SILT.	oming dense black sandy s orick, concrete, vitreous and of brick, concrete, vesicular	ilty GRAVEL withd vesicular slag.
Remarks: 1. Trial pit terr	ninated a	t 4.m below ground lev		Groundwa	ter:	No groundwater encountered.	Key: D - Small disturbed samp	
			5	Stability:		nerally stable in the short term with local instability ciated with cobble removal.	B - Bulk disturbed sample ES - Environmental soil s W - Water sample	

Intégral House, 7 Beddau Way Castlegate Business Park Caerphilly CF83 2AX Tel. 029 20807991 Fax. 029 20862176 mail@integralgeotec.com		ct Name: ner Tata	Site	Project No.: 14180	Trial Pit No.: TP06 Sheet 1 of 1
Location: Pontarddulais	Clier	nt: Wal	ters Ltd	Logged By: FG	Scale 1:25
Equipment: 20 Tonne Tracked Excavator	Coord	dinates:	259151.13mE - 204351.50mN	Dimensions	3.20m
Date Excavated: 13/03/2023	Level	: 11.37m	AOD	Depth : 58 2.60m 80	
Samples & In-situ Testing D Depth (m) Type Results	epth Level m) (m AOI		Stratum D		
0.50 ES	40 10.97	7	MADE GROUND: Vegetation over soft blackish and rootlets. Inclusions of plastic, glass and tim Medium dense orangish brown and grey silty so content of sub-angular and sub-rounded sandst coarse angular to rounded of sandstone, limest	ber. andy GRAVEL with high cot one, limestone and quartz.	oble ad boulder
					-2
	60 8.77		End of Trialp	it at 2.60 m	-3
					-4
Remarks: 1. Trial pit terminated at 2.6m below ground level. 2. Soil infiltration testing undertaken within trial pit.	Groundw Stability:	1. Ge	No groundwater encountered. Inerally stable in the short term with local instability ciated with cobble and boulder removal. calised spalling below 0.4m depth. Calised spalling below 0.4m depth.	Key: D - Small disturbed sample B - Bulk disturbed sample ES - Environmental soil s W - Water sample	ACC

In Géotech	tégral inique	Intégral House, 7 Beddau Castlegate Business Park Caerphilly CF83 2AX Tel. 029 20807991 Fax. 029 20862176 mail@integralgeotec.com	Way	Project Form	Name: er Tata	Site	Project No.: 14180	Trial Pit No.: TP07 Sheet 1 of 1
Location:		man@mograngootoo.com		011 1	147.1		Logged By:	Scale
Pontarddı	ulais			Client	: war	ters Ltd	FG	1:25
Equipment:	20 Tor	nne Tracked Excava	ator.	Coordir	nates:	259039.73mE - 204379.28mN	Dimensions	2.90m
Date Excava	ated:	13/03/2023		Level:	9.70mA	OD	Depth : 50 2.00m 80	
Sam Depth (m)	ples & Ir	n-situ Testing Results	Depth (m)	Level (m AOD)	Legend	Stratum D	escription	
0.10	ES	results	()	(, 102)		MADE GROUND: Vegetation over loose black sangular of mudstone, sandstone, fine ash and of	sandy GRAVEL. Gravel is fi	ne to coarse
0.10			0.15	9.55		timber. Soft orangish brown clayey slightly gravelly SIL rounded of sandstone, limestone and quartz. Medium dense brown slightly silty sandy GRAV	T. Gravel is fine to coarse s	ub-rounded and
1.50	В					of sub-angular to rounded sandstone, limestone angular to rounded of sandstone, limestone and	e and quartzite. Gravel is fir	ne to coarse sub-
			2.00	7.70	× × ×	End of Trials	sit at 2.00 m	2
								-3
								-5
Remarks: 1. Trial pit terr	ninated at	2.0m below ground le		Groundwa	ter:	No groundwater encountered.	Key: D - Small disturbed sample	
			S	tability:		nerally stable in the short term with local instability is intended in the short term with local instability	B - Bulk disturbed sample ES - Environmental soil s W - Water sample	

In t Géotech	tégral nnique			Project Form	Name: er Tata	Site	Project No.: 14180	Trial Pit No.: TP08 Sheet 1 of 1
Location:		and and an analysis of the second of the sec	-	Client	: Wal	ters Ltd	Logged By:	Scale
Pontarddu	ulais						FG	1:25
Equipment:	20 To	nne Tracked Excav	ator	Coordin	nates:	259084.54mE - 204344.29mN	Dimensions	3.50m
Date Excava		14/03/2023		Level:	10.04m	AOD	Depth : E 2.40m 8.	
Depth (m)	Туре	n-situ Testing Results	Depth (m)	Level (m AOD)	Legend	Stratum D		
2.00	Type ES	Results	2.40	9.74 7.64	The state of the s	MADE GROUND: Vegetation over grey silty sar and low cobble content of rounded sandstone. rounded of sandstone and limestone. Inclusions Medium dense brown and orangish brown sligh cobble and boulder content of sub-angular to ro Gravel is fine to coarse sub-angular to rounded	ndy GRAVEL with common Gravel is fine to coarse and s of plastic and rope. tity clayey silty sandy GRAV unded sandstone, limeston of sandstone, limestone ar	gular to sub
								- 4
Remarks:	minated at	t 2 4m holow ground !		 Groundwa	ter:	Water standing in trial pit after 20 minutes at 2.0 below ground level.	Om Key: D - Small disturbed samp	
i. mai pit terri	miaieu a	t 2.4m below ground l	—	Stability:	1. Fre level.	equent spalling of pit wall sides below 0.3m below g	B - Bulk disturbed sample	ACC

Int Géotech	tégral inique	Intégral House, 7 Beddau Castlegate Business Park Caerphilly CF83 2AX Tel. 029 20807991 Fax. 029 20862176 mail@integralgeotec.com	Κ	Project Form	Name: er Tata	Site	Project No.: 14180	Trial Pit No.: TP09 Sheet 1 of 1
Location:		, mangintograngootoonoon	<u> </u>	Client	· \\/olt	ters Ltd	Logged By:	Scale
Pontarddu	ılais			Cilent	. vvaii	ers Liu	FG	1:25
Equipment:	20 Tor	nne Tracked Excav	ator	Coordir	nates: 2	259123.13mE - 204310.91mN	Dimensions	3.20m
Date Excava	ated:	14/03/2023		Level:	9.64mA	OD	Depth : E	
Sam Depth (m)	ples & Ir Type	n-situ Testing Results	Depth (m)	Level (m AOD)	Legend	Stratum D	escription	
0.30	ES					MADE GROUND: Loose blackish grey silty very content of sub-angular and sub-rounded sandsi concrete. Gravel is fine to coarse angular to rot and vitreous slag, brick and concrete. Inclusion plastic and timber.	one, vesicular slag, clinker inded of sandstone, fine as	, brick and h, clinker, vesicular
			1.30	8.34	× × × ×	Soft grey slightly sandy slightly clayey SILT.		
			1.80	7.84		Medium dense to dense brown silty sandy GRA sub-angular to rounded sandstone, limestone a sandstone, limestone and quartzite.	VEL with high cobble and bind quartzite. Gravel is fine	poulder content of to coarse of
			3.10	6.54		End of Trialp		-4
Remarks:				 Broundwa	ter:	Major water inflows encountered at 2.0m below ground level.		
1. Trial pit tern	ninated at	3.1m below ground le	-	Stability:		nerally stable in the short term with local instability iated with cobble and boulder removal.	D - Small disturbed sample B - Bulk disturbed sample ES - Environmental soil s W - Water sample	• ACC

Int Géotech	tégral inique	Intégral House, 7 Beddat Castlegate Business Pari Caerphilly CF83 2AX Tel. 029 20807991 Fax. 029 20862176 mail@integralgeotec.com	k	Project Form	Name: er Tata	Site	Project No.: 14180	Trial Pit No.: TP09a Sheet 1 of 1
Location:		_ 0 0		Clions	. \\/~!	tore I td	Logged By:	Scale
Pontarddu	ulais			Client	: wan	ters Ltd	FG	1:25
Equipment:	20 To	nne Tracked Excav	/ator.	Coordir	nates:	259127.67mE - 204313.66mN	Dimensions	2.00m
Date Excava	ated:	14/03/2023		Level:	11.86m <i>A</i>	AOD	Depth : E	
		n-situ Testing	Depth (m)	Level (m AOD)	Legend	Stratum D	escription	
Depth (m) 0.00	ES	Results	3.50	8.36		MADE GROUND: Loose blackish grey silty ver content of angular to sub-rounded sandstone, ver Gravel is fine to coarse angular to rounded of silterous slag, brick and concrete. Inclusions of and timber. [Stockpile Material]	r sandy GRAVEL with high esicular slag, clinker, brick andstone, fine ash, clinker, einforcement bar, glass, m	and concrete. vesicular and
								- 5
Remarks:		idelin ada eter il	Ġ	Groundwa	ter:	1. No groundwater encountered.	Key:	
Trial pit exc Leading bel	avated w low groun	ithin stockpile. nd level illustrated in lo	og TP11.	tability:	1. Ger	nerally stable in the short term with local instability ciated with cobble removal.	D - Small disturbed sample B - Bulk disturbed sample ES - Environmental soil s W - Water sample	ACC

Int Géotech	tégral inique	Intégral House, 7 Beddau Castlegate Business Park Caerphilly CF83 2AX Tel. 029 20807991 Fax. 029 20862176 mail@integralgeotec.com	Way	Project Forme	Name: er Tata	Site	Project No.: 14180	Trial Pit No.: TP10 Sheet 1 of 1
Location:				01:4	. \\/-!	4 1 4-l	Logged By:	Scale
Pontarddu	ulais			Client	: vvai	ters Ltd	FG	1:25
Equipment:	20 Ton	ne Tracked Excava	ator	Coordir	ıates:	259066.61mE - 204306.43mN	Dimensions	3.40m
Date Excava	ated: 1	14/03/2023		Level:	9.85mA	OD	Depth : 50 80 80 80 80 80 80 80 80 80 80 80 80 80	
	r e	-situ Testing Results	Depth (m)	Level (m AOD)	Legend	Stratum D	escription	
Depth (m) 0.40	Type ES	Results	0.10 0.50	9.75 9.35	Legend A Company of the Company of	MADE GROUND: Vegetation over loose grey si and moderate cobble and boulder content of an concrete. Gravel is fine to coarse angular of sar MADE GROUND: Loose greyish black sandy G of angular to sub-rounded sandstone, reinforce brick. Gravel is fine to coarse angular to sub-rounded vitreous slag, vitreous clay pipe fragments metal, iron girder, 9inch cast iron pipe fragment MADE GROUND: Loose to medium dense grey with moderate cobble content of sub-rounded s fragments. Gravel is fine to coarse sub-angular fine ash. Soft grey and brown sandy clayey slightly grave sandstone and quartzite.	andy GRAVEL with common gular to sub-rounded brick adstone. RAVEL with high cobble and concrete, vitreous clay piunded of sandstone, fine and concrete, and brick. In stimber, plastic, reinforce ish brown and black very sandstone, brick and vitreout to rounded of sandstone, I	and reinforced Ind boulder content pe fragments and sh, clinker, vesicular nclusions of sheet ment bar and glass. Silty gravelly SAND is clay pipe imestone, brick and
			3.80	6.05	× × × × ×	End of Trialp	it at 3.80 m	-4
	apsed bac	3.8m below ground le k to 2.3m upon remov	evel.	Groundwat	1. Un	Major water inflows encountered at 2.0m below ground level. stable from ground level to termination depth. Frequency of pit wall sides.	D - Small disturbed samp	e ACC

Int Géotech	tégral inique	Intégral House, 7 Beddau Castlegate Business Park Caerphilly CF83 2AX Tel. 029 20807991 Fax. 029 20862176 mail@integralgeotec.com	Way	Project Form	Name: er Tata	Site	Project No.: 14180	Trial Pit No.: TP11 Sheet 1 of 1
Location:							Logged By:	Scale
Pontarddu	ılais			Client	: Wal	ters Ltd	FG	1:25
Equipment:	20 Toı	nne Tracked Excava	ator	Coordii	nates:	259084.71mE - 204272.03mN	Dimensions	3.60m
Date Excava	ated:	14/03/2023		Level:	9.99mA	OD	Depth : 58 3.50m 89	
		n-situ Testing Results	Depth (m)	Level (m AOD	Legend	Stratum	Description	
Depth (m)	Туре	Results	0.40	9.59		MADE GROUND: Vegetation over loose blac cobble and boulder content of angular to subbituminous material. Gravel is fine to coarse a concrete and bituminous material. Inclusions MADE GROUND: Firm brown mottled yellow fine to coarse rounded of sandstone, quartzite	rounded sandstone, brick, re angular to sub-rounded of sa of timber, sheet metal and so and grey sandy slightly grave	einforced concrete, ndstone, brick, crap metal.
1.90 1.90	B ES		1.90	8.09		MADE GROUND: Loose to medium dense re content of sub-angular clinker and vesicular s and vesicular slag.		
			2.70	7.29		Medium dense to dense brown silty sandy Gf sub-angular to rounded sandstone, limestone to rounded of sandstone, limestone and quar	and quartzite. Gravel is fine	
			3.50	6.49		End of Tri	alpit at 3.50 m	

Trial pit terminated at 3.5m below ground level.
 Trial pit excavated into stockpile. For log of stockpile material existing above ground level, see TP13a.
 Soil infiltration testing undertaken within pit.

1. Major water inflows encountered at 2.1m below ground level. Groundwater:

Stability:

Unstable from ground level to termination depth. Frequent spalling of pit wall sides.

D - Small disturbed sample
B - Bulk disturbed sample
ES - Environmental soil sample
W - Water sample

Int Géotech	nique F	otégral House, 7 Beddau astlegate Business Parl aerphilly CF83 2AX el. 029 20807991 ax. 029 20862176 nail@integralgeotec.com		Project Form	Name: er Tata	Site	Project No.: 14180	Trial Pit No.: TP11a Sheet 1 of 1	
Location:				Cliant	. \\/_!	tous tal	Logged By:	Scale	
Pontarddu	ılais			Client	: wan	ters Ltd	FG	1:25	
Equipment:	20 Tonn	e Tracked Excav	/ator	Coordir	nates:	259089.73mE - 204269.41mN	Dimensions 2.80m		
Date Excava		1/03/2023		Level:	12.70m/	AOD	Depth : 58 4.00m 8.0		
Sam Depth (m)	ples & In-	situ Testing Results	Depth (m)	Level (m AOD)	Legend	Stratum [Description		
0.00	ES	Nesults	4.00	8.70		MADE GROUND: Vegetation over loose black cobble and boulder content of angular to sub-rand bituminous material. Gravel is fine to coars concrete and bituminous material. Inclusions o [Stockpile Material] End of Trial	ounded sandstone, brick, re se angular to sub-rounded o	inforced concrete of sandstone, brick,	
Remarks:			 	 Groundwa	ter:	No groundwater encountered.	Key:		
1. Trial pit exca	avated with ow ground	in stockpile. level illustrated in lo	TD42	Stability:	1. Gei	nerally stable in the short term with local instability iated with cobble and boulder removal.	D - Small disturbed samp	• ACC	

Intégral House, 7 Beddau Wa Castlegate Business Park Caerphilly CF83 2AX Tel. 029 20807991 Fax. 029 20862176 mail@integralgeotec.com	ay	Project Form	Name: er Tata	Site	Project No.: 14180	Trial Pit No.: TP12 Sheet 1 of 1		
Location: Pontarddulais		Client	: Wal	ters Ltd	Logged By: FG	Scale 1:25		
Equipment: 20 Tonne Tracked Excavato	or	Coordin	nates:	259050.55mE - 204260.19mN	Dimensions	3.10m		
Date Excavated: 13/03/2023		Level:	8.95mA	OD	Depth : 5 3.50m 8			
Samples & In-situ Testing Depth (m) Type Results	Depth (m)	Level (m AOD)	Legend	Stratum D	escription			
0.20 ES				MADE GROUND: Vegetation over loose to med clayey GRAVEL with high cobble and boulder or brick, and ceramic clay. Gravel is fine to coarse sandstone and vitreous and vesicular slag. Inclu	ontent of angular to sub-rou angular to sub-rounded of	unded sandstone, of clinker, fine ash,		
	1.30	7.65		Soft grey slightly sandy slightly clayey SILT.		-		
	1.70	7.25		Soft becoming firm orangish brown slightly clayer coarse rounded of sandstone and quartzite.	ey slightly gravelly SILT. Gr	avel is fine to		
	3.20	5.75 5.45		Medium dense to dense silty sandy GRAVEL wi angular and sub-rounded of sandstone and lime rounded of sandstone, limestone and quartzite.	estone. Gravel is fine to coa			
						-4		
Remarks: 1. Trial pit terminated at 3.5m below ground leve	Groundwater: 1. Minor water inflows encountered at 1.4m below ground level. Stability: 1. Intense spalling of trial pits sides from ground level.					ole e AGS		

Géotech	tégral nnique	Intégral House, 7 Beddau Castlegate Business Park Caerphilly CF83 2AX Tel. 029 20807991 Fax. 029 20862176 mail@integralgeotec.com		Project Form	Name: er Tata	Site	Project No.: 14180	Trial Pit No.: TP13 Sheet 1 of 1		
Location: Pontarddu	ılaia			Client	: Wal	ters Ltd	Logged By: FG	Scale 1:25		
Equipment:		ne Tracked Excav	ator	Coordir	nates:	259065.90mE - 204235.34mN	Dimensions	3.40m		
Date Excava	ated:	14/03/2023		Level:	9.41mA	OD	Depth: 5 3.20m 8			
Sam Depth (m)	ples & In	-situ Testing Results	Depth (m)	Level (m AOD)	Legend	Stratum D	escription			
0.30 1.10 1.10	ES B ES	results	0.10	9.31 8.61 8.41		MADE GROUND: Vegetation over soft black slightly silty slightly gravelly CLAY with frequent roots and rootlets. Gravel is fine to coarse sub-angular of sandstone, brick, fine ash and clinker. MADE GROUND: Loose black and red sandy slightly silty GRAVEL with moderate cobble and boulder content of angular to sub-rounded brick, concrete, clinker and vesicular slag. Gravel is fine to coarse angular to sub-rounded brick, concrete, clinker and vesicular slag and fine ash. Inclusions of wood and scrap metal. MADE GROUND: Loose to medium dense red and black ashy GRAVEL with low cobble content of sub-angular vesicular slag and clinker. Gravel is fine to coarse sub-angular of fine ash, clinker and vesicular slag. Soft orangish brown very sandy slightly gravelly SILT with low cobble content of sub-rounded sandstone. Gravel is fine to coarse sub-rounded of sandstone.				
			3.10	6.31		Medium dense to dense brown slightly silty san				
			3.20	6.21		content of sub-angular to rounded sandstone, line coarse sub-angular to rounded of sandstone, line End of Trials	mestone and quartzite. Granestone and quartzite.			
Remarks: 1. Trial pit tern	minated at	3.2m below ground le		Groundwa	ter:	1. No groundwater encountered.	Key: D - Small disturbed samp			
	Stability: 1.					B - Bulk disturbed sample ES - Environmental soil sample W - Water sample				

Int Géotech	tégra l nnique	Intégral House, 7 Beddau Castlegate Business Parl Caerphilly CF83 2AX Tel. 029 20807991 Fax. 029 20862176 mail@integralgeotec.com	k	Project Form	Name: er Tata	Site	Project No.: 14180	Trial Pit No.: TP14 Sheet 1 of 1			
Location: Pontarddu	ulais			Client	: Wal	Iters Ltd	Logged By:	Scale 1:25			
Equipment:				Coordir	nates:	259012.95mE - 204175.88mN	Dimensions	3.50m			
Date Excava	ated:	15/03/2023		Level:	8.22mA	OD	Depth : 50 2.50m 0				
Sam Depth (m)	nples & I	n-situ Testing Results	Depth (m)	Level (m AOD)	Legend	Stratum Description					
0.10	ES		0.40	7.82			d of sandstone. [Topsoil]				
0.50	ES		0.60	7.62		sub-angular and sub-rounded brick and concrete sub-rounded of sandstone, fine ash, clinker, bric Firm to stiff orangish brown sandy gravelly SILT angular and sub-rounded sandstone, limestone angular to rounded sandstone, limestone and q Medium dense becoming dense silty sandy GR sandstone, limestone, quartzite. Gravel is fine to limestone and quartzite.	ck and concrete. with high cobble and bould and quartzite. Gravel is fin uartzite. AVEL with high cobble and	der content of sub- ne to coarse sub-			
		2.50		5.72		End of Trialp	sit at 2.50 m	-2			
								-3			
								- 4			
hard standing	and soft	n embankment laid to finish. t 2.5m below ground l	both	Groundwa Stability:	1. Ge assoc 2. Un	Water standing in trial pit after 20 minutes at 2.0 below ground level. enerally stable in the shhort term with local instability ciated with cobble removal. isstable within granular deposits encountered at 0.9 reground level.	D - Small disturbed samp B - Bulk disturbed sampl ES - Environmental soil s	· ACC			

Int Géotech	t égral nique	Intégral House, 7 Beddau V Castlegate Business Park Caerphilly CF83 2AX Tel. 029 20807991 Fax. 029 20862176 mail@integralgeotec.com	/ay	Project Form	Name: er Tata	Site	Project No.: 14180	Trial Pit No.: TP15 Sheet 1 of 1
Location: Pontarddu	ılais			Client	: Wal	ters Ltd	Logged By:	Scale 1:25
Equipment:				Coordir	nates:	259040.00mE - 204182.01mN	Dimensions	3.00m
Date Excava		15/03/2023		Level:	8.40mA	OD	Depth : 50	
Sam Depth (m)	ples & Ir Type	n-situ Testing Results	Depth (m)	Level (m AOD)	Legend	Stratum D	escription	
0.20	ES		0.10	8.30		Vegetation over soft blackish brown slightly silty frequent roots and rootlets. Gravel is fine to coa [Topsoil] MADE GROUND: Loose black and grey silty gr. boulder content of sub-angular and sub-rounde to coarse sub-angular to rounded of sandstone,	arse sub-angular of mudstor avelly SAND with moderate d concrete, brick and sands	cobble and
			0.60	7.80		Medium dense orangish brown and grey very si sub-rounded sandstone, limestone and quartzit rounded of sandstone, limestone and quartzite.		
	2.40					Medium dense to dense orangish brown slightly boulder content of sub-angular to rounded sand to coarse sub-angular to rounded of sandstone,	Istone, limestone and quart. limestone and quartzite.	
								-3
								-4
								5
		2.4m below ground lev undertaken within trial	rel.	Groundwa	1. Ge	Water standing in trial pit after 20 minutes at 1.1 below ground level. Inerally stable in the short term with local instability ciated with cobble and boulder removal. In the stable within granular deposits below 1.6m depth.	Bm Key: D - Small disturbed sample B - Bulk disturbed sample ES - Environmental soil s W - Water sample	ACC

In Géotech	tégral nnique	Intégral House, 7 Beddau Castlegate Business Park Caerphilly CF83 2AX Tel. 029 20807991 Fax. 029 20862176 mail@integralgeotec.com	•	Project Form	Name: er Tata	Site	Project No.: 14180	Trial Pit No.: TP16 Sheet 1 of 1				
Location:		,		Client	اد/۸/ ۰	ters Ltd	Logged By:	Scale				
Pontarddı	ulais			Client	. vvai	ters Liu	FG	1:25				
Equipment:	20 Tor	nne Tracked Excava	ator	Coordir	nates:	258964.16mE - 204170.92mN	Dimensions	3.40m				
Date Excava	ated:	15/03/2023		Level:	7.85mA	OD	Depth : E 2.00m 8: O					
Sam Depth (m)	nples & Ir Type	n-situ Testing Results	Depth (m)	Level (m AOD)	Legend	Stratum Description						
0.20	ES		0.10	7.75		Tarmac / Asphalt MADE GROUND: Loose brownish grey silty grasub-angular and sub-rounded brick and sandstorounded of sandstone, brick, fine ash, clinker are	one. Gravel is fine to coarse	cobble content of				
0.70	ES		1.20	6.65				- 1				
			1.20	0.03	X	Soft to firm brown gravelly sandy SILT with high rounded sandstone, limestone and quartzite. Go of sandstone, limestone and quartzite.	cobble and boulder conter ravel is fine to coarse sub-a	nt of sub-angular to .angular to rounded -				
1.50	В		1.50	6.35	X X X X X X X X X X X X X X X X X X X	Medium dense to dense silty sandy GRAVEL wi angular to rounded sandstone, limestone and q rounded of sandstone, limestone and quartzite.	th high cobble and boulder uartzite. Gravel is fine to co	content of sub- parse angular to				
			2.00	5.85	×	End of Trialp	it at 2.00 m	2				
								-3				
								- 4				
Remarks: 1. Trial pit terr	Trial pit terminated at 2.0m below ground level.				pit terminated at 2.0m below ground level. below ground level. 2. Water standing in trial pit at 1.2m					2. Water standing in trial pit at 1.2m depth. stable from ground level to termination depth. Freq	D - Small disturbed samp	ACC

Counting	Client: Walters Ltd FG 1.25 Equipment: 20 Tonne Tracked Excavator. Coordinates: 259112.79mE - 204333.24mN Date Excavated: 14/03/2023 Level: 9,96mAOD Samples & In-situ Testing Depth (m) Type Results (m) mAOD ES Depth (m) Type Results (m) MADE GROUND: Loose to medium dense black, red and grey sandy GRAVEL with high cobble and boulder content of sub-angular vesscular and vitrous also, fine and inclinate brick and inclinate brick and concrete, inclusions or reinforcement bar, metal scrap, metal pping, plastic bags, timber and glass. 2.10 7.86 2.10 Type Soft to firm greyish brown silty slightly gravelly slightly sandy CLAY Gravel is fine to coarse rounded of sandstone, limestone and quartzite.	In t Géotech	tegrai		k		: Name: er Tata	Site	Project No.: 14180	Trial Pit No.: TP17 Sheet 1 of 1	
Equipment: 20 Tonne Tracked Excavator. Coordinates: 259112.79mE - 204333.24mN Date Excavated: 14/03/2023 Level: 9.96mAOD Stratum Description Depth : 5 3.50m Depth : 5 3.50	Popth (m) Type Results (m) A Depth (m) Type R	_ocation:				Cliant	h. \\/al	town I to	Logged By:	Scale	
Aute Excavated: 14/03/2023 Level: 9.96mAOD Samples & In-situ Testing Depth (m) Type Results (m) MADD Cardian Excavated: 14/03/2023 Level: 9.96mAOD Depth (m) Type Results (m) MADD Cardian Excavated: 14/03/2023 Level: 9.96mAOD AMADE GROUND: Loose to medium dense black, red and grey sandy GRAVEL with high cobble and boulder content of sub-angular vesicular and vitreous slag, clinker, brick and concrete. Inclusions of reinforcement bar, metal scrap, metal piping, plastic cladding, plastic bags, timber and glass. 2.10 7.86 Soft to firm greyish brown silty slightly gravelly slightly sandy CLAY. Gravel is fine to coarse rounded of sandstone, limestone and quartizite.	Automotive Continue Continu	Pontarddu	ılais			Client	i. wai	ilers Lid	FG	1:25	
Samples & In-situ Testing	Depth (m) Type Results Type	Equipment:	20 Tor	nne Tracked Excav	ator.	Coordi	nates:	259112.79mE - 204333.24mN		4.00m	
Depth (m) Type Results (m) (m AOD) (egend MADE GROUND: Loose to medium dense black, red and grey sandy GRAVEL with high cobble and boulder content of sub-angular vesicular and vitreous slag, clinker, brick and concrete. Gravel is fine to coarse angular to rounded of vesicular and vitreous slag, fine ash, clinker, brick and concrete. Gravel is fine to coarse angular to rounded of vesicular and vitreous slag, fine ash, clinker, brick and concrete. Gravel is fine to coarse angular to rounded of vesicular and vitreous slag, fine ash, clinker, brick and concrete. Gravel is fine to coarse angular to rounded of vesicular and vitreous slag, fine ash, clinker, brick and concrete. Gravel is fine to coarse angular to rounded of vesicular and vitreous slag, fine ash, clinker, brick and concrete. Gravel is fine to coarse rounded of vesicular and vitreous slag, fine ash, clinker, brick and concrete. Inclusions of reinforcement bar, metal scrap, metal piping, plastic cladding, plastic bags, timber and glass. 2.10 7.86 Soft to firm greyish brown sitty slightly gravely slightly sandy CLAY. Gravel is fine to coarse rounded of sandstone, limestone and quartizite.	Depth (m) Type Results (m) (m ACO) Egeror Name of the control of	ate Excava	ated:	14/03/2023		Level:	9.96mA	OD	Depth : $\frac{E}{0.00}$ 3.50m 0		
MADE GROUND: Lose to medium dense black, red and grey sandy GRAVEL with high cobble and boulder content of sub-ware sciular and vitreous slag, clinker, brick and concrete. Gravel is fine to coarse angular to rounded of vesicular and vitreous slag, fine ash, clinker, brick and concrete. Inclusions of reinforcement bar, metal scrap, metal piping, plastic cladding, plastic bags, timber and glass. 2.10 7.86 Soft to firm greyish brown silty slightly gravelly slightly sandy CLAY. Gravel is fine to coarse rounded of sandstone, limestone and quartzite.	MADE GROUND. Loose to medium dense black, red and grey sandy GRAVEL with high cobble and not builder content of sub-nagular value and vitreous slag, fine ash, clinker, brick and concrete. Gravel is fine to coarse angular to rounded of vesicular and vitreous slag, fine ash, clinker, brick and concrete. Inclusions of reinforcement bar, metal scrap, metal piping, plastic cladding, plastic bags, timber and glass. 2.10 7.86 Soft to firm greyish brown silty slightly gravelly slightly sandy CLAY. Gravel is fine to coarse rounded of sandstone, limestone and quartzite.					Level	Legend	Stratum D	Description		Ī
Soft to firm greyish brown sinty slightly gravelly singhtly sandy CLAY. Gravel is fine to coarse rounded of sandstone, limestone and quartzite.	Soft to firm greyish brown slifty slightly gravelity slightly sandy CLAY. Gravel is line to coarse rounded of sandstone, limestone and quartzite.							concrete. Gravel is fine to coarse angular to ro clinker, brick and concrete. Inclusions of reinfo	unded of vesicular and vitre	ous slag, fine ash,	
					2.10	7.86				I is fine to coarse	

Trial pit terminated at 2.7m below ground level.
 Trial pit excavated into stockpile. For log of stockpile material existing above ground level, see TP17a.

Groundwater:

Stability:

1. Major water inflows encountered at 1.7m below ground level.

1. Generally stable in the short term with local instability associated with cobble and boulder removal.

D - Small disturbed sample
B - Bulk disturbed sample
ES - Environmental soil sample
W - Water sample

In t Géotech	tégral nnique	Intégral House, 7 Beddau Castlegate Business Park Caerphilly CF83 2AX Tel. 029 20807991 Fax. 029 20862176 mail@integralgeotec.com	Way	Project Form	Name: er Tata	Site	Project No.: 14180	Trial Pit No.: TP17a Sheet 1 of 1
Location:				Client	· \\/al	ters Ltd	Logged By:	Scale
Pontarddı	ulais			Client	. wan	lers Lia	FG	1:25
Equipment:	20 Tor	nne Tracked Excava	ator	Coordir	nates: 2	259118.25mE - 204335.46mN	Dimensions	2.00m
Date Excava	ated:	14/03/2023		Level:	12.08m	AOD	Depth : 50 80 80 80 80 80 80 80 80 80 80 80 80 80	
		n-situ Testing	Depth (m)	Level (m AOD)	Legend	Stratum D	escription	
Depth (m) 0.00	Type ES	Results	3.00	9.08	LegellU	MADE GROUND: Vegetation over medium den slightly clayey GRAVEL with high cobble and be reinforced concrete, brick and sandstone. Grav sandstone, limestone, brick, reinforced concrete clinker. Inclusions of reinforcement bar, plastic or glass. [Stockpile Material]	se black slightly silty slightly sulder content of angular to el is fine to coarse angular to, vesicular and vitreous sla cladding, timber, plastic pipe	sub-rounded to sub-rounded of g, fine ash and
			\perp					- 5
Remarks: 1. Trial pit exc 2. Leading bel		thin stockpile. d level illustrated in lo	TD47	Groundwa		No groundwater encountered. quent spalling of pit wall sides throughout excavate.	D - Small disturbed samp B - Bulk disturbed sample ES - Environmental soil s. W - Water sample	ACC

Int Géotech Location:	tégral inique	Intégral House, 7 Beddau Castlegate Business Park Caerphilly CF83 2AX Tel. 029 20807991 Fax. 029 20862176 mail@integralgeotec.com		Project Form	Name: er Tata	Site	Project No.: 14180 Logged By:	Trial Pit No.: TP18 Sheet 1 of 1 Scale	
Pontarddu	ulais			Client	: Walt	ters Ltd	FG	1:25	
Equipment:	20 Tor	nne Tracked Excav	ator	Coordir	nates: 2	259034.51mE - 204230.00mN	Dimensions 3.00m		
Date Excava	ated:	14/03/2023		Level:	8.50mA	OD	Depth: 50 80 3.10m 60 60 60 60 60 60 60 60 60 60 60 60 60		
Sam Depth (m)	ples & Ir Type	n-situ Testing Results	Depth (m)	Level (m AOD)	Legend	Stratum D	escription		
0.20	ES	rodulo	0.10	8.40		MADE GROUND: Vegetation over soft brown sl frequent roots and rootlets. Gravel is fine to coa clinker.	rse sub-angular of sandsto	ne, fine ash and	
0.20			0.70	7.80		MADE GROUND: Loose black, brown and red sand boulder content of sub-angular and sub-rou vitreous slag. Gravel is fine to coarse sub-angul concrete, fine ash, clinker, vesicular slag and bi whole railway sleeper. Dense brown and orangish brown silty sandy Gof sandstone limestone and quartitic Gravel is	inded brick, concrete, bitum lar and sub-rounded of sand tuminous material. Inclusion RAVEL with high cobble an	d boulder content	
1.50	В					of sandstone, limestone and quartzite. Gravel is sandstone, limestone and quartzite.	s fine to coarse angular to re	- 1	
			1.90	6.60		Soft to firm orange and grey very silty CLAY.		-2	
			2.90	5.60 5.40	× x × × × × × × × × × × × × × × × × × ×	Dense brown and orangish brown silty sandy G of sandstone, limestone and quartzite. Gravel is sandstone, limestone and quartzite.	fine to coarse angular to ro		
								-4	
Remarks:				Groundwa	ter:	Major water inflows encountered at 1.9m below ground level.	low Key:		
1. Irial pit tern	pit terminated at 3.1m below ground level. ground level.					nerally stable in the short term with local instability	D - Small disturbed samp B - Bulk disturbed sample ES - Environmental soil s W - Water sample	ACC	

	t égral nique	Intégral House, 7 Beddau V Castlegate Business Park Caerphilly CF83 2AX Tel. 029 20807991 Fax. 029 20862176 mail@integralgeotec.com	Vay	Project Form	Name: er Tata	Site	Project No.: 14180	Trial Pit No.: TP19 Sheet 1 of 1
Location:				Client	· \\/al	tora I td	Logged By:	Scale
Pontarddu	ılais			Client	. wan	ters Ltd	FG	1:25
Equipment:	20 Tor	nne Tracked Excava	tor	Coordir	nates:	259079.43mE - 204367.46mN	Dimensions	3.40m
Date Excava	nted:	15/03/2023		Level:	10.09m/	AOD	Depth : 50 80 80 80 80 80 80 80 80 80 80 80 80 80	
		r-situ Testing	Depth (m)	Level (m AOD)	Legend	Stratum D	escription	
Depth (m) 0.55	Type ES	Results	0.40 0.80 1.80 2.10 4.00	9.69 9.29 7.19 6.59	Legend Legend	Tarmac / Asphalt MADE GROUND: Medium dense to dense red boulder content of sub-angular and sub-rounde slag. Gravel is fine to coarse sub-angular and suconcrete and vesicular slag. MADE GROUND: Loose to medium dense blac content of sub-angular and sub-rounded sandst sub-angular to sub-rounded of sandstone, fine sub-angular to rounded sandstone, limestone and quot or orunded of sandstone, limestone and quartzite. Soft becoming firm orangish brown slightly clay coarse rounded of sandstone and quartzite. Firm black peaty CLAY with frequent fibreous and to rounded of sandstone, limestone and quartzite to rounded sandstone, limestone and quartzite.	and grey sandy GRAVEL with sand con ub-rounded of fine ash, san k ashy GRAVEL with high concentrations and concrete. Gravel is ash, clinker and concrete. With high cobble and bould uartzite. Gravel is fine to cote. The same of the s	crete and vesicular adstone, brick, cobble and boulder sine to coarse - 1 der content of sub-parse sub-angular - 2 avel is fine to
Remarks:	ninated of	3.5m below ground lev		Groundwa	ter:	Extremely fast water inflow encountered at 2.6r below ground level.	m Key: D - Small disturbed samp	- 5
i. mai pit tern	miateu al	S.Sin below ground lev	-	Stability:		Water standing in trial pit at 2.6m depth. nerally stable in the short term with local instability ided with cobble and boulder removal.	B - Bulk disturbed sample	• VG6

In t Géotech	tegi ai	Intégral House, 7 Beddau Castlegate Business Park Caerphilly CF83 2AX Tel. 029 20807991 Fax. 029 20862176 mail@integralgeotec.com	k	Project Form	Name: er Tata	Site	Project No.: 14180	Trial Pit No.: TP20 Sheet 1 of 1
Location:		man@mograngoo.com		Cliant	. \\/al/	town I tal	Logged By:	Scale
Pontarddu	ulais			Client	: wan	ters Ltd	FG	1:25
Equipment:	20 Tor	nne Tracked Excav	ator.	Coordir	nates:	259050.46mE - 204342.76mN	Dimensions	3.20m
Date Excava	ated:	15/03/2023		Level:	9.76mA	OD	Depth : 50 2.90m 0	
Sam Depth (m)	nples & Ir Type	n-situ Testing Results	Depth (m)	Level (m AOD)	Legend	Stratum D	escription	
	.,,,-		0.20	9.56		MADE GROUND: Vegetation over loose grey s content of angular sandstone and limestone. G and limestone. MADE GROUND: Medium dense black sandy 0	ravel is fine to coarse angul	ar of sandstone
0.50	ES					content of sub-angular brick. Gravel is fine to co ash, clinker, vitreous slag and brick.		
2.00	В		0.60	9.16		Medium dense to dense orangish brown slightly boulder content of sub-angular to rounded sand to coarse sub-angular to rounded of sandstone	Istone, limestone and quart	
			2.90	6.86		End of Trial	sit at 2.90 m	-3
Remarks: 1. Trial pit tern	minated at	2.9m below around k		Groundwa	ter:	Major water inflows encountered at 2.7m below ground level.	/ Key: D - Small disturbed samp	- 5
	erminated at 2.9m below ground level. Stability: 1. Generally stable in the short term with local instated associated with cobble and boulder removal.						B - Bulk disturbed sample	ACC

Int Géotech	égral	Intégral House, 7 Beddau W. Castlegate Business Park Caerphilly CF83 2AX Tel. 029 20807991 Fax. 029 20862176 mail@integralgeotec.com	ay	Project Form	Name: er Tata	Site	Project No.: 14180	Trial Pi	21
Location: Pontarddu	ılais			Client	: Wa	Iters Ltd	Logged By: FG	Sca 1:2	le
Equipment:	20 Tor	nne Tracked Excavato	or	Coordir	nates:	259113.28mE - 204280.88mN	Dimensions	3.80m	
Date Excava	ited:	15/03/2023		Level:	11.83m	AOD	Depth : 50 80 80 80 80 80 80 80 80 80 80 80 80 80		
Sam Depth (m)	ples & Ir Type	n-situ Testing Results	Depth (m)	Level (m AOD)	Legend	Stratum D	escription		
	.,,,,,		3.80	8.03		MADE GROUND: Loose black silty very gravell of sub-angular to rounded sandstone, brick and sub-angular to rounded of fine ash, clinker, brick scrap, timber, reinforcement bar, fabric and glas	reinforced concrete. Grave c, concrete and sandstone. s. [Stockpile Material]	I is fine to coars	se etal
Remarks:			lo	Groundwa	ter:	No groundwater encountered.	Key:		- 5
Trial pit excavated within stockpile. C+ C+ C+ C+ C+ C+ C+ C+ C+ C							D - Small disturbed samp B - Bulk disturbed sample		
			S	tability:		enerally stable in the short term with local instability ciated with cobble and boulder removal.	ES - Environmental soil s W - Water sample		रण

APPENDIX E

WINDOWLESS SAMPLE BOREHOLE LOGS

Intégral Castlegate Business Park	Project Name: Former Tata Site	Project No.: 14180	Borehole No.: WS01
mail@integralgeotec.com			Sheet 1 of 1
Location:		Coordinates:	Hole Type:
Pontarddulais	Client: Walters Ltd		WLS
Fautings out: DADT 554	Dispersion of Coolings	Lavali	Scale
Equipment: DART 554	Diameter of Casing:	Level:	1:25
Diameter of Borings 404 (00) 70 mm		Dates	Logged By:
Diameter of Boring: 101+86+76mm	Depth of Casing:	29/03/2023 -	FG

Diamete	r of Boring	j: 101+8	36+76m	m [Depth of Ca	sing:				Dates 29/03/2023 -	Logged By: FG
Well	Water Strikes			& In situ Testing		Depth (m)	Level (m AOD)	Legend		Stratum Description	
	Ourkes	0.20	Type	Resul	ıs	0.15	(III AOD)		SAND with low cobble c	e to medium dense black an content of concrete. Gravel is concrete, brick, fine ash and	s fine to coarse
		0.70	ES			0.80		**************************************	Firm orangish brown silt	ry slightly gravelly CLAY. Grane, limestone and quartzite.	avel is fine to coarse
		1.00	С	N=14 (3,2/2	2,1,4,7)			X			- 1
		2.00	С	N=17 (1,7//	2,3,5,7)	2.00			Medium dense brown si sub-angular to sub-roun	lty sandy GRAVEL. Gravel i ded of sandstone, limestond	s fine to coarse
		2.70	С	50 (12,18/50 f	or 170mm)	2.70		***********************************		End of Borehole at 2.70 m	
											- 4
Romarks								Key			- 6

Refusal of windowless sampler at 2.7m below ground level on unknown obstruction.
 No groundwater encountered.

- D Small disturbed sample
 B Bulk disturbed sample
 ES Environmental soil sample
 SPT Standard Penetration Test (split spoon)
 CPT Standard Penetration Test (solid cone)

- W Water sample U Undisturbed sample TCR Total Core Recovery SCR Solid Core Recovery RQD Rock Quality Designation

Intégral House, 7 Beddau Way Castlegate Business Park	Project Name:	Project No.:	Borehole No.:
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Former Tata Site	14180	WS02
mail@integralgeotec.com			Sheet 1 of 1
Location:		Coordinates:	Hole Type:
Pontarddulais	Client: Walters Ltd		WLS
Fautings out: DADT 554	Diameter of Coolings	Lavali	Scale
Equipment: DART 554	Diameter of Casing:	Level:	1:25
Diameter of Borings 404 (00) 70mm	Double of Coolings	Dates	Logged By:
Diameter of Boring: 101+86+76mm	Depth of Casing:	29/03/2023 -	FG

eter of Boring	g: 101+8	36+76m	m D	epth of Casing:				Dates	Logged By:
								29/03/2023 -	FG
Water Strikes	Depth (m)		& In situ Testing Results		h Level (m AOD)	Legend		Stratum Description	
	0.20	ES		0.15			Concrete Slab MADE GROUND: Loose gravelly SAND with low is fine to coarse angular clinker.	e becoming medium dense be cobble content of sub-angul r of sandstone, concrete, brid	olack and grey silty ar concrete. Gravel kk, fine ash and
	1.00	С	N=15 (4,3/3	3,4,5)		,a,	Very poor recovery in lir	ner (<10%). Recovered as or e to coarse sub-angular san	angish brown
							gravei and cobbie of line	e to coarse sub-angular sand	istone.)
	2.00	С	N=46 (7,8/10,1	11,11,14) 2.00		, , , , , , , , , , , , , , , , , , ,	No recovery in liner.		
	3.00	С	N=50 (4,4/8,8	3,12,22) 3.00				End of Borehole at 3.00 m	

Refusal of windowless sampler at 3.0m below ground level on unknown obstruction.
 No groundwater encountered.

Key:

D - Small disturbed sample
B - Bulk disturbed sample
ES - Environmental soil sample
SPT - Standard Penetration Test (split spoon)
CPT - Standard Penetration Test (solid cone)

W - Water sample U - Undisturbed sample TCR - Total Core Recovery SCR - Solid Core Recovery RQD - Rock Quality Designation

Intégral House, 7 Beddau Way Castlegate Business Park	Project Name:	Project No.:	Borehole No.:
Intégral Caerphilly CF83 2AX Géotechnique Tel. 029 20807991 Fax. 029 20862176	Former Tata Site	14180	WS03
mail@integralgeotec.com			Sheet 1 of 1
Location:		Coordinates:	Hole Type:
Pontarddulais	Client: Walters Ltd		WLS
Equipment: DART 554	Diameter of Coolings	Lovels	Scale
Equipment: DART 554	Diameter of Casing:	Level:	1:25
Diameter of Davis at 404 (90) 70 (90) 50 cm	Double of Cookings	Dates	Logged By:
Diameter of Boring: 101+86+76+66+56mm	Depth of Casing:	29/03/2023 -	FG

Diamete	er of Boring	n· 101+8	36+76+6	66+56mm [Depth of Ca	asing.				Dates	Logged B	у
										29/03/2023 -	FG	
Well	Water Strikes	Depth (m)	Samples Type	& In situ Testing		Depth (m)	Level (m AOD)	Legend		Stratum Description		
		0.60	ES	Resu	no.	0.50			MADE GROUND: Dense sandy GRAVEL. Gravel is of sandstone and brick.	grey and orange and brow s fine to coarse sub-angular	n slightly clayey r and sub-rounded	
		1.00	С	N=55 (0,0/5,	12,18,20)							-
		1.35	ES			1.30			Firm grey gravelly CLAY. rounded of sandstone, lin	Gravel is fine to coarse sub nestone and quartzite.	o-angular and sub-	
		2.00	С	N=20 (2,2/:	2,4,8,6)	1.90			Medium dense brown silt sub-angular to rounded o	y clayey GRAVEL. Gravel is if sandstone, limestone and	s fine to coarse quartzite.	
		2.50	В			2.50		X	Very soft brown and grey	silty CLAY.		
		3.00	С	N=0 (0,0/0				X				-
		4.00	С	N=15 (4,4/	2,3,4,6)	4.00		X	Medium dense brown silt sub-angular to rounded o	y clayey GRAVEL. Gravel is if sandstone, limestone and	s fine to coarse quartzite.	-
		5.00	С	N=13 (3,3/-	4,3,6,0)	5.00		**************************************		End of Borehole at 5.00 m		‡

- Windowless sampler terminated at 5.0m below ground level.
 Water strike between 2m-3m below ground level.

- Key:

 D Small disturbed sample
 B Bulk disturbed sample
 ES Environmental soil sample
 SPT Standard Penetration Test (split spoon)
 CPT Standard Penetration Test (solid cone)

- W Water sample U Undisturbed sample TCR Total Core Recovery SCR Solid Core Recovery RQD Rock Quality Designation

Intégral House, 7 Beddau Way Castlegate Business Park	Project Name:	Project No.:	Borehole No.:
G 0 17 0500 04V	Former Tata Site	14180	WS04
mail@integralgeotec.com			Sheet 1 of 1
Location:		Coordinates:	Hole Type:
Pontarddulais	Client: Walters Ltd		WLS
Equipment: DART 554	Diameter of Casing:	Level:	Scale
Equipment: DART 554	Diameter of Casing.	Levei.	1:25
Diameter of Boring: 101mm	Depth of Casing:	Dates	Logged By:
Diameter of Boring. 10 mm		29/03/2023 -	FG

								1:25
meter of Borin	na: 101mm		Denth of Casi	na.			Dates	Logged By:
							29/03/2023 -	FG
/ell Water				epth	Level (m AOD)	Legend	Stratum Description	
rell Water Strikes	Depth (m) T	mples & In situ Test Type Res	sults		Level (m AOD)	Legend	29/03/2023 -	FG VEL. Gravel is fine to

Refusal of windowless sampler at 0.4m below ground level on unknown obstruction.
 No groundwater encountered.

Key:
D - Small disturbed sample
B - Bulk disturbed sample
ES - Environmental soil sample
SPT - Standard Penetration Test (split spoon)
CPT - Standard Penetration Test (solid cone)

W - Water sample U - Undisturbed sample TCR - Total Core Recovery SCR - Solid Core Recovery RQD - Rock Quality Designation

Intégral House, 7 Beddau Way Castlegate Business Park	Project Name:	Project No.:	Borehole No.:
G 0 17 0500 04V	Former Tata Site	14180	WS05
mail@integralgeotec.com			Sheet 1 of 1
Location:		Coordinates:	Hole Type:
Pontarddulais	Client: Walters Ltd		WLS
Fautings out: DADT 554	Diameter of Coolings	Lavali	Scale
Equipment: DART 554	Diameter of Casing:	Level:	1:25
Diameter of Borings 404 (00) 70mm	Double of Coolings	Dates	Logged By:
Diameter of Boring: 101+86+76mm	Depth of Casing:	29/03/2023 -	FG

Diameter of Bor	ing: 101+8	36+76m	m	Depth of Casi	ing:			Dates Logged By 29/03/2023 - FG	:
Well Water			& In situ Testir		Depth	Level	Legend	Stratum Description	T
Strikes	Depth (m) 0.30	Type ES	Resu	(0.25 0.50	(m AOD)		Concrete Slab MADE GROUND: Loose brownish grey sandy GRAVEL. Gravel is fine to coarse angular and platy of mudstone, bituminous material, fine ash and clinker. MADE GROUND: Loose brown fine to coarse SAND.	-
	1.00	С	N=39 (5,9/ ⁻		0.75			Medium dense grey and brown silty sandy GRAVEL with moderate cobble content of sub-angular to rounded sandstone, limestone and quartzite. Gravel is fine to coarse sub-angular to rounded of sandstone, limestone and quartzite.	- 1
1.70	2.00	С	N=12 (1,2	/4,3,2,3)					- 2
					3.00		× × × × × × × × × × × × × × × × × × ×	End of Borehole at 3.00 m	3
									- 4
									- 5

- Refusal of windowless sampler at 3.0m below ground level on unknown obstruction.
 Water standing at 1.7m existing below ground level.
 Collapse of borehole back to 1.0m depth upon removal of sampling equipment.

Key:

- D Small disturbed sample
 B Bulk disturbed sample
 ES Environmental soil sample
 SPT Standard Penetration Test (split spoon)
 CPT Standard Penetration Test (solid cone)
- W Water sample U Undisturbed sample TCR Total Core Recovery SCR Solid Core Recovery
- RQD Rock Quality Designation

Intégral House, 7 Beddau Way Castlegate Business Park	Project Name:	Project No.:	Borehole No.:
Intégral Castlegate Business Park Caerphilly CF83 2AX Tel. 029 20807991 Fax. 029 20862176	Former Tata Site	14180	WS06
mail@integralgeotec.com			Sheet 1 of 1
Location:		Coordinates:	Hole Type:
Pontarddulais	Client: Walters Ltd		WLS
Fautinment: DADT 554	Diameter of Coolings	Lovel	Scale
Equipment: DART 554	Diameter of Casing:	Level:	1:25
Diameter of Perings 101 196 176 156 146mm		Dates	Logged By:
Diameter of Boring: 101+86+76+56+46mm	Depth of Casing:	29/03/2023 -	FG

			0	0 l:4 · T · ··	<u> </u>	1	T		29/03/2023 -	FG	_
Vell W	ater rikes _D	epth (m)	Samples Type	& In situ Testii Res		Depth (m)	Level (m AOD)	Legend	Stratum Description		
	intee D	epin (III)	туре	Nes	uits	(111)	(1117100)		Concrete Slab		\dashv
						0.40					
						0.40			MADE GROUND: Medium dense black and grey sa	ndy silty GRAVEL.	
		0.60	ES						Gravel is fine to coarse sub-angular and sub-rounde concrete, brick, fine ash and clinker.	ed of salidstoffe,	
		0.00									
		1.00	С	N=21 (2,4	/3,4,4,10)						
		1.50	ES								
						1.80					
								$\times \times \times \times \times$	Soft brown clayey sandy slightly gravelly SILT. Grav sub-rounded of sandstone, limestone and quartzite.	el is fine to coarse	
		2.00	В					×××××			
		2.00	С	N=4 (0,1	/1,1,1,1)			××××			
						2.20		××××	Loose to medium dense brown silty sandy GRAVEL	Gravel is fine to	-
								×××	coarse sub-angular and sub-rounded of sandstone, quartzite.	limestone and	
								î ×	quarizite.		
								^ × .			
								×			
								×			
								×			
		3.00	С	N=7 (0,0	(0,1,3,3)			×·^·×			
								×			
								×·×·			
								× × ×			
								× × ×			
								×××			
								×·×·			
								× × × × × × × × × × × × × × × × × × ×			
)		4.00	С	N=24 (3,4	/4,7,7,6)			×. ×.			
								×××			
								× × × × × × × × × × × × × × × × × × ×			
								^` .×			
								× × × × × × × × × × × × × × × × × × ×			
								×			
								×			
								× ^ ×			
								×××			
		5.00	С	N=15 (3,3	1/1 2 1 1)	5.00		× × ×	End of Borehole at 5.00 m		

- Windowless sampler terminated at 5.0m below ground level.
 Water strike between 2m-4m below ground level.

- Key:

 D Small disturbed sample
 B Bulk disturbed sample
 ES Environmental soil sample
 SPT Standard Penetration Test (split spoon)
 CPT Standard Penetration Test (solid cone)
- W Water sample U Undisturbed sample TCR Total Core Recovery SCR Solid Core Recovery RQD Rock Quality Designation

Intégral House, 7 Beddau Way Castlegate Business Park	Project Name:	Project No.:	Borehole No.:
G 0 17 0500 04V	Former Tata Site	14180	WS07
mail@integralgeotec.com			Sheet 1 of 1
Location:		Coordinates:	Hole Type:
Pontarddulais	Client: Walters Ltd		WLS
Equipment: DART 554	Diameter of Coolings	Lovel	Scale
Equipment: DART 554	Diameter of Casing:	Level:	1:25
Diameter of Boring: 101mm	Depth of Casing:	Dates	Logged By:
Diameter of Boring. 10 mm		29/03/2023 -	FG

Diameter of Boring: 101mm		Depth of Ca	ocina:			Dates	Logged By:	
Diameter of Boring: 101mm			Беригог Са	asing.			29/03/2023 -	FG
Well Wat		Samples & In situ Test		Depth	Level	Legend	Stratum Description	
Strik	0.45	Type ES	Results	0.20 0.80	(m AOD)		Soft black silty slightly gravelly organic clay with frequence for timber. [Topsoil] MADE GROUND: Loose becoming medium dense blig gravelly SAND with low cobble content of sub-angula is fine to coarse angular of sandstone, concrete, brick clinker. Medium dense to dense brown silty sandy GRAVEL.	ack and grey silty r concrete. Gravel c, fine ash and
	1.00	C N=	50 (12,10/11,16,15,8)	1.00		×	coarse sub-angular to sub-rounded of sandstone, lim quartzite. End of Borehole at 1.00 m	estone and

- Refusal of windowless sampler at 1.0m below ground level on unknown obstruction.
 Water standing at 0.4m existing below ground level.

- D Small disturbed sample
 B Bulk disturbed sample
 ES Environmental soil sample
 SPT Standard Penetration Test (split spoon)
 CPT Standard Penetration Test (solid cone)

 - W Water sample U Undisturbed sample TCR Total Core Recovery SCR Solid Core Recovery RQD Rock Quality Designation

Intégral House, 7 Beddau Way Castlegate Business Park	Project Name:	Project No.:	Borehole No.:
	Former Tata Site	14180	WS08
mail@integralgeotec.com			Sheet 1 of 1
Location:		Coordinates:	Hole Type:
Pontarddulais	Client: Walters Ltd		WLS
Equipment: DART 554	Diameter of Casing:	Level:	Scale
Equipment: DART 554	Diameter of Casing.	Levei.	1:25
Diameter of Boring: 101mm	Depth of Casing:	Dates	Logged By:
Diameter of Borning. 10 mm		29/03/2023 -	FG

Diameter of Boring: 101mm				Depth of Casing:					Dates	Logged By:		
Well	Well Water Samples & In situ Testin					Depth	Level	Legend			10	_
Diamete			Samples		ng ults		Level (m AOD)	Legend	Soft black silty slightly gramotlets. Gravel is fine to of timber. [Topsoil] MADE GROUND: Loose gravelly SAND with low or is fine to coarse angular clinker. Medium dense brown silt	Dates 29/03/2023 - Stratum Description avelly organic clay with frequence of sanctone sub-rounded of sanctone description of sanctone content of sub-angular of sandstone, concrete, brick of sandstone, concrete, brick of sandstone, limestone at 1.00 m	Jent roots and listone. Inclusions lack and grey silty or concrete. Gravel k, fine ash and listone and guartzite.	-1
								Ком				- 4

Refusal of windowless sampler at 1.0m below ground level on unknown obstruction.
 No groundwater encountered.

D - Small disturbed sample
B - Bulk disturbed sample
ES - Environmental soil sample
SPT - Standard Penetration Test (split spoon)
CPT - Standard Penetration Test (solid cone)

W - Water sample U - Undisturbed sample TCR - Total Core Recovery SCR - Solid Core Recovery RQD - Rock Quality Designation

APPENDIX F

SHELL AND AUGER BOREHOLE LOGS

Intégral House, 7 Beddau Way Castlegate Business Park Caerphilly CF83 2AX Géotechnique Fax. 029 20862176 mail@integralgeotec.com	Project Name: Former Tata Site	Project No.: 14180	Borehole No.: BH01 Sheet 1 of 2
Location: Pontarddulais	Client: Walters Ltd	Coordinates: 258935.04mE 204220.44mN	Hole Type: CP
Equipment: Dando 2000	Diameter of Casing: 200mm	Level: 7.93mAOD	Scale 1:25
Diameter of Boring: 180mm	Depth of Casing: 2.00m	Dates 15/03/2023 - 16/03/2023	Logged By:

Diameter of Boring:	100m	m	D.	epth of Casing:	2.00m			Dates	Logged By:
Diameter of Boring.	180m	111		eptir of Casing.	2.0011	1		15/03/2023 - 16/03/2023	
Well Water			& In situ Testing	Depth	Level	Legend		Stratum Description	
Strikes	Depth (m)	Туре	Results	s (m)	(m AOD) Legend		·	
				0.50	7.43	X-1-7X X-1-7X X-1-7X X-1-7X X-1-7X X-1-7X X-1-7X	with high cobble and bou sandstone, limestone and	orillers Description) Frown slightly silty slightly san ilder content content of sub-adquartzite. Gravel is fine to ondstone, limestone and quar	angular to rounded - coarse sub-
1.80	1.00 1.00	ВС	N=5 (1,1/2,	1,1,1)					-1
2.20	2.00 2.00	ВС	N=40 (2,4/8,8	,10,14)	5.73	X-, -2 X-, -2 X-, -2 X-, -7 X-, -7	Dense becoming loose b Gravel is fine to coarse s and quartzite.	rown and orangish brown gr ub-angular to rounded of sai	avelly SAND. dstone, limestone
	3.00 3.00	ВС	N=3 (1,0/1,0	2.80	5.13		boulder content of sub-ro	sh brown gravelly SAND with nunded sandstone, limestone ub-angular to rounded of san	and quartzite.
	4.00 4.00	B C	N=4 (1,0/1,	1,1,1)					-4
Ramarke	5.00	В				Key:			5

- D Small disturbed sample
 B Bulk disturbed sample
 ES Environmental soil sample
 SPT Standard Penetration Test (split spoon)
 CPT Standard Penetration Test (solid cone)

- W Water sample U Undisturbed sample TCR Total Core Recovery SCR Solid Core Recovery RQD Rock Quality Designation

Géot	Intégr echniqu	Castlegat Caerphilly Tel. 029 2 Fax. 029	ouse, 7 Be e Business CF83 2AX 20807991 20862176 egralgeoted	X X	Project Na Former		Site	Project No.: 14180	Borehole No.: BH01 Sheet 2 of 2
_ocati	on:		0 0 0 0 0 0 0					Coordinates:	Hole Type:
onta	rddulais				Client:	Walte	ers Ltd	258935.04mE 204220.44mN	СР
quipm	ent: Dan	ido 2000			Diameter	of Casin	g: 200mm	Level: 7.93mAOD	Scale 1:25
Diamete	er of Boring	j: 180m	m		Depth of 0	Casing:	2.00m	Dates 15/03/2023 - 16/03/2023	Logged By:
Well	Water Strikes			& In situ Testi			Level (m AOD)	Stratum Description	
.:H:	Stikes	Depth (m) 5.00 5.00	Type B C	Res N=20 (2,3		(111)	(III AOD)		
		6.50 6.50	B C	N=13 (4,5	3/3,4,3,3)				
		8.00	С	N=20 (2,3	3/4,4,5,7)				

9.50

10.00

С

В

N=29 (3,4/4,6,9,10)

10.00

-2.07

- Key:

 D Small disturbed sample
 B Bulk disturbed sample
 ES Environmental soil sample
 SPT Standard Penetration Test (split spoon)
 CPT Standard Penetration Test (solid cone)
- W Water sample
 U Undisturbed sample
 TCR Total Core Recovery
 SCR Solid Core Recovery

End of Borehole at 10.00 m

RQD - Rock Quality Designation

9

Intégral House, 7 Beddau Way Castlegate Business Park Caerphilly CF83 2AX Géotechnique Fax. 029 20862176	Project Name: Former Tata Site	Project No.: 14180	Borehole No.: BH02	
mail@integralgeotec.com			Sheet 1 of 2	
Location:		Coordinates:	Hole Type:	
Pontarddulais	Client: Walters Ltd	259029.09mE 204199.80mN	СР	
			Scale	
Equipment: Dando 2000	Diameter of Casing: 200mm	Level: 8.41mAOD	1:25	
	- u 10 i	Dates	Logged By:	
Diameter of Boring: 180mm	Depth of Casing: 5.00m	07/03/2023 - 08/03/2023	FG	
Water Samples & In situ T	esting Depth Level	0.1.5		

Diamet	er of Boring	: 180m	m	De	pth of Casing:	5.00m	ı		Dates 07/03/2023 - 08/03/2023	Logged By: FG
Well	Water Strikes		_	& In situ Testing	Depth	Level (m AOD)	Legend		Stratum Description	FG
	Suires	Depth (m)	Туре	Results	(m)	7.51		sandy GRAVEL with high and sub-rounded of sand angular and sub-rounded Chiselling between 0.3m	becoming medium dense blicobble and boulder content latone and brick. Gravel is fir of sandstone, brick, fine as and 0.6m depth for 1 hour.	of sub-angular le to coarse sub- h and clinker.
	1.30 1.30 1.50	1.00	В	N=9 (1,1/2,1,	3,3)	6.81		sandstone, limestone and		
		2.00	С	N=45 (4,26/20,		0.01		high cobble and boulder of limestone and quartzite. Frounded of sandstone, line frequent lenses of sandstone.		unded sandstone, angular to
	2.40							Chiselling between 2.7m	and 3.0m depth for 30 minute	es.
		3.00	B C	N=31 (3,5/5,6,	9,11)			I		-3
		4.00 4.00	B C	N=15 (3,3/5,6	5.2.2)					- 4
		5.00	С	N=15 (2,3/5,6	5,2,2)		X X X X X X X X X X X X X X X X X X X			5

- D Small disturbed sample
 B Bulk disturbed sample
 ES Environmental soil sample
 SPT Standard Penetration Test (split spoon)
 CPT Standard Penetration Test (solid cone)

- W Water sample U Undisturbed sample TCR Total Core Recovery SCR Solid Core Recovery RQD Rock Quality Designation

	Intégr a echniqu	Intégral Ho Castlegate Caerphilly Tel. 029 2 Fax. 029 2 mail@inte	e Business CF83 2AX 0807991 20862176	Park (Project Na Former		ite			Project No.: 14180	Borehole No.: BH02 Sheet 2 of 2	
Locati Ponta	on: rddulais				Client:	Walte	ers Ltd			Coordinates: 259029.09mE 204199.80mN	Hole Type: CP	
Equipm	ent: Dan	do 2000			Diameter o	of Casin	g: 200	mm		Level: 8.41mAOD	Scale 1:25	
Diamete	er of Boring	: 180m	m		Depth of Casing: 5.00m					Dates 07/03/2023 - 08/03/2023	Logged By: FG	
Well	Water Strikes	Depth (m)	Samples Type	& In situ Testi Res		Depth (m)	Level (m AOD)	Legend		Stratum Description		
		6.50 6.50 8.00 8.00	BC BS	N=20 (2,3 N=15 (1,3 N=11 (2,3	2/3,4,5,8) 2/3,3,4,5)	7.70	0.71		Firm to stiff becoming tine to coarse platy and	irm grey slightly silty gravelly C	CLAY. Gravel is	- 6
						10.00	-1.59	× × × × × ×		End of Borehole at 10.00 m		- 1

Key:

D - Small disturbed sample
B - Bulk disturbed sample
ES - Environmental soil sample
SPT - Standard Penetration Test (split spoon)
CPT - Standard Penetration Test (solid cone)

Intégral House, 7 Beddau Way Castlegate Business Park	Project Name:	Project No.:	Borehole No.:	
Intégral Castlegate Business Park Caerphilly CF83 2AX Géotechnique Fax. 029 20807991 Fax. 029 20862176	Former Tata Site	14180	BH03	
mail@integralgeotec.com			Sheet 1 of 2	
Location:		Coordinates:	Hole Type:	
Pontarddulais	Client: Walters Ltd	259093.34mE	CP	
Portardulais		204296.40mN	UF	
Farriage and Development	Discussion of Ossimus 2000	L 0.00 4.0D	Scale	
Equipment: Dando 2000	Diameter of Casing: 200mm	Level: 9.92mAOD	1:25	
Diameter of Boring: 180mm	Depth of Casing: 5.00m	Dates	Logged By:	
Diameter of Boring: 180mm	Depth of Casing: 5.00m	10/03/2023 - 13/03/2023	FG	
Water Samples & In situ Te	esting Depth Level	Ot to Description		

							Dates	Logged By:
meter of Borin			Depth of	Casing:	5.00m		10/03/2023 - 13/03/202	
Vell Water Strikes	Depth (m)		& In situ Testing Results	Depth (m)	Level (m AOD)	Legend	Stratum Description	
		36-					MADE GROUND: Grass over soft black sandy gracommon roots and rootlets. Gravel is fine to coars rounded of sandstone, fine ash and clinker. Chiselling between 0.5m and 1.0m depth for 2 hours.	e sub-angular to
1.80	1.00	B C	50 (25 for 75mm/50 fo 75mm)	г			Chiselling between 1.0m and 1.3m depth for 30 mi	nutes.
	2.00	С	N=9 (2,3/2,2,2,3)	2.30	7.62		Soft becoming firm brown silty very slightly sandy with low cobble and boulder content of sub-round fine to coarse sub-angular and sub-rounded of sa and quartzite.	slightly gravelly CLAY
	3.00	B C	N=4 (1,0/1,1,1,1)			* · · · · · · · · · · · · · · · · · · ·		
4.30	4.00 4.00	B C	N=14 (2,3/3,4,3,4)					
								i i

- Key:
 D Small disturbed sample
 B Bulk disturbed sample
 ES Environmental soil sample
 SPT Standard Penetration Test (split spoon)
 CPT Standard Penetration Test (solid cone)

- W Water sample U Undisturbed sample TCR Total Core Recovery SCR Solid Core Recovery RQD Rock Quality Designation

Géot	Intégra echniqu	Castlegat Caerphilly Tel. 029 2 Fax. 029 3	e Business CF83 2A 20807991 20862176	X	Project Na		ite		Project No.: 14180	Borehole No.: BH03
Locati Ponta	on: rddulais	c.com	Client:	Walte	rs Ltd		Coordinates: 259093.34mE 204296.40mN	Sheet 2 of 2 Hole Type: CP		
Equipm	equipment: Dando 2000				Diameter o	of Casino	g: 200)mm	Level: 9.92mAOD	Scale 1:25
Diamet	iameter of Boring: 180mm				Depth of C	asing:	5.00m	ı	Dates 10/03/2023 - 13/03/2023	Logged By: FG
Well	Water Strikes	Depth (m)	Samples & In situ Testing) Type Results			Depth (m)	Level (m AOD)	Legend	Stratum Description	
	5.00 C N=16 (2,2/3,3,5,5)				2/3,3,5,5)			X x X x X x X x		

Water		Samples	& In situ Testing	Depth	Level		10/03/2023 - 13/03/2023 FG
Vell Strikes	Depth (m)	Туре	Results	(m)	(m AOD)	Legend	Stratum Description
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.00	C	N=16 (2,2/3,3,5,5)			X - X X - X X - X X - X	
				5.60	4.32	× × × × × × × × × × × × × × × × × × ×	Medium dense brown slightly silty sandy GRAVEL with high cobble and boulder content of sub-angular to rounded sandstone, limestone and quartzite. Gravel is fine to coarse sub-angular to rounded of sandstone, limestone and quartzite.
	6.10	В				× × × × × × × × × × × × × × × × × × ×	
	6.50 6.50	B S	N=14 (2,2/3,3,3,5)	6.50	3.42	**************************************	Firm to stiff grey slightly silty gravelly CLAY. Gravel is fine to coarse platy angular of mudstone.
						* -	
	8.00	Ø	N=14 (2,2/3,3,3,5)				
	9.50	S	N=16 (3,4/3,4,4,5)				
				10.00	-0.08	× × ×	

Key:

D - Small disturbed sample
B - Bulk disturbed sample
ES - Environmental soil sample
SPT - Standard Penetration Test (split spoon)
CPT - Standard Penetration Test (solid cone)

	Intégra	Castlegat	e Business		Project Na	me:			Project No.	: Borehole No.:	
Gént	echniqu				Former ¹	Tata S	ite			14180	BH04
CCO	.comiqu	Fax. 029 : mail@inte	20862176 gralgeote	c.com							Sheet 1 of 2
Locati	on:									Coordinates:	Hole Type:
Ponta	ontarddulais				Client:	Walte	rs Ltd			259026.93mE 204311.48mN	СР
				D:	f O :	000			1 0 47 A	Scale	
Equipm	ient: Dan	do 2000			Diameter o	ı Casınç	g: 200	Omm	Level: 9.47mA0	1:25	
					- "					Dates	Logged By:
Diameter of Boring: 180mm					Depth of C	asıng:	7.50m			14/03/2023 - 15/03	/2023
Well Water Samples & In situ Te					Depth Level Legend					Stratum Description	<u> </u>
Strikes Depth (m) Type R				Res	sults (m) (m AOD) Legend					<u> </u>	
	Cunco	Deptil (III)	туре	Ne:	suits	(,	(7.02)		MADE GROUND: Loose sandy GRAVEL with hig and sub-rounded of san	h cobble and boulder	

Diamete	er of Boring	: 180m	m	Depth	of Casing:	7.50m	1		Dates 14/03/2023 - 15/03/2023	Logged By:	
Well	Water Strikes	Depth (m)		& In situ Testing Results	Depth (m)	Level (m AOD	Legend		Stratum Description	I	
	1.80 2 .50	1.00 1.00	B C C	N=8 (1,1/1,2,2,3) N=22 (2,8/4,3,7,8				sandy GRAVEL with high and sub-rounded of sand angular and sub-rounded	becoming medium dense bl cobble and boulder content stone and brick. Gravel is fil of sandstone, brick, fine as and 1.3m depth for 45 minute	t of sub-angular ne to coarse sub- h and clinker.	-1
	2.80	3.00 3.00	B C	N=29 (24,20/7,6,9,	2.80	6.67		cobble and boulder conte limestone and quartzite. (rounded of sandstone, lin frequent lenses of sand		d sandstone, angular to	3
		4.00 4.00	B C	N=31 (2,6/6,7,8,10))						-41
		5.00	В				×××				5

- D Small disturbed sample
 B Bulk disturbed sample
 ES Environmental soil sample
 SPT Standard Penetration Test (split spoon)
 CPT Standard Penetration Test (solid cone)
- W Water sample U Undisturbed sample TCR Total Core Recovery SCR Solid Core Recovery RQD Rock Quality Designation

	Intégra echnique	Intégral H Castlegat Caerphilly	ouse, 7 Be e Business CF83 2A	eddau Way s Park K	Project Nar Former		ite		Project N 1418 (
Géot	echnique	Tel. 029 2 Fax. 029 3	10807991 20862176		0111101	rutu O	110		1410	Sheet 2 of 2
ocati	on:	mail@inte	gralgeoted	,.com					Coordinates:	Hole Type:
	rddulais				Client:	Walte	rs Ltd		259026.93mE 204311.48mN	CP
	. 5 .	0000			S		000			Scale
quipm	ent: Dando	o 2000			Diameter o	of Casino	g: 200	mm	Level: 9.47m	1:25
iamete	er of Boring:	180m	m		Depth of C	asing:	7.50m		Dates	Logged By:
	Water			& In situ Testin		Depth	Level		14/03/2023 - 15/	
Well		Depth (m)	Type	Resul	lts	(m)	(m AOD)	Legend	Stratum Descrip	tion
		5.00	С	N=12 (2,2/3	3,3,3,3)			× × ×		
`:\d:\								××××		
								××××		
								× ^, ×		
								××××		
								× ^ ×		
: []:[×××		
								× · · · ×		
								××××		
								× × × × × × × × × × × × × × × × × × ×		
								× × × × ×		
		6.50	С	N=12 (1,2/2	2,3,3,4)			× × × × ×		
								× × × × ×		
								× × × × × ×		
								× × × ×		
								× × × × × × × × × × × × × × × × × × ×		
								×		
								× × ×		
								× × ×		
\exists :								××××		
								××°,×		
\exists								× × × ×		
$\exists :]$		8.00	В					× × × ×		
$\exists : $		8.00	Č	N=29 (3,6/	5,6,9,9)			× , , , ,		
1:1								x. ^ ×		
								×		
불								× × ×]		
								×		
								×		
H								× ^ ×		
								× × ×		
								× ^ ×		
								× × × × × × × × × × × × × × × × × × ×		
								× × .		
		0.50	_	N=E0 (0.0/40	11 15 44			× × × ×		
		9.50	С	N=50 (2,8/10	, 17,75,14)			× × × ×		
								× ^ × ×		
								× × ×		
								× × ×		
27//2		10.00	В			10.00	-0.53	V * * * V * .	End of Borehole at 10	

Key:
D - Small disturbed sample
B - Bulk disturbed sample
ES - Environmental soil sample
SPT - Standard Penetration Test (split spoon)
CPT - Standard Penetration Test (solid cone)

Intégral House, 7 Beddau Way Castlegate Business Park	Project Name:	Project No.:	Borehole No.:
Intégral Castlegate Business Park Caerphilly CF83 2AX Géotechnique Tel. 029 20807991 Fax. 029 20862176	Former Tata Site	14180	BH05
mail@integralgeotec.com			Sheet 1 of 3
Location:	Olivert Market Land	Coordinates:	Hole Type:
Pontarddulais	Client: Walters Ltd	259127.48mE 204386.74mN	СР
Equipment: Dando 2000	Diameter of Casing: 200mm	Level: 11.21mAOD	Scale
Equipment. Dando 2000	Diameter of Casing. Zoonim	Level. 11.2111AOD	1:25
Diameter of Boring: 190mm	Don'th of Cooling: 0.00m	Dates	Logged By:
Diameter of Boring: 180mm	Depth of Casing: 9.00m	24/03/2023 - 27/03/2023	

Diameter of Boring	g: 180m	m	De	epth of Casing:	9.00m	,	Dates	Logged By:
Diameter of Bornig	g. 100111	111		spiri or Casing.	9.0011	1	24/03/2023 - 27/03/2023	
Well Water Strikes	Depth (m)	Samples Type	& In situ Testing Results	Depth (m)	Level (m AOD	Legend	Stratum Description	
	1.00 1.00 1.00	B B C	N=9 (1,1/2,2	0.10	11.11		Soft brown silty gravelly CLAY with moderate cobble rounded sandstone and with frequent roots and roo to coarse sub-rounded and rounded of sandstone a [Topsoil] Firm becoming stiff brown slightly silty slightly sand; CLAY with high cobble and boulder content of sub-asandstone, limestone and quartzite. Gravel is fine to any any and the rounded of sandstone, limestone and quartzite.	tlets. Gravel is fine nd quartzite. y slightly gravelly angular to rounded to coarse sub-
	2.00 2.00 2.00	B B C	N=40 (4,16/18	3,9,8,5)	9.01	X	Medium dense to dense brown and orangish brown GRAVEL. Gravel is fine to coarse sub-angular to ro limestone and quartzite.	very sandy unded of sandstone,
3.00	3.00	С	N=19 (2,5/4,	4,5,6)				- 3
	4.00 4.00	B C	50 (50 for 75mi 1mm)	3.50 m/50 for	7.71		Medium dense to dense brown and orangish brown GRAVEL with high cobble and boulder content of su rounded of sandstone, limestone and quartzite. Gra sub-angular to rounded of sandstone, limestone and	b-angular to vel is fine to coarse
	5.00	В						5
Remarks:						Key		

- Key:
 D Small disturbed sample
 B Bulk disturbed sample
 ES Environmental soil sample
 SPT Standard Penetration Test (split spoon)
 CPT Standard Penetration Test (solid cone)

- W Water sample U Undisturbed sample TCR Total Core Recovery SCR Solid Core Recovery RQD Rock Quality Designation

Géot	Intégr atechniqu	Intégral H Castlegate Caerphilly Tel. 029 2 Fax. 029 2 mail@inte	ouse, 7 Be e Business 7 CF83 2AX 20807991 20862176 egralgeoted	eddau Way s Park K	Project Na		ite			Project No.: 14180	Borehol BH Sheet 2	05
Locati Ponta	ion: rddulais				Client:	Walte	rs Ltd		259	rdinates: 127.48mE 386.74mN	Hole T	
Equipm	nent: Dan	do 2000			Diameter o	of Casing	g: 200)mm	Lev	el: 11.21mAOD	Sca 1:2	
Diamet	er of Boring	: 180m	m		Depth of C	asing:	9.00m	ı	Date 24/0	es 3/2023 - 27/03/2023	Logge	d By:
Well	Water Strikes			& In situ Test		Depth (m)	Level (m AOD	Legend	Stra	tum Description		
	6.10 Strikes	6.50 8.00	C C	N=20 (4,	sults 3/3,5,6,6)	(m)	(M AOD					- 6
												- 9
		10.00	В			10.00	1.21					1

- D Small disturbed sample
 B Bulk disturbed sample
 ES Environmental soil sample
 SPT Standard Penetration Test (split spoon)
 CPT Standard Penetration Test (solid cone)
- W Water sample U Undisturbed sample TCR Total Core Recovery SCR Solid Core Recovery RQD Rock Quality Designation

	Intégra	Castlegate	e Business	eddau Way Park	Project Na	me:			Project No.:	Borehole No.:
Géot	echniqu				Former	Tata S	ite		14180	BH05
	oomiqu	Fax. 029 2 mail@inte								Sheet 3 of 3
ocati	on:								Coordinates:	Hole Type:
Ponta	rddulais		Client:	Walte	rs Ltd		259127.48mE 204386.74mN	СР		
	ant. Dan		Diamatan a	f Casin	200	\	Level: 11.21mAOI	Scale		
quipm	ent: Dan	do 2000			Diameter o	or Casing	g: 200)mm	Level: 11.21mAOE	1:25
N:		400			D 41 4 O		0.00		Dates	Logged By:
Jiamete	er of Boring	: 180mi	m		Depth of C	asıng:	9.00m		24/03/2023 - 27/03/202	23
Well	Water			& In situ Test		Depth	Level	Legend	Stratum Description	
	Strikes	Depth (m)	Туре	Res	sults	(m)	(m AOD)	, J	End of Borehole at 10.00 m	
		10.45	С	N=30 (4.	4/5,9,7,9)					

Remark	s:					I.e	ey: Small disturbed sample	W. Water comple		. 1
Domark	e.	l	1	<u> </u>	L	Ke	ev:			\dashv
										- 15
										.
										.
										:
										:
										.
										-
									ļ	
										.
										.
										.
										- - 14
										.
										.
									ļ	.
										-
									}	
										.
										- 13
										-
									ļ	
									}	- 12
									-	
										.
									ļ	
									ļ	- 11
									ļ	. 44
		10.45	С	N=30 (4,4/5,9,7,9)					-	
									-	
									-	.

Ney:
D - Small disturbed sample
B - Bulk disturbed sample
ES - Environmental soil sample
SPT - Standard Penetration Test (split spoon)
CPT - Standard Penetration Test (solid cone)

Intégral House, 7 Beddau Way Castlegate Business Park Cacphilly CF83 2AX Tel. 029 20807991 Fax. 029 20862176 mail@integralgeotec.com	Project Name: Former Tata Site	Project No.: 14180	Borehole No.: BH06 Sheet 1 of 2
Location: Pontarddulais	Client: Walters Ltd	Coordinates: 259076.54mE 204445.83mN	Hole Type: CP
Equipment: Dando 2000	Diameter of Casing: 200mm	Level: 11.43mAOD	Scale 1:25
Diameter of Boring: 180mm	Depth of Casing: 6.00m	Dates 21/03/2023 - 23/03/2023	Logged By:

180m	ım	Depth o	of Casing:	6.00m		Dates Logged By:
	Samples	& In situ Testing	Depth	Level	Logond	
Depth (m)	Type	Results	(m)	(m AOD)	Legend	· ·
1.00 2.00	Samples Type C	& In situ Testing Results N=39 (4,10/12,12,8,	Depth (m) 0.15 0.60		Legend	Soft brown silty gravelly CLAY with moderate cobble content of subrounded sandstone and with frequent roots and rootlets. Gravel is fine to coarse sub-rounded and rounded of sandstone and quartzite. [Topsoil] Firm brown slightly silty slightly sandy slightly gravelly CLAY with high cobble and boulder content of sub-angular to rounded sandstone, limestone and quartzite. Gravel is fine to coarse sub-angular to rounded of sandstone, limestone and quartzite. Medium dense becoming dense brown and orangish brown very sandy GRAVEL. Gravel is fine to coarse sub-angular to rounded of sandstone, limestone and quartzite.
4.00 4.00	B C		3.50	7.93		Loose to medium dense brown and orangish brown very sandy GRAVEL with high cobble and boulder content of sub-angular to rounded of sandstone, limestone and quartzite. Gravel is fine to coarse sub-angular to rounded of sandstone, limestone and quartzite.
	1.00 2.00 3.00 3.00 3.00	1.00 C 2.00 C 3.00 B 3.00 B 3.00 B	1.00 C N=39 (4,10/12,12,8, 2.00 C N=32 (8,9/8,6,9,9) 3.00 B N=17 (2,4/3,4,6,4)	Depth (m) Type Results (m) 1.00 C N=39 (4,10/12,12,8,7) 2.00 C N=32 (8,9/8,6,9,9) 3.00 B N=17 (2,4/3,4,6,4) 4.00 B	Depth (m) Type Results (m) (m AOD) 0.15 11.28 1.00 C N=39 (4,10/12,12,8,7) 2.00 C N=32 (8,9/8,6,9,9) 3.00 B N=17 (2,4/3,4,6,4) 3.50 7.93	2.00 C N=32 (8,9/8,6,9,9) 3.00 B N=17 (2,4/3,4,6,4) 4.00 B

- Key:

 D Small disturbed sample
 B Bulk disturbed sample
 ES Environmental soil sample
 SPT Standard Penetration Test (split spoon)
 CPT Standard Penetration Test (solid cone)

- W Water sample U Undisturbed sample TCR Total Core Recovery SCR Solid Core Recovery RQD Rock Quality Designation

	Intégr	Intégral H Castlegat Caerphilly Tel. 029 2 Fax. 029 1	louse, 7 Be e Business r CF83 2A	eddau Way s Park K	oject Name		ite		Project No.: 14180	Borehole No.:
Géot	echniqu	Je Fax. 029 2	20807991 20862176	F	ormer ia	ııa S	ile		14180	BH06
_ocati		mail@inte	egralgeoteo	c.com					Coordinates:	Sheet 2 of 2 Hole Type:
				С	lient: V	Valte	rs Ltd		259076.54mE	
Pontai	ddulais								204445.83mN	СР
Equipm	ent: Dan	ndo 2000		Di	ameter of C	Casino	g: 200)mm	Level: 11.43mAOD	Scale
						`				1:25
Diamete	er of Boring	g: 180m	m	De	epth of Cas	ing:	6.00m		Dates	Logged By:
									21/03/2023 - 23/03/2023	1
Well	Water Strikes	Depth (m)	Type	& In situ Testing Results		Depth (m)	Level (m AOD)	Legend	Stratum Description	
		5.00	C	N=54 (2,2/3,3						E
										ļ
										-
										E
										ļ
										ţ
: □:										ļ.
										[
		6.00	В							-
∶⊟∶										-
										E
∴□:l										-
		6.50	С	N=23 (3,4/5,	6,6,6)					į.
										E
										-
										-
										[
										ţ
										ļ.
										<u>[</u>
										ŀ
										-
										ļ.
										E
		8.00	С	N=14 (2,3/3,	3,4,4)					F
		8.10	В							ļ.
										[
,: [:]										-
.: Fil										Ē
.:∃:l										[
										ļ
": ∐:l										‡
										Ē
":∷∷:										[
': [[]										ţ
· H.										ļ.
		9.50	С	N=22 (3,4/5,	5,5,7)					-
										[
										ļ
										ţ
						10.00	1.43			
						10.00	1.43		End of Borehole at 10.00 m	

Key:

D - Small disturbed sample
B - Bulk disturbed sample
ES - Environmental soil sample
SPT - Standard Penetration Test (split spoon)
CPT - Standard Penetration Test (solid cone) W - Water sample U - Undisturbed sample TCR - Total Core Recovery SCR - Solid Core Recovery RQD - Rock Quality Designation

APPENDIX G

ROTARY BOREHOLE LOGS

Intégral House, 7 Beddau Way Castlegate Business Park	Project Name:	Project No.:	Borehole No.:
Intégral Castlegate Business Park Caerphilly CF83 2AX Tel. 029 20807991 Fax. 029 20862176	Former Tata Site	14180	PH01
mail@integralgeotec.com			Sheet 1 of 2
Location:		Coordinates:	Hole Type:
Pontarddulais	Client: Walters Ltd	259115.36mE 204463.31mN	RO
			Scale
Equipment: KLEMM	Diameter of Casing: 200mm	Level: 11.21mAOD	1:100
D: 4.5	D # 10 : 0450	Dates	Logged By:
Diameter of Boring: 115mm	Depth of Casing: 21.50m	17/04/2023 -	FG

ameter of Bori	ng: 115m	m		l r	Depth of C	acina.	21.50r	n		Dates	Logged By:
					Jepui oi C					17/04/2023 -	FG
Vell Water Strikes	Depth (m)	TCR	tary Cori	ng RQD	FI	Depth (m)	Level (m AOD)	N Value	Legend	Stratum Description	
ou mos	Depui (III)	TOR	JOIN	NQD	' ''	()	(, 102)	74.45		Sandy CLAY with wet gravels (Drillers Desc	ription)
						4.00	0.04				
						4.90	6.31		×. ×. ×	Sandy GRAVEL with silt bands (Drillers Des	cription)
									\times \times \times		
									\times \times \times		
									\times \times \times		
									×××		
									×××		
									×××		
									× × ×		
									× × ×		
									. × .		
									×××		
									×××		
									×××		
									×××		
									×××		
									` × ×		
									^ ×		
									^ × ·		
									^ ×		
									^ × ·		
									^ ×		
									^ × ·		
									× × .		
									(× ·		
									(× ×		
									(× ×)		
									× × × .		
									×××		
									×		
Y//>									×		

1. Borehole drilled to 30.0m depth with open hole drilling methods.

Key:
D - Small disturbed sample
B - Bulk disturbed sample
ES - Environmental soil sample
SPT - Standard Penetration Test (split spoon)
CPT - Standard Penetration Test (solid cone)

Géot	Intégr echniqu	Intégral H Castlegat Caerphilly Tel. 029 2 Fax. 029 3	House, 7 Bete Business y CF83 2A 20807991 20862176 egralgeote	eddau Way s Park X	Pro	oject Nar		ite			Project No.: 14180	Borehole No.: PH01 Sheet 2 of 2
₋ocati Ponta	on: rddulais	- manigina	<u> </u>	<u> </u>	CI	lient:	Walte	rs Ltd			Coordinates: 259115.36mE 204463.31mN	Hole Type:
quipm		EMM			Dia	ameter o	f Casino	g: 200	mm		Level: 11.21mAOD	Scale 1:100
iamete	er of Boring	g: 115m	m		De	epth of Ca	asing:	21.50n	n		Dates	Logged By:
	Water		Ro	otary Corir			Depth	Level	N		 17/04/2023 -	FG
Well	Strikes	Depth (m)		SCR	RQD	FI	(m)	(m AOD)	Value	Legend	Stratum Description	
							30.00	-18.79			End of Borehole at 30.00 m	

1. Borehole drilled to 30.0m depth with open hole drilling methods.

Key:
D - Small disturbed sample
B - Bulk disturbed sample
ES - Environmental soil sample
SPT - Standard Penetration Test (split spoon)
CPT - Standard Penetration Test (solid cone)

Géot	Intégr echniqu	Intégral H Castlegat Caerphilly Tel. 029 2 Fax. 029 2 mail@inte	eddau Way s Park X c.com	' '	oject Na ormer		ite				Project No.: 14180	Borehole No.: PH02 Sheet 1 of 2	
_ocati	on:	managinto	graigeote	5.00111								Coordinates:	Hole Type:
onta	ddulais				CI	lient:	Walte	rs Ltd				258995.94mE 204142.52mN	RO
quipm	ent: KLE	EMM			Dia	Diameter of Casing: 200mm						Level: 8.09mAOD	Scale 1:100
iamete	er of Boring	j: 115m	m		De	epth of C	asing:	30.00n	า			Dates	Logged By:
		,		tary Corir								14/04/2023 -	FG
Vell	Water Strikes	Depth (m)	TCR	SCR	RQD	FI	Depth (m)	Level (m AOD)	N Value	Legend	- , .	Stratum Description	
							0.50	7.59			Tarmac / aspha	D (Drillers Description)	
											WADE GROOM	D (Dilliers Description)	
							5.40	2.69			Sandy GRAVFI	.S with wet silty bands. (Drille	ers Description)
										×××	, -	(
										^` × .			
										×××			
										××××			
										× × ×			
										× × ×			
										××××			
										×××			
										^			
										× × ×			
										× × ×			
										× × ×			
										× × ×			
										××××			
										×××			
										××××			
										××××			
										×.×.×.			
										×·×·×			
										××××			
										××××			
										^ × ×			
										××××			
										× × × ×			
										× × × × × ×			
										×××			

1. Borehole drilled to 30.0m depth with open hole drilling methods.

Key:
D - Small disturbed sample
B - Bulk disturbed sample
ES - Environmental soil sample
SPT - Standard Penetration Test (split spoon)
CPT - Standard Penetration Test (solid cone)

Intég Géotechnic	ral Castlegat Caerphilly Tel. 029 2 Fax. 029 mail@inte	louse, 7 Be te Business 7 CF83 2AX 20807991 20862176 egralgeotec	eddau Way s Park X c.com		oject Nar ormer		ite				Project No.: 14180		Borehole No.: PH02 Sheet 2 of 2
_ocation:		Jgoole(147 "					Coordinate		Hole Type:
Pontarddulais				CI	Client: Walters Ltd						258995.94i 204142.52i		RO
Equipment: KL	EMM			Dia	ameter o	f Casing	j: 200	mm			Level: 8.0		Scale 1:100
Diameter of Borir	ıg: 115m	m		Do	pth of Ca	ooina	30.00n				Dates		Logged By:
					puror C		,				14/04/2023	-	FG
Well Water Strikes	Depth (m)		tary Cori	ng RQD	FI	Depth (m)	Level (m AOD)	N Value	Legend		Stratum	Description	
						30.00	-21.91				End of Bore	shōlē at 30.00 m	

1. Borehole drilled to 30.0m depth with open hole drilling methods.

Key:
D - Small disturbed sample
B - Bulk disturbed sample
ES - Environmental soil sample
SPT - Standard Penetration Test (split spoon)
CPT - Standard Penetration Test (solid cone)

Intégral House, 7 Beddau Way Castlegate Business Park	Project Name:	Project No.:	Borehole No.:	
Intégral Castlegate Business Park Caephilly CF83 2AX Géotechnique Fax. 029 20807991 Fax. 029 20802176	Former Tata Site	14180	PH03	
mail@integralgeotec.com			Sheet 1 of 2	
_ocation:		Coordinates:	Hole Type:	
Pontarddulais	Client: Walters Ltd	258955.27mE 204197.97mN	RO	
	D: 1 (0 : 000		Scale	
Equipment: KLEMM	Diameter of Casing: 200mm	Level: 8.32mAOD	1:100	
D: 1 (D : 145	B # 60 : 0500	Dates	Logged By:	
Diameter of Boring: 115mm	Depth of Casing: 35.20m	13/04/2023 -	FG	
Well Water Rotary Coring	Depth Level N Legend	Stratum Description		

motor of Borin	a. 11Em			D.	onth of C	aaina	2E 20s	•		Dates	Logged By:
				epth of C	35.20n			13/04/2023 -	FG		
ell Water Strikes	Depth (m)		otary Cori	ng RQD	FI	Depth (m)	Level (m AOD)	N Value	Legend	Stratum Description	
- Cumos	Deptil (III)	TOIL	JOIN	NQD	- ''			74.40		Tarmac / asphalt	
						0.40	7.92			MADE GROUND (Drillers Description)	
						1.80	6.52				
						1.00	0.02) × ×	Sandy GRAVELS with wet silty bands (Drill	ers Description)
									. ×		
									×××		
									^`		
									. × ×		
									^		
									××××		
									× × ×		
									× × ×		
									×××		
									× ^×		
									× × × ×		
									× × × × × × × × × × × × × × × × × × ×		
									××		
									×		
777									× × ×		
									××××		
									××××		
									× × ×		
									× × ×		
									× × ×		
									× ^ ×		
									×××		
									^ × .		
									× × ×		
									××××		
									××××		
									××°×		
									× × ×		
									× × ×		
									× × ×		
									×· ×· ×·		
									×××		
// AI	1	1	1	i .	1	1	I		KARLON THESE TELES		

1. Borehole drilled to 35.2m depth with open hole drilling methods.

Key:

D - Small disturbed sample
B - Bulk disturbed sample
ES - Environmental soil sample
SPT - Standard Penetration Test (split spoon)
CPT - Standard Penetration Test (solid cone)

Géote	Intégra echniqu	F	Project Na Former		ite				Project No.: Borehole No. 14180 PH03 Sheet 2 of					
Locatio						Client:	Walte	rs I td				Coordinates: 258955.27mE	Hole Type:	
Pontar	ddulais					Client: Walters Ltd						204197.97mN	RO	
Equipme	ent: KLEI	MM			ı	Diameter of Casing: 200mm						Level: 8.32mAOD	Scale 1:100	
												Dates	Logged By:	
Diamete	r of Boring:	: 115m	m		[Depth of C	asing:	35.20n	n			13/04/2023 -	FG	
Well	Water		Ro	tary Corir	ng		Depth	Level	N	Legend		Stratum Description		П
	Strikes	Depth (m)	TCR	SCR	RQD	FI	(m)	(m AOD)	Value	×		·		
										^` × × × ×				
										××××				21
										××x×				22
										×××				
										××××				23
										× × ×				
										× × ×				24
										×·×·				
										× ^××				25
										×××				
										` × .				26
										×				
										×××				27
										××××				
										××××				28
										××××				
										× × ×				29
										××××				
										×·×·×				30
										××××				
										× ^××				31
										×				
										×××				32
										` × .				
										××××				33
										×××				
										× × ×				34
										××××				
							35.20	-26.88		. × .		End of Borehole at 35.20 n		35
														36
														37
														38
														39
														40
Remarks									Ke	 v:				1 40

1. Borehole drilled to 35.2m depth with open hole drilling methods.

Key:

D - Small disturbed sample

B - Bulk disturbed sample

ES - Environmental soil sample

SPT - Standard Penetration Test (split spoon)

CPT - Standard Penetration Test (solid cone)

Géot	Intégra echniqu	Castlegat	e Busines	eddau Way s Park X	l' '	Project Name: Former Tata Site						Project No.: 14180	Borehole No.: PH04
		mail@inte	egralgeote	c.com									Sheet 1 of 2
_ocati	on:					lient:	14/-14-	4-				Coordinates:	Hole Type:
Ponta	Pontarddulais						Walte	rs Lta		259039.73mE 204379.28mN	RO		
	t- Z -											1 1 0 70 1 O D	Scale
Equipm	ent: KLE	IVIIVI			الا	iameter of	Casing	j: 200	mm		Level: 9.70mAOD	1:100	
Diamete	or of Poring	· 115m	m		D	epth of Ca	noina:	30.00n	,		Dates	Logged By:	
Diameter of Boring: 115mm						eptil of Ca	asing.	30.0011	1		17/04/2023 -	FG	
Well	Water		Ro	tary Cori	ng		Depth	Level	N	Legend	'	Stratum Description	
Strikes Depth (m) TCR SCR RQE					RQD	D FI (m		(m AOD)	Value	Logona		ou atum besonption	
											Sandy GRAVELS	(Drillers Description)	

neter of Borin	g: 115mr				pth of C	asiriy.	30.00n	1		17/04/2023 -	FG
Water Strikes		Ro	tary Corir	ng		Depth (m)	Level (m AOD)	N Value	Legend	Stratum Description	
Strikes	Depth (m)	TCR	SCR	RQD	FI	(m)	(m AOD)	Value	**:::::::::::::::::::::::::::::::::::::	Sandy GRAVELS (Drillers Description)	
										canay c. a ti 220 (2o.c 2000pas)	
						40.00	0.00				
						10.00	-0.30		×××	Sandy GRAVELS with wet silty bands. (Drille	ers Description)
									××		
									^``×		
									^``.×`.		
									××		
									×		
									×		
									×·^·×		
									× × ×		
									×·×·		
									×××		
									×· ×·		
									× × ×		
									×. ×.		
									××××		
									\times \times \times		
									××××		
									××××		
									×××		
									×		
									×		
///NI	1 1		1		1	1	1		IX C X X I		

1. Borehole drilled to 30.0m depth with open hole drilling methods.

Key:

D - Small disturbed sample
B - Bulk disturbed sample
ES - Environmental soil sample
SPT - Standard Penetration Test (split spoon)
CPT - Standard Penetration Test (solid cone)

Géote	Intégr echniqu	Intégral Ho Castlegate Caerphilly Tel. 029 2 Fax. 029 2 mail@inte	ouse, 7 Be Business CF83 2A) 0807991 20862176 gralgeoted	eddau Way s Park X c.com	Pro Fo	oject Nar ormer		ite			Project No.: 14180	Borehole No.: PH04 Sheet 2 of 2
Locatio Pontar	on: ddulais				СІ	ient:	Walte	rs Ltd			Coordinates: 259039.73mE 204379.28mN	Hole Type: RO
Equipme	ent: KLE	EMM			Dia	ameter o	f Casin	g: 200	mm		Level: 9.70mAOD	Scale 1:100
Diameter of Boring: 115mm						epth of Ca	asing:	30.00n	n		Dates 17/04/2023 -	Logged By: FG
Well	Water Strikes	Depth (m)	TCR	tary Corin	ng RQD	FI	Depth (m)	Level (m AOD)	N Value	Legend	Stratum Description	
							30.00	-20.30			End of Borehole at 30.00 m	

1. Borehole drilled to 30.0m depth with open hole drilling methods.

Key:
D - Small disturbed sample
B - Bulk disturbed sample
ES - Environmental soil sample
SPT - Standard Penetration Test (split spoon)
CPT - Standard Penetration Test (solid cone)

APPENDIX H

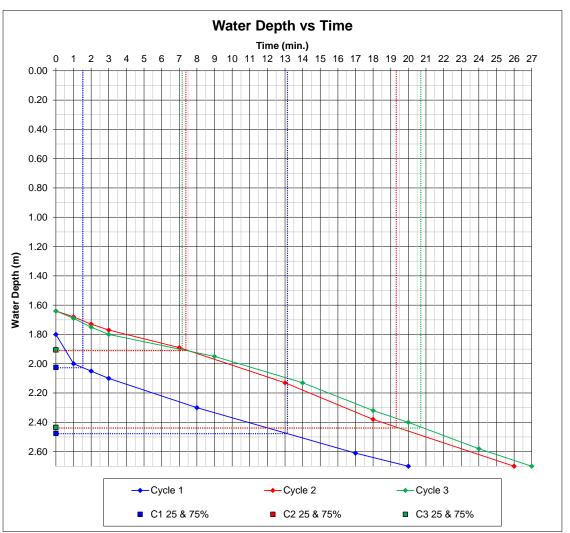
SOIL INFILTRATION TESTING RESULTS

14180 - Former Tata Site, Pontarddulais

Trial Pit Information	
Length (m)	2.70
Width (m)	0.80
Depth (m)	2.70
Groundwater	Dry
Weather Conditions	Cloudy
Date	13-Mar-23

Remarks

1. Test perfor	med within natural cohesive soil deposits.


Time (min)	Depth (m)	Time (min)	Depth (m)	Time (min)				
0	1.80	0	1.64	0	1.64			
1	2.00	1	1.68	1	1.69			
2	2.05	2	1.73	2	1.75			
3	2.10	3	1.77	3	1.80			
8	2.30	7	1.89	9	1.95			
17	2.61	13	2.13	14	2.13			
20	2.70	18	2.38	18	2.32			
		26	2.70	20	2.40			
				24	2.58			
				27	2.70			
Cyc	le 1	Cyc	le 2	Cyc	le 3			
	2.70	-	2.70		2.70			
	1.80		1.64		1.64			
	2.70		2.70					
	1.00		1.00		1.00			
	0 90		1.06		1.06			
	2.70 0.90 1.00 0.90 0.68		2.70 1.06 1.00 1.06 0.80		2.70 1.06 1.00 1.06 0.80			

Cycle 2

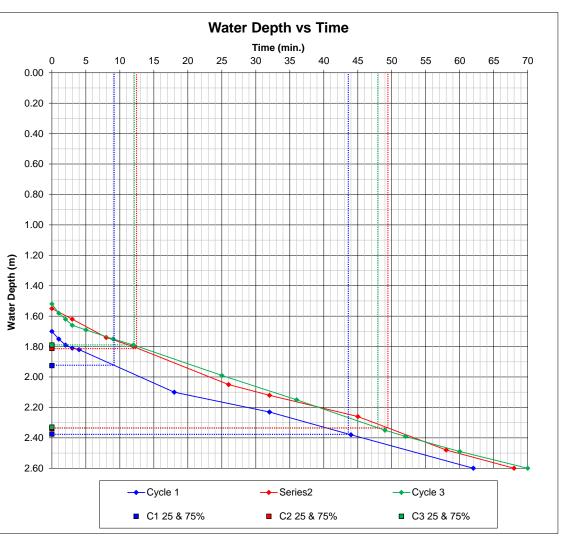
Cycle 3

Final Excavation Depth (m)	Cycle 1	Cycle 2	Cycle 3
At end of testing cycle	2.70	2.70	2.70
Water Depths (m)			
Water depth at start of test	1.80	1.64	1.64
Water depth at end of test	2.70	2.70	2.70
Effective depth (measured)	0.90	1.06	1.06
% Effective storage depth	1.00	1.00	1.00
Effective Storage Depths (m)			
Effective storage depth (100%)	0.90	1.06	1.06
Effective storage depth (75%)	0.68	0.80	0.80
Effective storage depth (50%)	0.45	0.53	0.53
Effective storage depth (25%)	0.23	0.27	0.27
Outflow Time (min)			
Time for measured outflow	20	26	27
Time for 100% outflow	20	26	27
Time for 75-25% outflow	11.35	12.00	11.50
Volume of Outflow (m ³)			
Over measured effective depth	1.94	2.29	2.29
Over 100% effective depth	1.94	2.29	2.29
From 75% - 25% effective depth	0.97	1.14	1.14
Surface Area (m²)			
For 100% effective storage	8.46	9.58	9.58
For 50% effective storage	5.31	5.87	5.87
Over measured depth	8.46	9.58	9.58
Soil Infiltration Rate (m/s)	Cycle 1	Cycle 2	Cycle 3
Over 100% effective depth	1.9E-04	1.5E-04	1.5E-04
Over measured depth	1.9E-04	1.5E-04	1.5E-04
Over 75% - 25% effective depth	2.69E-04	2.71E-04	2.83E-04

Cycle 1

Design Soil Infiltration Rate: 2.6E-04 m/s

14180 - Former Tata Site, Pontarddulais


Trial Pit Information	
Length (m)	3.20
Width (m)	0.80
Depth (m)	2.60
Groundwater	Dry
Weather Conditions	Cloudy
Date	13-Mar-23

Remarks

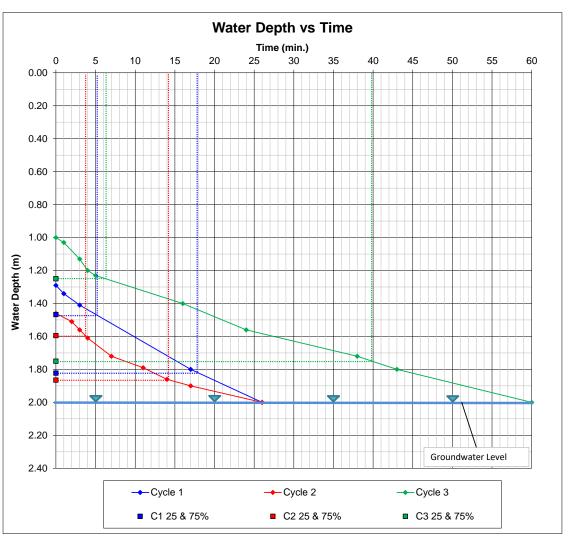
Test performed within natural cohesive soil deposits.

Cyc	le 1	Cycle 2		Cycle 3		
Time (min)	Depth (m)	Time (min)	Depth (m)	Time (min)	Depth (m)	
0	1.70	0	1.55	0	1.52	
1	1.75	3	1.62	1	1.58	
2	1.79	8	1.74	2	1.62	
3	1.81	12	1.80	3	1.66	
4	1.82	26	2.05	5	1.69	
18	2.10	32	2.12	9	1.75	
32	2.23	45	2.26	12	1.79	
44	2.38	58	2.48	25	1.99	
62	2.60	68	2.60	36	2.15	
				49	2.35	
				52	2.39	
				60	2.49	
				70	2.60	
Cvc	le 1	Cvc	le 2	Cvc	le 3	
	2.60		2.60		2.60	
	2.00				2.00	
	1.70		1.55		1.52	
	2.60		2.60		2.60	
	0.90		1.05		1.08	
	1.00		1.00		1.00	
	0.00		1.05		1.08	

Final Excavation Depth (m)	Cycle 1		Cycle 2		Сус	le 3
At end of testing cycle		2.60	2.60		2.60	
Water Depths (m)						
Water depth at start of test		1.70		1.55		1.52
Water depth at end of test		2.60		2.60		2.60
Effective depth (measured)		0.90		1.05		1.08
% Effective storage depth		1.00		1.00		1.00
Effective Storage Depths (m)						
Effective storage depth (100%)		0.90		1.05		1.08
Effective storage depth (75%)		0.68		0.79		0.81
Effective storage depth (50%)		0.45		0.53		0.54
Effective storage depth (25%)		0.23		0.26		0.27
Outflow Time (min)						
Time for measured outflow		62		68		70
Time for 100% outflow		62	68		70	
Time for 75-25% outflow		34.2	37.3			36
Volume of Outflow (m ³)						
Over measured effective depth		2.30		2.69		2.76
Over 100% effective depth		2.30		2.69		2.76
From 75% - 25% effective depth		1.15	1.34		1.38	
Surface Area (m²)						
For 100% effective storage		9.76		10.96		11.20
For 50% effective storage	6.16					6.88
Over measured depth		9.76		10.96		11.20
Soil Infiltration Rate (m/s)	Cyc	le 1	Cyc	cle 2	Cyc	le 3
Over 100% effective depth	6.3E-05			6.0E-05		5.9E-05
Over measured depth		6.3E-05	6.0E-05			5.9E-05
Over 75% - 25% effective depth		9.11E-05		8.88E-05		9.30E-05

Design Soil Infiltration Rate: 8.8E-05 m/s

14180 - Former Tata Site, Pontarddulais


Trial Pit Information	
Length (m)	3.50
Width (m)	0.80
Depth (m)	2.40
Groundwater	2
Weather Conditions	Sunny
Date	14-Mar-23

Ker	narks				

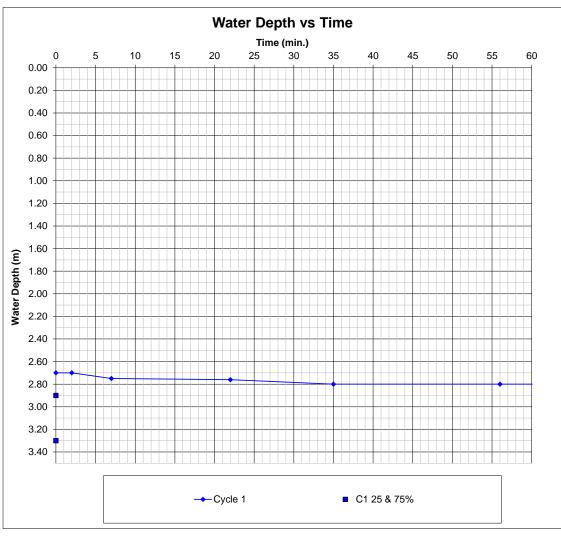
- Test performed within natural granular soil deposits.
- 2. Groundwater standing at 2.0m below ground level.

Cyc	Cycle 1		Cycle 2		le 3
Time (min)	Depth (m)	Time (min)	Depth (m)	Time (min)	Depth (m)
0	1.29	0	1.46	0	1.00
1	1.34	2	1.51	1	1.03
3	1.41	3	1.56	3	1.13
17	1.80	4	1.61	4	1.20
26	2.00	7	1.72	5	1.23
		11	1.79	16	1.40
		14	1.86	24	1.56
		17	1.90	38	1.72
		26	2.00	43	1.80
				60	2.00

Final Excavation Depth (m)	Cycle 1	Cycle 2	Cycle 3	
At end of testing cycle	2.00	2.00	2.00	
Water Depths (m)				
Water depth at start of test	1.29	1.46	1.00	
Water depth at end of test	2.00	2.00	2.00	
Effective depth (measured)	0.71	0.54	1.00	
% Effective storage depth	1.00	1.00	1.00	
Effective Storage Depths (m)				
Effective storage depth (100%)	0.71	0.54	1.00	
Effective storage depth (75%)	0.53	0.41	0.75	
Effective storage depth (50%)	0.36	0.27	0.50	
Effective storage depth (25%)	0.18	0.14	0.25	
Outflow Time (min)				
Time for measured outflow	26	26	60	
Time for 100% outflow	26	26	60	
Time for 75-25% outflow	12.5	10.0	43.5	
Volume of Outflow (m ³)				
Over measured effective depth	1.99	1.51	2.80	
Over 100% effective depth	1.99	1.51	2.80	
From 75% - 25% effective depth	0.99	0.76	1.40	
Surface Area (m²)				
For 100% effective storage	8.91	7.44	11.40 7.10	
For 50% effective storage	5.85			
Over measured depth	8.91	7.44	11.40	
Soil Infiltration Rate (m/s)	Cycle 1	Cycle 2	Cycle 3	
Over 100% effective depth	1.4E-04	1.3E-04	6.8E-05	
Over measured depth	1.4E-04	1.3E-04	6.8E-05	
Over 75% - 25% effective depth	2.26E-04	2.46E-04	7.55E-05	

Design Soil Infiltration Rate: 7.5E-05 m/s

14180 - Former Tata Site, Pontarddulais


Trial Pit Information	
Length (m)	3.60
Width (m)	0.80
Depth (m)	3.50
Groundwater	2.1
Weather Conditions	Sunny
Date	14-Mar-23

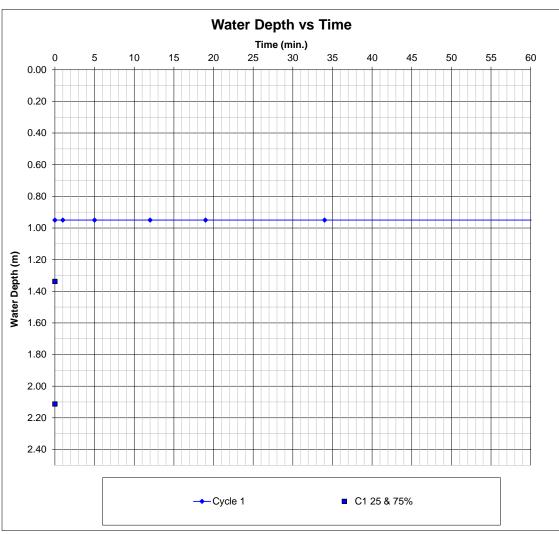
Remarks

- 1. Test performed within natural granular soil deposits encountered at 2.7m below ground level.
- 2. Minor inflows at 2.1m below ground level.
- Testing stalled after 35 minutes of infiltration.
 Insufficient infiltration to calculate design infiltration rate. Test failed.

Cycle 1		Cycle 2		Cycle 3	
Time (min)	Depth (m)	Time (min)	Depth (m)	Time (min)	Depth (m
0	2.70				
2	2.70				
7	2.75				
22	2.76				
35	2.80				
56	2.80				
132	2.80				
·			· ·		
	1	1			

Final Excavation Depth (m)	Cycle 1	Cycle 2	Cycle 3
At end of testing cycle	3.50	.,	.,
Water Depths (m)			
Water depth at start of test	2.70		
Water depth at end of test	2.80		
Effective depth (measured)	0.10		
% Effective storage depth	0.13		
Effective Storage Depths (m)			
Effective storage depth (100%)	0.80		
Effective storage depth (75%)	0.60		
Effective storage depth (50%)	0.40		
Effective storage depth (25%)	0.20		
Outflow Time (min)			
Time for measured outflow	132		
Time for 100% outflow			
Time for 75-25% outflow			
Volume of Outflow (m ³)			
Over measured effective depth	0.29		
Over 100% effective depth	2.30		
From 75% - 25% effective depth	1.15		
Surface Area (m²)			
For 100% effective storage	9.92		
For 50% effective storage	6.40		
Over measured depth	3.76		
Soil Infiltration Rate (m/s)	Cycle 1	Cycle 2	Cycle 3
Over 100% effective depth			
Over measured depth	9.7E-06		
Over 75% - 25% effective depth			

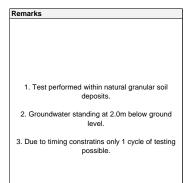
14180 - Former Tata Site, Pontarddulais


Trial Pit Information				
Length (m)	3.50			
Width (m)	0.80			
Depth (m)	2.50			
Groundwater	2			
Weather Conditions	Light Rain			
Date	15-Mar-23			

Remarks

- Test performed within natural granular soil deposits.
- Insufficient infiltration to calculate design infiltration rate. Test Failed.

Cyc	le 1	Cyc	le 2	Cycle 3	
Time (min)	Depth (m)	Time (min)	Depth (m)	Time (min)	Depth (m)
0	0.95				
1	0.95				
5	0.95				
12	0.95				
19	0.95				
34	0.95				
75	0.95				


Final Excavation Depth (m)	Cycle 1	Cvc	lo 2	Cyc	lo 2
. , ,	- 7	-,-	ie z	Сус	ie 3
At end of testing cycle	2.50				
Water Depths (m)	0.05				
Water depth at start of test	0.95				
Water depth at end of test	0.95				
Effective depth (measured)	0.00				
% Effective storage depth	0.00				
Effective Storage Depths (m)					
Effective storage depth (100%)	1.55				
Effective storage depth (75%)	1.16				
Effective storage depth (50%)	0.78				
Effective storage depth (25%)	0.39				
Outflow Time (min)					
Time for measured outflow	75				
Time for 100% outflow					
Time for 75-25% outflow					
Volume of Outflow (m ³)					
Over measured effective depth	0.00				
Over 100% effective depth	4.34				
From 75% - 25% effective depth	2.17				
Surface Area (m²)					
For 100% effective storage	16.13				
For 50% effective storage	9.47				
Over measured depth	2.80				
Soil Infiltration Rate (m/s)	Cycle 1	Сус	le 2	Сус	le 3
Over 100% effective depth					
Over measured depth	0.0E+00				
Over 75% - 25% effective depth					

14180 - Former Tata Site, Pontarddulais

Trial Pit Information	
Length (m)	3.00
Width (m)	0.80
Depth (m)	2.40
Groundwater	1.8
Weather Conditions	Light Rain
Date	15-Mar-23

Final Excavation Depth (m)
At end of testing cycle
Water Depths (m)

Water depth at start of test Water depth at end of test Effective depth (measured) % Effective storage depth

Effective Storage Depths (m)
Effective storage depth (100%)
Effective storage depth (75%)

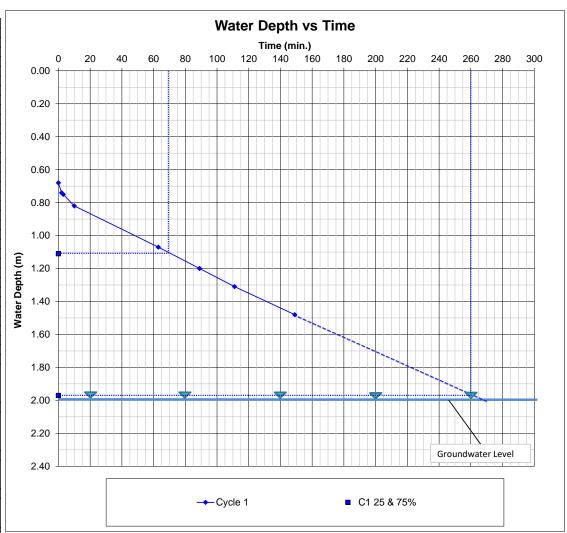
Effective storage depth (50%) Effective storage depth (25%)

Over measured effective depth Over 100% effective depth From 75% - 25% effective depth Surface Area (m²) For 100% effective storage For 50% effective storage

Outflow Time (min)
Time for measured outflow

Time for 100% outflow Time for 75-25% outflow Volume of Outflow (m³)

Over measured depth


Soil Infiltration Rate (m/s)

Over 100% effective depth

Over measured depth

Over 75% - 25% effective depth

C	/cle 1	Cvc	le 2	Cycle 3			
Time (min)	Depth (m)	Time (min)	Depth (m)	Time (min)	Depth (m)		
0	0.68	()	op ()	()	- op ()		
2	0.74						
3	0.75						
10	0.82						
63	1.07						
89	1.20						
111	1.31						
149	1.48						
143	1.40						
-	1						
1	1						
	+						
-	+						
-	+						
-	1						
-	 						
	+						
C	/cle 1	Cyc	le 2	Сус	le 3		
	2.40						
	2.22						
	0.68						
	1.48						
	0.80						
	0.47						
	1.72						
	1.29						
	0.86						
	0.43						
	149						
1	300						
	125						
1	1.92						
	4.13						
	2.06						
	15.47						
	8.94						
	8.48						
Cy	/cle 1	Сус	le 2	Сус	le 3		
	1.5E-05						
	2.5E-05						

Design Soil Infiltration Rate: 3.0E-05 m/s

APPENDIX I

LABORATORY CHEMICAL TEST RESULTS (SOILS)

Finn Quilfoyle

Integral Geotechnique Integral House 7 Beddau Way Castlegate Business Park CF83 2AX

t: 02920807991 **f:** 02920862176

e: finn@integralgeotec.com

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, **WD18 8YS**

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 23-24069

Replaces Analytical Report Number: 23-24069, issue no. 1 Additional analysis undertaken.

Asbestos Quantification added for possitve samples as per client's request

Project / Site name: Former Tata Site, High Street, Samples received on: 20/03/2023

Pontarddulais

Your job number: 14180 Samples instructed on/ 21/03/2023

Analysis started on:

Your order number: 14180 FG Analysis completed by: 05/04/2023

Report Issue Number: 2 Report issued on: 03/05/2023

Samples Analysed: 17 soil samples

Signed:

Dominika Warjan Junior Reporting Specialist

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Project / Site name: Former Tata Site, High Street, Pontarddulais

Your Order No: 14180 FG

Lab Sample Number				2623790	2623791	2623792	2623793	2623794
Sample Reference				TP02	TP03	TP04	TP05	TP06
Sample Number				None Supplied				
Depth (m)				0.20	0.10	0.20	0.40	0.50
Date Sampled				13/03/2023	13/03/2023	13/03/2023	13/03/2023	13/03/2023
Time Taken				0900	0930	1000	1100	1200
Time raken		-		0300	0330	1000	1100	1200
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	57	< 0.1	43
Moisture Content	%	0.01	NONE	25	33	4.1	14	6.6
Total mass of sample received	kg	0.001	NONE	0.9	0.9	0.3	0.8	0.9
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-	-	-
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	-	-	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-	-	-
Asbestos Analyst ID	N/A	N/A	N/A	LFT	LFT	N/A	N/A	LFT
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	7.7	6.7	-	-	7.6
Total Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0	-	-	< 1.0
Total Sulphate as SO4	mg/kg	50	MCERTS	830	760	-	-	110
Water Soluble SO4 16hr extraction (2:1 Leachate	~//	0.00125	MCERTS	0.014	0.018	-	-	0.008
Equivalent)	g/l					_	_	
Sulphide	mg/kg	1	MCERTS	6.9	5.7	-	-	< 1.0
Total Sulphur	mg/kg %	50 0.1	MCERTS MCERTS	540 4.2	460	-	-	83
Total Organic Carbon (TOC) - Automated	%	0.1	MCERTS		4.1 10.1	-	-	0.6
Loss on Ignition @ 450oC	70	0.2	PICERTS	10.9	10.1	-	-	2.1
Total Bhanala								
Total Phenois	mg/kg	1	MCERTS	.10	< 1.0	_	ſ	. 1.0
Total Phenols (monohydric)	mg/kg		PICERTS	< 1.0	< 1.0	-	-	< 1.0
Consisted BAUs								
Speciated PAHs		0.05	MCERTS	0.14		ı	T	I
Naphthalene	mg/kg mg/kg	0.05	MCERTS	0.14	0.11	-	-	< 0.05 < 0.05
Accepabithons	mg/kg	0.05	MCERTS	0.13	< 0.05	-	-	< 0.05
Acenaphthene Fluorene	mg/kg	0.05	MCERTS	0.05	< 0.05	-	-	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	1.2	0.38		-	< 0.05
Anthracene	mg/kg	0.05	MCERTS	0.26	0.38	-	-	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	3.2	1.2	-	-	0.09
Pyrene	mg/kg	0.05	MCERTS	2.6	1		_	0.09
Benzo(a)anthracene	mg/kg	0.05	MCERTS	2.2	0.91	-	-	0.05
Chrysene	mg/kg	0.05	MCERTS	2.1	1.3	_	_	0.03
Benzo(b)fluoranthene	mg/kg	0.05	ISO 17025	2.7	1.4		_	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	ISO 17025	0.91	0.7	-	-	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	1.9	1.1	_	-	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	1.9	0.71		_	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.24	0.13		_	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.94	0.72	_	_	< 0.05
penzo(gni)peryiene	3/119			0.51	0.72			< 0.03
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	ISO 17025	19.6	9.78	-	-	< 0.80
				15.0	50			

Project / Site name: Former Tata Site, High Street, Pontarddulais

Your Order No: 14180 FG

Lab Sample Number				2623790	2623791	2623792	2623793	2623794
	Sample Reference					TP04	TP05	TP06
Sample Number				TP02 None Supplied	TP03 None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.20	0.10	0.20	0.40	0.50
Date Sampled				13/03/2023	13/03/2023	13/03/2023	13/03/2023	13/03/2023
Time Taken				0900	0930	1000	1100	1200
		Ŀ'n	,					
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids	-							
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	37	42	-	-	14
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.69	0.58	-	-	0.94
Boron (water soluble)	mg/kg	0.2	MCERTS	0.8	0.5	-	-	< 0.2
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	-	-	< 0.2
Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8	< 1.8	-	-	< 1.8
Chromium (aqua regia extractable)	mg/kg	1	MCERTS MCERTS	22	18	-	-	20
Copper (aqua regia extractable)	mg/kg mg/kg	1	MCERTS	72 150	95 82	-	-	21 19
Lead (aqua regia extractable) Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	-	-	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	24	19	-	<u> </u>	28
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	-	-	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	30	30	-	-	26
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	240	120	-	-	83
Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL	mg/kg	0.001	NONE	-	-	-	< 0.001	-
TPH-CWG - Aliphatic >EC6 - EC8 HS_1D_AL	mg/kg	0.001	NONE	-	-	-	< 0.001	-
TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL	mg/kg	0.001	NONE	i	-	-	< 0.001	1
TPH-CWG - Aliphatic >EC10 - EC12 EH_CU_1D_AL	mg/kg	1	MCERTS	-	-	-	< 1.0	-
TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_1D_AL	mg/kg	2	MCERTS	-	-	-	< 2.0	-
TPH-CWG - Aliphatic >EC16 - EC21 EH_CU_1D_AL	mg/kg	8	MCERTS	-	-	-	< 8.0	-
TPH-CWG - Aliphatic >EC21 - EC35 EH_CU_ID_AL	mg/kg	8	MCERTS	-	-	-	30	-
TPH-CWG - Aliphatic >EC16 - EC35 EH_CU_1D_AL	mg/kg	10 8.4	MCERTS NONE	-	-	-	30 13	-
TPH-CWG - Aliphatic > EC35 - EC44 _{EH_CU_1D_AL} TPH-CWG - Aliphatic (EC5 - EC35) _{EH_CU+HS_1D_AL}	mg/kg mg/kg	10	NONE	-	-	-	30	-
TPH-CWG - Aliphatic (EC5 - EC35) _{EH_CU+HS_1D_AL} TPH-CWG - Aliphatic (EC5 - EC44) _{EH_CU+HS_1D_AL}	mg/kg	10	NONE	-	-	-	43	
THE PROPERTY OF THE COURT OF TH	3, 3						73	
TPH-CWG - Aromatic >EC5 - EC7 HS 1D AR	mg/kg	0.001	NONE	-	_	_	< 0.001	_
TPH-CWG - Aromatic >EC7 - EC8 _{HS_1D_AR}	mg/kg	0.001	NONE	_	_	_	< 0.001	-
TPH-CWG - Aromatic >EC8 - EC10 _{HS_1D_AR}	mg/kg	0.001	NONE	-	-	-	< 0.001	-
TPH-CWG - Aromatic >EC10 - EC12 _{EH_CU_1D_AR}	mg/kg	1	MCERTS	-	-	-	< 1.0	-
TPH-CWG - Aromatic >EC12 - EC16 EH_CU_1D_AR	mg/kg	2	MCERTS	-	-	-	< 2.0	-
TPH-CWG - Aromatic >EC16 - EC21 EH_CU_1D_AR	mg/kg	10	MCERTS	-	-	-	< 10	-
TPH-CWG - Aromatic >EC21 - EC35 EH_CU_1D_AR	mg/kg	10	MCERTS	-	-	-	< 10	-
TPH-CWG - Aromatic >EC35 - EC40 _{EH_CU_1D_AR}	mg/kg	10	NONE	-	-	-	< 10	-
TPH-CWG - Aromatic > EC35 - EC44 _{EH_CU_1D_AR}	mg/kg	8.4 10	NONE NONE	-	-	-	< 8.4	-
TPH-CWG - Aromatic (EC5 - EC35) _{EH_CU+HS_1D_AR}	mg/kg ma/ka	10	NONE	-	-	-	< 10	-
TPH-CWG - Aromatic (EC5 - EC44) _{EH_CU+HS_1D_AR}	mg/kg	10	HONE	-	-	-	< 10	-
TPH Total C5 - C44 _{EH_CU+HS_1D_TOTAL}	mg/kg	10	NONE	1	_		42	
EH_CU+HS_ID_TOTAL	y, ng	10	HONE	-	-	-	43	-
VOCs								
Chloromethane	μg/kg	5	ISO 17025	_	_	< 5.0	-	-
Chloroethane	μg/kg	5	NONE	-	_	< 5.0	_	-
Bromomethane	μg/kg	5	ISO 17025	-	-	< 5.0	-	-
Vinyl Chloride	μg/kg	5	NONE	-	-	< 5.0	-	-
Trichlorofluoromethane	μg/kg	5	NONE	-	-	< 5.0	-	-
1,1-Dichloroethene	μg/kg	5	NONE	-	-	< 5.0	-	-
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	5	NONE	-	-	< 5.0	-	-
Cis-1,2-dichloroethene	μg/kg	5	ISO 17025	-	-	< 5.0	-	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	5	NONE	-	-	< 5.0	-	-
1,1-Dichloroethane	μg/kg	5	ISO 17025	-	-	< 5.0	-	-
2,2-Dichloropropane	μg/kg	5	ISO 17025	-	-	< 5.0	-	-
Trichloromethane	μg/kg	5	ISO 17025	-	-	< 5.0	-	-

Project / Site name: Former Tata Site, High Street, Pontarddulais

Your Order No: 14180 FG

Lab Sample Number		2623790	2623791	2623792	2623793	2623794		
Sample Reference				TP02	TP03	TP04	TP05	TP06
Sample Number	Sample Number					None Supplied	None Supplied	None Supplied
Depth (m)				None Supplied 0.20	None Supplied 0.10	0.20	0.40	0.50
Date Sampled				13/03/2023	13/03/2023	13/03/2023	13/03/2023	13/03/2023
Time Taken				0900	0930	1000	1100	1200
		_		7777				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
1,1,1-Trichloroethane	μg/kg	5	ISO 17025	-	-	< 5.0	-	-
1,2-Dichloroethane	μg/kg	5	ISO 17025	-	-	< 5.0	-	-
1,1-Dichloropropene	μg/kg	5	ISO 17025	-	-	< 5.0	-	-
Trans-1,2-dichloroethene	μg/kg	5	NONE	-	-	< 5.0	-	-
Benzene	μg/kg	5	MCERTS	-	-	< 5.0	-	-
Tetrachloromethane	μg/kg	5	NONE	-	-	< 5.0	-	-
1,2-Dichloropropane	μg/kg	5	ISO 17025	-	-	< 5.0	-	-
Trichloroethene	μg/kg	5	ISO 17025	-	-	< 5.0	-	-
Dibromomethane	μg/kg	5	ISO 17025	-	-	< 5.0	-	-
Bromodichloromethane	μg/kg	5	ISO 17025	-	-	< 5.0	-	-
Cis-1,3-dichloropropene	μg/kg	5	ISO 17025	-	-	< 5.0	-	-
Trans-1,3-dichloropropene	μg/kg	5	ISO 17025	-	-	< 5.0	-	-
Toluene	μg/kg	5	MCERTS	-	-	< 5.0	-	-
1,1,2-Trichloroethane	μg/kg	5	ISO 17025	_	_	< 5.0	_	_
1,3-Dichloropropane	μg/kg	5	ISO 17025	_	_	< 5.0	_	_
Dibromochloromethane	μg/kg	5	ISO 17025	_	-	< 5.0	_	_
Tetrachloroethene	μg/kg	5	NONE	_	-	< 5.0	_	-
1,2-Dibromoethane	μg/kg	5	ISO 17025	_	_	< 5.0	_	_
Chlorobenzene	μg/kg	5	ISO 17025	_	-	< 5.0	-	_
1,1,1,2-Tetrachloroethane	μg/kg	5	ISO 17025	_	_	< 5.0	_	_
Ethylbenzene	μg/kg	5	MCERTS	_	_	< 5.0	_	_
p & m-Xylene	μg/kg	5	MCERTS	_	_	< 5.0	_	_
Styrene	μg/kg	5	ISO 17025	_	_	< 5.0	_	_
Tribromomethane	μg/kg	5	NONE	_	_	< 5.0	_	_
o-Xylene	μg/kg	5	MCERTS	_	_	< 5.0	_	_
1,1,2,2-Tetrachloroethane	μg/kg	5	ISO 17025		_	< 5.0		
Isopropylbenzene	μg/kg	5	ISO 17025		_	< 5.0	_	
Bromobenzene	μg/kg	5	ISO 17025	_	_	< 5.0	_	_
n-Propylbenzene	μg/kg	5	ISO 17025	_	_	< 5.0	_	
2-Chlorotoluene	μg/kg	5	ISO 17025		_	< 5.0	_	_
4-Chlorotoluene	μg/kg	5	ISO 17025	-	-	< 5.0		-
1,3,5-Trimethylbenzene	μg/kg	5	ISO 17025	-	-	< 5.0	-	-
	μg/kg	5	ISO 17025		_	< 5.0		-
tert-Butylbenzene 1,2,4-Trimethylbenzene	μg/kg	5	ISO 17025		_	< 5.0		
sec-Butylbenzene	μg/kg	5	ISO 17025	-	-	< 5.0	-	-
	μg/kg μg/kg	5	ISO 17025		-	< 5.0		-
1,3-Dichlorobenzene	μg/kg	5	ISO 17025	-	-	< 5.0 < 5.0	-	-
p-Isopropyltoluene	μg/kg μg/kg	5	ISO 17025	-	-	< 5.0 < 5.0	-	-
1,2-Dichlorobenzene	μg/kg μg/kg	5	ISO 17025	-	-		-	- -
1,4-Dichlorobenzene		5	NONE			< 5.0		
Butylbenzene	μg/kg			-	-	< 5.0	-	-
1,2-Dibromo-3-chloropropane	μg/kg	5	ISO 17025	-	-	< 5.0	-	-
1,2,4-Trichlorobenzene	μg/kg	5	ISO 17025	-	-	< 5.0	-	-
Hexachlorobutadiene	μg/kg	5	NONE ICO 17025	-	-	< 5.0	-	-
1,2,3-Trichlorobenzene	μg/kg	5	ISO 17025	-	-	< 5.0	-	-

SVOCs

		0.1	NONE					
Aniline	mg/kg	0.1	NONE	-		0.9	-	-
Phenol	mg/kg	0.2	ISO 17025	-	-	< 0.2	-	-
2-Chlorophenol	mg/kg	0.1	MCERTS	-	-	< 0.1	-	-
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-	-	< 0.2	-	-
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	< 0.2	-	-
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	-	-	< 0.1	-	-
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	< 0.2	-	-
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	-	-	< 0.1	-	-
2-Methylphenol	mg/kg	0.3	MCERTS	-	-	< 0.3	-	-

Project / Site name: Former Tata Site, High Street, Pontarddulais

Your Order No: 14180 FG

ab Sample Number				2623790	2623791	2623792	2623793	2623794
Sample Reference				TP02	TP03	TP04	TP05	TP06
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.20	0.10	0.20	0.40	0.50
Date Sampled				13/03/2023	13/03/2023	13/03/2023	13/03/2023	13/03/2023
Time Taken				0900	0930	1000	1100	1200
		E.						
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Hexachloroethane	mg/kg	0.05	ISO 17025	_	-	< 0.05	-	-
Nitrobenzene	mg/kg	0.3	MCERTS	_	_	< 0.3	-	_
4-Methylphenol	mg/kg	0.2	NONE	_	_	< 0.2	_	_
Isophorone	mg/kg	0.2	MCERTS	_	_	< 0.2	-	-
2-Nitrophenol	mg/kg	0.3	NONE	_	_	< 0.3	_	_
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	_	_	< 0.3	_	_
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	_	_	< 0.3	_	_
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	_	_	< 0.3	_	_
Naphthalene	mg/kg	0.05	MCERTS	_		< 0.05	_	_
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	_		< 0.3	_	_
4-Chloroaniline	mg/kg	0.1	NONE	_		< 0.1	_	_
Hexachlorobutadiene	mg/kg	0.1	MCERTS		_	< 0.1		_
	mg/kg	0.1	NONE	-	-	< 0.1	-	-
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	-		< 0.1	-	-
2,4,6-Trichlerenhand	mg/kg	0.2	NONE	-		< 0.2	-	-
2,4,5-Trichlorophenol	mg/kg	0.1	NONE	-	-	< 0.1	-	-
2-Methylnaphthalene	mg/kg	0.1	MCERTS				_	
2-Chloronaphthalene		0.1	MCERTS	-	-	< 0.1	-	-
Dimethylphthalate	mg/kg mg/kg	0.1	NONE	-		< 0.1 < 0.1	-	-
2,6-Dinitrotoluene	mg/kg	0.05	MCERTS	-		< 0.1	-	-
Acenaphthylene	mg/kg	0.05	MCERTS	-				-
Acenaphthene	mg/kg	0.03	NONE	-	-	< 0.05	-	-
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	-		< 0.2		-
Dibenzofuran	mg/kg	0.2	MCERTS	-	-	< 0.2	-	-
4-Chlorophenyl phenyl ether	mg/kg	0.3	MCERTS	-		< 0.3		-
Diethyl phthalate	mg/kg	0.2	NONE	-	-	< 0.2 < 0.2	-	-
4-Nitroaniline		0.05	MCERTS	-	-		-	-
Fluorene	mg/kg		NONE			< 0.05		
Azobenzene	mg/kg	0.3	MCERTS	-	-	< 0.3	-	-
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS		-	< 0.2	-	-
Hexachlorobenzene	mg/kg			-	-	< 0.3	-	-
Phenanthrene	mg/kg	0.05	MCERTS	-	-	< 0.05	-	-
Anthracene	mg/kg	0.05	MCERTS	-	-	< 0.05	-	-
Carbazole	mg/kg	0.3	MCERTS	-	-	< 0.3	-	-
Dibutyl phthalate	mg/kg	0.2	NONE	-	-	< 0.2	-	-
Anthraquinone	mg/kg	0.3	NONE MCERTS	-	-	< 0.3		-
Fluoranthene	mg/kg			-	-	< 0.05	-	-
Pyrene	mg/kg	0.05	MCERTS	-	-	< 0.05	-	-
Butyl benzyl phthalate	mg/kg	0.3	NONE	-	-	< 0.3	-	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	-	< 0.05	-	-
Chrysene	mg/kg	0.05	MCERTS	-	-	< 0.05	-	-
Benzo(b)fluoranthene	mg/kg	0.05	ISO 17025	-	-	< 0.05	-	-
Benzo(k)fluoranthene	mg/kg	0.05	ISO 17025	-	-	< 0.05	-	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	-	< 0.05	-	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	-	< 0.05	-	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	-	< 0.05	-	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	-	< 0.05	-	-

Project / Site name: Former Tata Site, High Street, Pontarddulais

Your Order No: 14180 FG

Lab Sample Number	·	2623790	2623791	2623792	2623793	2623794		
Sample Reference	TP02	TP03	TP04	TP05	TP06			
Sample Number				None Supplied				
Depth (m)				0.20	0.10	0.20	0.40	0.50
Date Sampled				13/03/2023	13/03/2023	13/03/2023	13/03/2023	13/03/2023
Time Taken				0900	0930	1000	1100	1200
Accreditation Status Analytical Parameter (Soil Analysis) Limit of detection Status Status Coil Analysis								
PCBs by GC-MS	-	=	=					
PCB Congener 28	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 52	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 101	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 118	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 138	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 153	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 180	mg/kg	0.001	MCERTS	-	-	-	-	-
Total PCBs by GC-MS								
Total PCBs	mg/kg	0.007	MCERTS	-	-	-	-	-

 $\mbox{U/S} = \mbox{Unsuitable Sample} \quad \mbox{I/S} = \mbox{Insufficient Sample} \quad \mbox{ND} = \mbox{Not detected}$

Project / Site name: Former Tata Site, High Street, Pontarddulais

Lab Sample Number	Sample Number						2623798	2623799
Sample Reference				2623795 TP07	2623796 TP09	2623797 TP10	TP11a	TP13
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.10	0.30	0.40	0.00	0.30
Date Sampled				13/03/2023	14/03/2023	14/03/2023	14/03/2023	14/03/2023
Time Taken				1300	0900	1000	1030	1130
Time Taken	1	-	1	1300	0300	1000	1050	1150
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	53	26	40	< 0.1
Moisture Content	%	0.01	NONE	5.6	8.6	12	14	18
Total mass of sample received	kg	0.001	NONE	0.8	0.8	0.9	0.8	0.9
Asbestos in Soil Screen / Identification Name	Type	N/A	ISO 17025	-	Chrysotile	Chrysotile	-	-
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Detected	Detected	Not-detected	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	< 0.001	< 0.001	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	-	< 0.001	< 0.001	-	-
Asbestos Analyst ID	N/A	N/A	N/A	LFT	LFT	LFT	LFT	LFT
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	10.5	8.5	10.2	10	7.9
Total Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Sulphate as SO4	mg/kg	50	MCERTS	440	790	2400	1700	1200
Water Soluble SO4 16hr extraction (2:1 Leachate				0.032	0.038	0.28	0.17	0.07
Equivalent)	g/l	0.00125	MCERTS MCERTS					
Sulphide	mg/kg	1 50		460	13	55	100	15
Total Sulphur	mg/kg %	50 0.1	MCERTS MCERTS	640	430	990	810	740
Total Organic Carbon (TOC) - Automated	%	0.1	MCERTS	4.2	2	2.1	3.1	4.4
Loss on Ignition @ 450oC	70	0.2	PICERTS	6.6	4.2	5.6	6.5	11
Total Phanala								
Total Phenois	mg/kg	1	MCERTS	.10	.10	.10	.10	.10
Total Phenols (monohydric)	nig/kg		PICERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Consisted BAUs								
Speciated PAHs	//	0.05	MCERTS	0.22	0.14	0.17	0.02	0.2
Naphthalene	mg/kg	0.05	MCERTS	0.23	0.14 < 0.05	0.17 < 0.05	0.82	0.2 < 0.05
Acenaphthylene	mg/kg mg/kg	0.05	MCERTS	< 0.05	< 0.05 < 0.05	< 0.05	0.06	< 0.05
Acenaphthene Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05 0.06	< 0.05	0.65	0.06
	mg/kg	0.05	MCERTS	0.41	0.42	0.48	4	0.6
Phenanthrene Anthracene	mg/kg	0.05	MCERTS	0.41	0.42	0.48	1	0.08
Anthracene	mg/kg	0.05	MCERTS	0.45	0.56	0.57	5.8	0.08
Fluoranthene	mg/kg	0.05	MCERTS	0.45	0.56	0.45	5.8	0.7
Pyrene Ronzo(a)anthracono	mg/kg	0.05	MCERTS	0.39	0.47	0.45	3.3	0.55
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.29	0.33	0.37	2.9	0.44
Chrysene Benzo(b)fluoranthene	mg/kg	0.05	ISO 17025	0.33	0.54	0.37	4	0.59
Benzo(k)fluoranthene	mg/kg	0.05	ISO 17025	0.16	0.13	0.19	1.4	0.36
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.25	0.13	0.19	3	0.43
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	0.17	0.13	1.6	0.43
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	0.05	< 0.05	0.45	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	0.18	0.16	1.7	0.25
penzo(gni)peryiene		05		< 0.05	0.10	0.10	1./	0.25
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	ISO 17025	2.99	3.8	3.49	36.1	5.05
Speciated 10tal LFA-10 FAITS	9/9	J.0	1,025	2.33	٥.٥	J. 43	JU.1	5.05

Project / Site name: Former Tata Site, High Street, Pontarddulais

Lab Sample Number				2623795	2623796	2623797	2623798	2623799
Sample Reference				TP07	TP09	TP10	TP11a	TP13
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.10	0.30	0.40	0.00	0.30
Date Sampled				13/03/2023	14/03/2023	14/03/2023	14/03/2023	14/03/2023
Time Taken				1300	0900	1000	1030	1130
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	14	32	27	29	48
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.53	0.67	0.91	0.66	1.9
Boron (water soluble)	mg/kg	0.2	MCERTS	0.4	0.4	1.3	1.2	0.7
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	62	22	20	55	31
Copper (aqua regia extractable)	mg/kg	1	MCERTS	170	94	93	130	220
Lead (aqua regia extractable)	mg/kg	1	MCERTS	130	250	82	130	180
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	8.1	40	26	37	62
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	25	28	35	57	55
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	63	220	150	240	320
Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >EC5 - EC6 _{HS 1D AL}	mg/kg	0.001	NONE	< 0.001	< 0.001	-	< 0.001	-
TPH-CWG - Aliphatic >EC6 - EC8 HS 1D AL	mg/kg	0.001	NONE	< 0.001	< 0.001	-	< 0.001	-
TPH-CWG - Aliphatic >EC8 - EC10 _{HS_1D_AL}	mg/kg	0.001	NONE	< 0.001	< 0.001	-	< 0.001	-
TPH-CWG - Aliphatic >EC10 - EC12 EH_CU_1D_AL	mg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	-
TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_1D_AL	mg/kg	2	MCERTS	< 2.0	< 2.0	-	< 2.0	-
TPH-CWG - Aliphatic >EC16 - EC21 EH_CU_1D_AL	mg/kg	8	MCERTS	< 8.0	< 8.0	-	< 8.0	-
TPH-CWG - Aliphatic >EC21 - EC35 EH_CU_1D_AL	mg/kg	8	MCERTS	99	22	-	29	-
TPH-CWG - Aliphatic >EC16 - EC35 EH_CU_1D_AL	mg/kg	10	MCERTS	99	22	-	29	-
TPH-CWG - Aliphatic > EC35 - EC44 _{EH_CU_1D_AL}	mg/kg	8.4	NONE	310	< 8.4	-	56	-
TPH-CWG - Aliphatic (EC5 - EC35) _{EH_CU+HS_1D_AL}	mg/kg	10	NONE	100	22	-	29	-
TPH-CWG - Aliphatic (EC5 - EC44) _{EH_CU+HS_1D_AL}	mg/kg	10	NONE	420	28	-	85	-
TPH-CWG - Aromatic >EC5 - EC7 HS 1D AR	mg/kg	0.001	NONE	< 0.001	< 0.001	-	< 0.001	-
TPH-CWG - Aromatic >EC7 - EC8 HS_1D_AR	mg/kg	0.001	NONE	< 0.001	< 0.001	-	< 0.001	-
TPH-CWG - Aromatic >EC8 - EC10 HS_1D_AR	mg/kg	0.001	NONE	< 0.001	< 0.001	-	< 0.001	-
TPH-CWG - Aromatic >EC10 - EC12 EH_CU_1D_AR	mg/kg	1	MCERTS	< 1.0	< 1.0	-	1.8	-
TPH-CWG - Aromatic >EC12 - EC16 EH_CU_1D_AR	mg/kg	2	MCERTS	5.1	< 2.0	-	< 2.0	-
TPH-CWG - Aromatic >EC16 - EC21 _{EH_CU_1D_AR}	mg/kg	10	MCERTS	< 10	< 10	-	< 10	-
TPH-CWG - Aromatic >EC21 - EC35 EH_CU_ID_AR	mg/kg	10	MCERTS	170	< 10	-	30	-
TPH-CWG - Aromatic >EC35 - EC40 _{EH_CU_1D_AR}	mg/kg	10	NONE	110	< 10	-	13	-
TPH-CWG - Aromatic > EC35 - EC44 _{EH_CU_ID_AR}	mg/kg	8.4 10	NONE NONE	240	< 8.4	-	29	-
TPH-CWG - Aromatic (EC5 - EC35) EH_CU+HS_1D_AR TPH-CWG - Aromatic (EC5 - EC44) EH_CU+HS_1D_AR	mg/kg mg/kg	10	NONE	180	< 10	-	39 60	-
THE COURT AT OFFICE (LCG - LCTT) EH_CU+HS_1D_AR	9/109	10		420	< 10	_	69	
TPH Total C5 - C44 EH_CU+HS_ID_TOTAL	mg/kg	10	NONE	840	28	-	150	
VOCs	μg/kg	5	ISO 17025	_	∠ F ∩	-	, F O	_
Chloroethane	μg/kg μg/kg	5	NONE	-	< 5.0 < 5.0	-	< 5.0 < 5.0	-
Chloroethane Bromomethane	μg/kg	5	ISO 17025		< 5.0		< 5.0	-
Vinyl Chloride	μg/kg	5	NONE	-	< 5.0	-	< 5.0	-
Trichlorofluoromethane	μg/kg	5	NONE	-	< 5.0	-	< 5.0	-
1,1-Dichloroethene	μg/kg	5	NONE	-	< 5.0	-	< 5.0	-
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	5	NONE	-	< 5.0	-	< 5.0	-
Cis-1,2-dichloroethene	μg/kg	5	ISO 17025	-	< 5.0	-	< 5.0	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	5	NONE	-	< 5.0	-	< 5.0	-
1,1-Dichloroethane	μg/kg	5	ISO 17025	-	< 5.0	-	< 5.0	-
2,2-Dichloropropane	μg/kg	5	ISO 17025	-	< 5.0	-	< 5.0	-
Trichloromethane	μg/kg	5	ISO 17025	-	< 5.0	-	< 5.0	-

Project / Site name: Former Tata Site, High Street, Pontarddulais

Your Order No: 14180 FG

Lab Sample Number				2623795	2623796	2623797	2623798	2623799
Sample Reference				TP07	TP09	TP10	TP11a	TP13
Sample Number				None Supplied				
Depth (m)				0.10	0.30	0.40	0.00	0.30
Date Sampled				13/03/2023	14/03/2023	14/03/2023	14/03/2023	14/03/2023
Time Taken				1300	0900	1000	1030	1130
		<u> </u>						
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
1,1,1-Trichloroethane	μg/kg	5	ISO 17025	-	< 5.0	-	< 5.0	-
1,2-Dichloroethane	μg/kg	5	ISO 17025	-	< 5.0	-	< 5.0	-
1,1-Dichloropropene	μg/kg	5	ISO 17025	-	< 5.0	-	< 5.0	-
Trans-1,2-dichloroethene	μg/kg	5	NONE	-	< 5.0	-	< 5.0	-
Benzene	μg/kg	5	MCERTS	-	< 5.0	-	< 5.0	-
Tetrachloromethane	μg/kg	5	NONE	-	< 5.0	-	< 5.0	-
1,2-Dichloropropane	μg/kg	5	ISO 17025	-	< 5.0	-	< 5.0	-
Trichloroethene	μg/kg	5	ISO 17025	-	< 5.0	-	< 5.0	-
Dibromomethane	μg/kg	5	ISO 17025	-	< 5.0	-	< 5.0	-
Bromodichloromethane	μg/kg	5	ISO 17025	-	< 5.0	-	< 5.0	-
Cis-1,3-dichloropropene	µg/kg	5	ISO 17025	-	< 5.0	-	< 5.0	-
Trans-1,3-dichloropropene	μg/kg	5	ISO 17025	-	< 5.0	-	< 5.0	-
Toluene	µg/kg	5	MCERTS	-	< 5.0	-	< 5.0	-
1,1,2-Trichloroethane	µg/kg	5	ISO 17025	-	< 5.0	-	< 5.0	-
1,3-Dichloropropane	μg/kg	5	ISO 17025	-	< 5.0	-	< 5.0	-
Dibromochloromethane	μg/kg	5	ISO 17025	-	< 5.0	-	< 5.0	-
Tetrachloroethene	μg/kg	5	NONE	-	< 5.0	-	< 5.0	-
1,2-Dibromoethane	μg/kg	5	ISO 17025	-	< 5.0	-	< 5.0	-
Chlorobenzene	μg/kg	5	ISO 17025	-	< 5.0	-	< 5.0	-
1,1,1,2-Tetrachloroethane	μg/kg	5	ISO 17025	-	< 5.0	-	< 5.0	-
Ethylbenzene	μg/kg	5	MCERTS	-	< 5.0	-	< 5.0	-
p & m-Xylene	μg/kg	5	MCERTS	-	< 5.0	-	< 5.0	-
Styrene	μg/kg	5	ISO 17025	-	< 5.0	-	< 5.0	-
Tribromomethane	μg/kg	5	NONE	-	< 5.0	-	< 5.0	-
o-Xylene	μg/kg	5	MCERTS	-	< 5.0	-	< 5.0	-
1,1,2,2-Tetrachloroethane	μg/kg	5	ISO 17025	-	< 5.0	-	< 5.0	-
Isopropylbenzene	μg/kg	5	ISO 17025	-	< 5.0	-	< 5.0	-
Bromobenzene	μg/kg	5	ISO 17025	-	< 5.0	-	< 5.0	-
n-Propylbenzene	μg/kg	5	ISO 17025	-	< 5.0	-	< 5.0	-
2-Chlorotoluene	µg/kg	5	ISO 17025	-	< 5.0	-	< 5.0	-
4-Chlorotoluene	μg/kg	5	ISO 17025	-	< 5.0	-	< 5.0	-
1,3,5-Trimethylbenzene	μg/kg	5	ISO 17025	-	< 5.0	-	< 5.0	-
tert-Butylbenzene	μg/kg "	5	ISO 17025	-	< 5.0	-	< 5.0	-
1,2,4-Trimethylbenzene	μg/kg "	5	ISO 17025	-	< 5.0	-	< 5.0	-
sec-Butylbenzene	μg/kg	5	ISO 17025	-	< 5.0	-	< 5.0	-
1,3-Dichlorobenzene	μg/kg	5	ISO 17025	-	< 5.0	-	< 5.0	-
p-Isopropyltoluene	μg/kg	5	ISO 17025	-	< 5.0	-	< 5.0	-
1,2-Dichlorobenzene	μg/kg	5	ISO 17025	-	< 5.0	-	< 5.0	-
1,4-Dichlorobenzene	μg/kg	5	ISO 17025	-	< 5.0	-	< 5.0	-
Butylbenzene	μg/kg	5	NONE	-	< 5.0	-	< 5.0	-
1,2-Dibromo-3-chloropropane	μg/kg	5	ISO 17025	-	< 5.0	-	< 5.0	-
1,2,4-Trichlorobenzene	μg/kg	5	ISO 17025	-	< 5.0	-	< 5.0	-
Hexachlorobutadiene	μg/kg μg/kg	5 5	NONE ISO 17025	-	< 5.0	-	< 5.0	-
1,2,3-Trichlorobenzene	μg/kg	3	150 17025	-	< 5.0	-	< 5.0	-

SVOCs

Aniline	mg/kg	0.1	NONE	-	< 0.1	-	< 0.1	-
Phenol	mg/kg	0.2	ISO 17025	-	< 0.2	-	< 0.2	-
2-Chlorophenol	mg/kg	0.1	MCERTS	-	< 0.1	-	< 0.1	-
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-	< 0.2	-	< 0.2	-
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	-	< 0.2	-	< 0.2	-
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	-	< 0.1	-	< 0.1	-
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	-	< 0.2	-	< 0.2	-
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	-	< 0.1	-	< 0.1	-
2-Methylphenol	mg/kg	0.3	MCERTS	-	< 0.3	-	< 0.3	-

Project / Site name: Former Tata Site, High Street, Pontarddulais

Lab Sample Number		2623795	2623796	2623797	2623798	2623799		
Sample Reference				TP07	TP09	TP10	TP11a	TP13
Sample Number				None Supplied				
Depth (m)				0.10	0.30	0.40	0.00	0.30
Date Sampled				13/03/2023	14/03/2023	14/03/2023	14/03/2023	14/03/2023
Time Taken				1300	0900	1000	1030	1130
		E.						
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Hexachloroethane	mg/kg	0.05	ISO 17025	-	< 0.05	-	< 0.05	-
Nitrobenzene	mg/kg	0.3	MCERTS	-	< 0.3	-	< 0.3	-
4-Methylphenol	mg/kg	0.2	NONE	_	< 0.2	_	< 0.2	_
Isophorone	mg/kg	0.2	MCERTS	_	< 0.2	-	< 0.2	_
2-Nitrophenol	mg/kg	0.3	NONE	_	< 0.3	_	< 0.3	_
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	_	< 0.3	_	< 0.3	_
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	_	< 0.3	-	< 0.3	-
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	_	< 0.3	_	< 0.3	-
Naphthalene	mg/kg	0.05	MCERTS	_	0.14	_	0.82	_
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	_	< 0.3	_	< 0.3	-
4-Chloroaniline	mg/kg	0.1	NONE	_	< 0.1	_	< 0.1	_
Hexachlorobutadiene	mg/kg	0.1	MCERTS	_	< 0.1	_	< 0.1	_
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	_	< 0.1	_	< 0.1	_
2,4,6-Trichlorophenol	mg/kg	0.1	NONE	_	< 0.1	-	< 0.1	-
2,4,5-Trichlorophenol	mg/kg	0.2	NONE	_	< 0.2	_	< 0.2	_
2-Methylnaphthalene	mg/kg	0.1	NONE	_	0.2	_	0.5	_
2-Chloronaphthalene	mg/kg	0.1	MCERTS		< 0.1	_	< 0.1	_
Dimethylphthalate	mg/kg	0.1	MCERTS		< 0.1	-	< 0.1	_
2,6-Dinitrotoluene	mg/kg	0.1	NONE		< 0.1	_	< 0.1	_
Acenaphthylene	mg/kg	0.05	MCERTS	_	< 0.05	-	0.06	_
Acenaphthene	mg/kg	0.05	MCERTS	_	< 0.05	_	0.65	_
2,4-Dinitrotoluene	mg/kg	0.2	NONE		< 0.2		< 0.2	_
Dibenzofuran	mg/kg	0.2	MCERTS	_	< 0.2	_	0.4	_
4-Chlorophenyl phenyl ether	mg/kg	0.3	MCERTS		< 0.3		< 0.3	_
Diethyl phthalate	mg/kg	0.2	MCERTS	_	< 0.2	_	< 0.2	_
4-Nitroaniline	mg/kg	0.2	NONE		< 0.2		< 0.2	_
Fluorene	mg/kg	0.05	MCERTS	_	0.06	-	0.54	-
Azobenzene	mg/kg	0.3	NONE	-	< 0.3	_	< 0.3	-
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS		< 0.2	-	< 0.2	_
Hexachlorobenzene	mg/kg	0.3	MCERTS		< 0.3	-	< 0.3	_
Phenanthrene	mg/kg	0.05	MCERTS		0.42		4	-
Anthracene	mg/kg	0.05	MCERTS		0.42	-	1	-
Carbazole	mg/kg	0.3	MCERTS		< 0.3	-	0.4	-
Dibutyl phthalate	mg/kg	0.2	NONE		< 0.2	-	< 0.2	-
Anthraquinone	mg/kg	0.2	NONE		< 0.3	-	0.4	-
Fluoranthene	mg/kg	0.05	MCERTS		0.56		5.8	_
Pyrene	mg/kg	0.05	MCERTS		0.47		5.1	-
Butyl benzyl phthalate	mg/kg	0.03	NONE		< 0.3		< 0.3	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS		0.33	-	3.3	-
Chrysene	mg/kg	0.05	MCERTS		0.33		2.9	
	mg/kg	0.05	ISO 17025	-	0.41	-	2.9	-
Benzo(b)fluoranthene	mg/kg	0.05	ISO 17025	-	0.54	-	1.4	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	0.13	-	3	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	0.27	-		-
Indeno(1,2,3-cd)pyrene	mg/kg mg/kg	0.05	MCERTS	-	0.17	-	1.6 0.45	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	0.05	-	1.7	-
Benzo(ghi)perylene	mg/kg	0.03	FIGLISTS	-	0.18	-	1./	-

Project / Site name: Former Tata Site, High Street, Pontarddulais

Your Order No: 14180 FG

Lab Sample Number	•	•	•	2623795	2623796	2623797	2623798	2623799
Sample Reference	•	•		TP07	TP09	TP10	TP11a	TP13
Sample Number				None Supplied				
Depth (m)		0.10	0.30	0.40	0.00	0.30		
Date Sampled	13/03/2023	14/03/2023	14/03/2023	14/03/2023	14/03/2023			
Time Taken	1300	0900	1000	1030	1130			
Analytical Parameter (Soil Analysis)								
PCBs by GC-MS								
PCB Congener 28	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 52	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 101	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 118	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 138	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 153	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 180	mg/kg	0.001	MCERTS	-	-	-	-	-
Total PCBs by GC-MS Total PCBs	mg/kg	0.007	MCERTS					
TULAI PUDS	9/109	3.307		-	-	-	-	_

 $\mbox{U/S} = \mbox{Unsuitable Sample} \quad \mbox{I/S} = \mbox{Insufficient Sample} \quad \mbox{ND} = \mbox{Not detected}$

Project / Site name: Former Tata Site, High Street, Pontarddulais

Your Order No: 14180 FG

Lab Sample Number				2623801	2623802	2623803	2623804	2623805
Sample Reference				TP15	TP16	TP16	TP17	TP18
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.20	0.20	0.70	0.20	0.20
Date Sampled				15/03/2023	15/03/2023	15/03/2023	14/03/2023	15/03/2023
Time Taken				1030	1200	1205	1230	1300
Time Taken		-		1050	1200	1205	1250	1500
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	72	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	17	6.1	33	15	18
Total mass of sample received	kg	0.001	NONE	0.9	0.8	0.8	0.8	0.8
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-	-	Chrysotile
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	-	Not-detected	Detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-	-	< 0.001
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-	-	< 0.001
Asbestos Analyst ID	N/A	N/A	N/A	LFT	LFT	N/A	DSO	DSO
	•						•	
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	7.9	8.5	-	8.1	8
Total Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
Total Sulphate as SO4	mg/kg	50	MCERTS	460	310	-	450	2000
Water Soluble SO4 16hr extraction (2:1 Leachate				0.02	0.026	_	0.026	0.017
Equivalent)	g/l	0.00125	MCERTS					
Sulphide	mg/kg	1	MCERTS	22	19	-	5.1	12
Total Sulphur	mg/kg %	50	MCERTS MCERTS	480	240	-	270	820
Total Organic Carbon (TOC) - Automated	%	0.1	MCERTS	3.9	1.4		1.8	3
Loss on Ignition @ 450oC	70	0.2	PICERTS	9.1	2.4	-	4.9	7.8
Total Phanala								
Total Phenois	mg/kg	1	MCERTS	. 1.0	. 1.0	-	. 1.0	
Total Phenols (monohydric)	mg/kg		PICERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
Consisted BAUs								
Speciated PAHs	/l	0.05	MCERTS	0.12	0.12	_	. 0.05	
Naphthalene	mg/kg	0.05	MCERTS	0.12 0.12	0.12 < 0.05	-	< 0.05	1.1
Accepanthylene	mg/kg mg/kg	0.05	MCERTS	0.12	< 0.05 < 0.05	-	< 0.05 < 0.05	0.39
Acenaphthene Fluorene	mg/kg	0.05	MCERTS	0.06	< 0.05	-	< 0.05	1.2
Phenanthrene	mg/kg	0.05	MCERTS	2.2	0.14	-	0.21	4.4
Anthracene	mg/kg	0.05	MCERTS	0.14	0.14	-	< 0.05	1.2
Fluoranthene	mg/kg	0.05	MCERTS	2.1	0.03	-	0.2	5.5
Pyrene	mg/kg	0.05	MCERTS	1.5	0.17	_	0.17	4.6
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.77	0.09	_	0.17	2.6
Chrysene	mg/kg	0.05	MCERTS	0.97	0.12	-	0.14	2.3
Benzo(b)fluoranthene	mg/kg	0.05	ISO 17025	0.95	0.16	-	0.14	3
Benzo(k)fluoranthene	mg/kg	0.05	ISO 17025	0.5	0.05	-	0.07	1.1
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.68	0.09	-	0.1	2
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.28	0.09	-	< 0.05	1.2
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.09	< 0.05	-	< 0.05	0.24
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.31	0.11	-	< 0.05	1.2
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	ISO 17025	11.1	1.32	-	1.13	33.3
				****	2.02		1.10	55.5

Project / Site name: Former Tata Site, High Street, Pontarddulais

Lab Sample Number			2623801	2623802	2623803	2623804	2623805	
Sample Reference				TP15	TP16	TP16	TP17	TP18
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.20	0.20	0.70	0.20	0.20
Date Sampled				15/03/2023	15/03/2023	15/03/2023	14/03/2023	15/03/2023
Time Taken				1030	1200	1205	1230	1300
		Limit	Acc					
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	38	44	-	18	77
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.89	0.47	-	0.46	2.2
Boron (water soluble)	mg/kg	0.2	MCERTS	0.7	< 0.2	-	< 0.2	0.6
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	-	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8	< 1.8	-	< 1.8	< 1.8
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	20	30	-	15	37
Copper (aqua regia extractable)	mg/kg	1	MCERTS	110	74	-	620	490
Lead (aqua regia extractable)	mg/kg mg/kg	0.3	MCERTS MCERTS	83 < 0.3	110 0.7	-	110 < 0.3	400 < 0.3
Mercury (aqua regia extractable) Nickel (aqua regia extractable)	mg/kg	1	MCERTS	< 0.3 27	14	-	< 0.3 27	< 0.3 860
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	26	26	_	29	45
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	200	170	-	170	850
, ,								
Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL	mg/kg	0.001	NONE	-	< 0.001	< 0.001	< 0.001	-
TPH-CWG - Aliphatic >EC6 - EC8 HS_1D_AL	mg/kg	0.001	NONE	-	< 0.001	< 0.001	< 0.001	-
TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL	mg/kg	0.001	NONE	i	< 0.001	< 0.001	< 0.001	1
TPH-CWG - Aliphatic >EC10 - EC12 EH_CU_1D_AL	mg/kg	1	MCERTS	-	12	3.6	< 1.0	-
TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_1D_AL	mg/kg	2	MCERTS	-	36	7.3	< 2.0	-
TPH-CWG - Aliphatic >EC16 - EC21 EH_CU_1D_AL	mg/kg	8	MCERTS	-	51	18	< 8.0	-
TPH-CWG - Aliphatic >EC21 - EC35 EH_CU_1D_AL	mg/kg	8	MCERTS	-	390	180	< 8.0	-
TPH-CWG - Aliphatic >EC16 - EC35 EH_CU_1D_AL	mg/kg	10 8.4	MCERTS NONE	-	450 150	200 160	< 10	-
TPH-CWG - Aliphatic > EC35 - EC44 _{EH_CU_1D_AL} TPH-CWG - Aliphatic (EC5 - EC35) _{EH_CU+HS_1D_AL}	mg/kg mg/kg	10	NONE	-	490	210	< 8.4 < 10	-
TPH-CWG - Aliphatic (EC5 - EC35) EH_CU+HS_1D_AL TPH-CWG - Aliphatic (EC5 - EC44) EH_CU+HS_1D_AL	mg/kg	10	NONE	-	640	370	< 10	-
eng / mp.iada (200 2011) en_cu+ns_ib_at	5, 5				040	370	\ 10	
TPH-CWG - Aromatic >EC5 - EC7 HS 1D AR	mg/kg	0.001	NONE	_	< 0.001	< 0.001	< 0.001	_
TPH-CWG - Aromatic >EC7 - EC8 HS 1D AR	mg/kg	0.001	NONE	-	< 0.001	< 0.001	< 0.001	-
TPH-CWG - Aromatic >EC8 - EC10 _{HS 1D AR}	mg/kg	0.001	NONE	-	< 0.001	< 0.001	< 0.001	-
TPH-CWG - Aromatic >EC10 - EC12 EH_CU_1D_AR	mg/kg	1	MCERTS	-	< 1.0	2.2	< 1.0	-
TPH-CWG - Aromatic >EC12 - EC16 EH_CU_1D_AR	mg/kg	2	MCERTS	·	< 2.0	320	< 2.0	-
TPH-CWG - Aromatic >EC16 - EC21 _{EH_CU_1D_AR}	mg/kg	10	MCERTS	-	< 10	26	< 10	-
TPH-CWG - Aromatic >EC21 - EC35 _{EH_CU_1D_AR}	mg/kg	10	MCERTS	-	130	120	< 10	-
TPH-CWG - Aromatic >EC35 - EC40 _{EH_CU_1D_AR}	mg/kg	10	NONE	-	21	42	< 10	-
TPH-CWG - Aromatic > EC35 - EC44 EH_CU_1D_AR	mg/kg	8.4 10	NONE NONE	-	38 140	67 470	< 8.4	-
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg mg/kg	10	NONE		140	470 540	< 10 < 10	-
THE COURT AT OFFICIAL CLESS LCTT / EH_CU+HS_1D_AR	9/19			-	180	540	< 10	
TPH Total C5 - C44 EH_CU+HS_1D_TOTAL	mg/kg	10	NONE	_	820	910	< 10	_
	9			-	020	210	< 10	<u>-</u>
VOCs								
Chloromethane	μg/kg	5	ISO 17025	-	< 5.0	-	< 5.0	< 5.0
Chloroethane	μg/kg	5	NONE	-	< 5.0	-	< 5.0	< 5.0
Bromomethane	μg/kg	5	ISO 17025	-	< 5.0	-	< 5.0	< 5.0
Vinyl Chloride	μg/kg 	5	NONE	-	< 5.0	-	< 5.0	< 5.0
Trichlorofluoromethane	μg/kg 	5	NONE	-	< 5.0	-	< 5.0	< 5.0
1,1-Dichloroethene	μg/kg	5	NONE	-	< 5.0	-	< 5.0	< 5.0
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	5	NONE ISO 1702E	-	< 5.0	-	< 5.0	< 5.0
Cis-1,2-dichloroethene	μg/kg	5 5	ISO 17025 NONE	-	< 5.0	-	< 5.0	< 5.0
MTBE (Methyl Tertiary Butyl Ether) 1,1-Dichloroethane	μg/kg μg/kg	5	ISO 17025	-	< 5.0	-	< 5.0	< 5.0
2,2-Dichloropernane	μg/kg μg/kg	5	ISO 17025	-	< 5.0 < 5.0	-	< 5.0 < 5.0	< 5.0 < 5.0
z,z-Dichloropropane Trichloromethane	μg/kg μg/kg	5	ISO 17025	-	< 5.0	-	< 5.0	< 5.0
monormenane	₽9/ N 9		150 17025	-	< 5.0	-	\ 3.0	< 5.0

Project / Site name: Former Tata Site, High Street, Pontarddulais

Your Order No: 14180 FG

Lab Sample Number	Sample Number						2623804	2623805
Sample Reference				TP15	TP16	TP16	TP17	TP18
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.20	0.20	0.70	0.20	0.20
Date Sampled				15/03/2023	15/03/2023	15/03/2023	14/03/2023	15/03/2023
Time Taken				1030	1200	1205	1230	1300
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
1,1,1-Trichloroethane	μg/kg	5	ISO 17025	-	< 5.0	-	< 5.0	< 5.0
1,2-Dichloroethane	μg/kg	5	ISO 17025	-	< 5.0	-	< 5.0	< 5.0
1,1-Dichloropropene	μg/kg	5	ISO 17025	-	< 5.0	-	< 5.0	< 5.0
Trans-1,2-dichloroethene	μg/kg	5	NONE	-	< 5.0	-	< 5.0	< 5.0
Benzene	μg/kg	5	MCERTS	-	< 5.0	-	< 5.0	< 5.0
Tetrachloromethane	μg/kg	5	NONE	-	< 5.0	-	< 5.0	< 5.0
1,2-Dichloropropane	μg/kg	5	ISO 17025	-	< 5.0	-	< 5.0	< 5.0
Trichloroethene	μg/kg	5	ISO 17025	-	< 5.0	-	< 5.0	< 5.0
Dibromomethane	μg/kg	5	ISO 17025	-	< 5.0	-	< 5.0	< 5.0
Bromodichloromethane	μg/kg	5	ISO 17025	-	< 5.0	-	< 5.0	< 5.0
Cis-1,3-dichloropropene	μg/kg	5	ISO 17025	-	< 5.0	-	< 5.0	< 5.0
Trans-1,3-dichloropropene	μg/kg	5	ISO 17025	-	< 5.0	-	< 5.0	< 5.0
Toluene	μg/kg	5	MCERTS	-	< 5.0	-	< 5.0	< 5.0
1,1,2-Trichloroethane	μg/kg	5	ISO 17025	-	< 5.0	-	< 5.0	< 5.0
1,3-Dichloropropane	μg/kg	5	ISO 17025	-	< 5.0	-	< 5.0	< 5.0
Dibromochloromethane	μg/kg	5	ISO 17025	-	< 5.0	-	< 5.0	< 5.0
Tetrachloroethene	μg/kg	5	NONE	-	< 5.0	-	< 5.0	< 5.0
1,2-Dibromoethane	μg/kg	5	ISO 17025	_	< 5.0	_	< 5.0	< 5.0
Chlorobenzene	μg/kg	5	ISO 17025	_	< 5.0	-	< 5.0	< 5.0
1,1,1,2-Tetrachloroethane	μg/kg	5	ISO 17025	_	< 5.0	-	< 5.0	< 5.0
Ethylbenzene	μg/kg	5	MCERTS	_	< 5.0	_	< 5.0	< 5.0
p & m-Xylene	μg/kg	5	MCERTS	_	< 5.0	_	< 5.0	< 5.0
Styrene	μg/kg	5	ISO 17025	_	< 5.0	_	< 5.0	< 5.0
Tribromomethane	μg/kg	5	NONE	_	< 5.0	_	< 5.0	< 5.0
o-Xylene	μg/kg	5	MCERTS	_	< 5.0	_	< 5.0	< 5.0
1,1,2,2-Tetrachloroethane	μg/kg	5	ISO 17025	_	< 5.0	_	< 5.0	< 5.0
Isopropylbenzene	μg/kg	5	ISO 17025	_	< 5.0	_	< 5.0	< 5.0
Bromobenzene	μg/kg	5	ISO 17025	_	< 5.0	_	< 5.0	< 5.0
n-Propylbenzene	μg/kg	5	ISO 17025	_	< 5.0	_	< 5.0	< 5.0
2-Chlorotoluene	μg/kg	5	ISO 17025	_	< 5.0		< 5.0	< 5.0
4-Chlorotoluene	μg/kg	5	ISO 17025	_	< 5.0	-	< 5.0	< 5.0
1,3,5-Trimethylbenzene	μg/kg	5	ISO 17025	_	< 5.0	-	< 5.0	< 5.0
tert-Butylbenzene	µg/kg	5	ISO 17025	_	< 5.0	_	< 5.0	< 5.0
1,2,4-Trimethylbenzene	μg/kg	5	ISO 17025	_	< 5.0		< 5.0	< 5.0
sec-Butylbenzene	μg/kg	5	ISO 17025	_	< 5.0	-	< 5.0	< 5.0
1,3-Dichlorobenzene	μg/kg	5	ISO 17025	_	< 5.0	_	< 5.0	< 5.0
p-Isopropyltoluene	µg/kg	5	ISO 17025		< 5.0		< 5.0	< 5.0
1,2-Dichlorobenzene	μg/kg	5	ISO 17025		< 5.0		< 5.0	< 5.0
1,4-Dichlorobenzene	μg/kg	5	ISO 17025	-	< 5.0	-	< 5.0	< 5.0
•	μg/kg	5	NONE		< 5.0		< 5.0	< 5.0
Butylbenzene 1.2-Dibromo-2-chloropropage	μg/kg μg/kg	5	ISO 17025	-	< 5.0 < 5.0			
1,2-Dibromo-3-chloropropane	μg/kg μg/kg	5	ISO 17025	-	< 5.0 < 5.0	-	< 5.0 < 5.0	< 5.0 < 5.0
1,2,4-Trichlorobenzene	μg/kg μg/kg	5	NONE	-		-		
Hexachlorobutadiene	μg/kg μg/kg	5	ISO 17025	-	< 5.0	-	< 5.0	< 5.0
1,2,3-Trichlorobenzene	P9/N9		100 17020	-	< 5.0	-	< 5.0	< 5.0

SVOCs

Aniline	mg/kg	0.1	NONE	-	< 0.1	-	0.5	0.9
Phenol	mg/kg	0.2	ISO 17025	-	< 0.2	-	< 0.2	< 0.2
2-Chlorophenol	mg/kg	0.1	MCERTS	-	< 0.1	-	< 0.1	< 0.1
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-	< 0.2	-	< 0.2	< 0.2
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	-	< 0.2	-	< 0.2	< 0.2
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	-	< 0.1	-	< 0.1	< 0.1
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	-	< 0.2	-	< 0.2	< 0.2
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	-	< 0.1	-	< 0.1	< 0.1
2-Methylphenol	mg/kg	0.3	MCERTS	-	< 0.3	-	< 0.3	< 0.3

Project / Site name: Former Tata Site, High Street, Pontarddulais

Lab Sample Number		2623801	2623802	2623803	2623804	2623805		
Sample Reference				TP15	TP16	TP16	TP17	TP18
Sample Number				None Supplied				
Depth (m)				0.20	0.20	0.70	0.20	0.20
Date Sampled				15/03/2023	15/03/2023	15/03/2023	14/03/2023	15/03/2023
Time Taken				1030	1200	1205	1230	1300
		□.						
		Limit of detection	Accreditation Status					
Analytical Parameter	Units	of d	redi					
(Soil Analysis)	ढ	ete	tus tat					
		ct io	9					
		0.05	ISO 17025		0.05		0.05	0.05
Hexachloroethane	mg/kg	0.05	MCERTS	-	< 0.05	-	< 0.05	< 0.05
Nitrobenzene	mg/kg			-	< 0.3		< 0.3	< 0.3
4-Methylphenol	mg/kg	0.2	NONE	-	< 0.2	-	< 0.2	< 0.2
Isophorone	mg/kg	0.2	MCERTS	-	< 0.2	-	< 0.2	< 0.2
2-Nitrophenol	mg/kg	0.3	NONE	-	< 0.3	-	< 0.3	< 0.3
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	-	< 0.3	-	< 0.3	0.4
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	-	< 0.3	-	< 0.3	< 0.3
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS MCERTS	-	< 0.3	-	< 0.3	< 0.3
Naphthalene	mg/kg			-	0.12	-	< 0.05	1.1
2,4-Dichlorophenol	mg/kg	0.3	MCERTS NONE		< 0.3		< 0.3	< 0.3
4-Chloroaniline	mg/kg		MCERTS	-	< 0.1	-	< 0.1	< 0.1
Hexachlorobutadiene	mg/kg	0.1	NONE		< 0.1		< 0.1	< 0.1
4-Chloro-3-methylphenol	mg/kg			-	< 0.1	-	< 0.1	< 0.1
2,4,6-Trichlorophenol	mg/kg	0.1	NONE	-	< 0.1	-	< 0.1	< 0.1
2,4,5-Trichlorophenol	mg/kg	0.2	NONE	-	< 0.2	-	< 0.2	< 0.2
2-Methylnaphthalene	mg/kg	0.1	NONE	-	0.2	-	< 0.1	1
2-Chloronaphthalene	mg/kg	0.1	MCERTS	-	< 0.1	-	< 0.1	< 0.1
Dimethylphthalate	mg/kg	0.1	MCERTS	-	< 0.1	-	< 0.1	< 0.1
2,6-Dinitrotoluene	mg/kg	0.1	NONE MCERTS	-	< 0.1	-	< 0.1	< 0.1
Acenaphthylene	mg/kg			-	< 0.05	-	< 0.05	1.4
Acenaphthene	mg/kg	0.05	MCERTS	-	< 0.05	-	< 0.05	0.39
2,4-Dinitrotoluene	mg/kg	0.2	NONE	-	< 0.2	-	< 0.2	< 0.2
Dibenzofuran	mg/kg		MCERTS	-	< 0.2	-	< 0.2	0.5
4-Chlorophenyl phenyl ether	mg/kg	0.3	MCERTS	-	< 0.3	-	< 0.3	< 0.3
Diethyl phthalate	mg/kg	0.2	MCERTS NONE	-	< 0.2	-	< 0.2	< 0.2
4-Nitroaniline	mg/kg	0.2	MCERTS		< 0.2		< 0.2	< 0.2
Fluorene	mg/kg			-	< 0.05	-	< 0.05	1.2
Azobenzene	mg/kg	0.3	NONE	-	< 0.3	-	< 0.3	< 0.3
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	-	< 0.2	-	< 0.2	< 0.2
Hexachlorobenzene	mg/kg	0.3	MCERTS	-	< 0.3	-	< 0.3	< 0.3
Phenanthrene	mg/kg	0.05	MCERTS MCERTS		0.14		0.21	4.4
Anthracene	mg/kg			-	0.05	-	< 0.05	1.2
Carbazole	mg/kg	0.3	MCERTS	-	< 0.3	-	< 0.3	0.4
Dibutyl phthalate	mg/kg	0.2	NONE	-	< 0.2	-	< 0.2	< 0.2
Anthraquinone	mg/kg	0.3	NONE	-	< 0.3	-	< 0.3	0.4
Fluoranthene	mg/kg	0.05	MCERTS MCERTS	-	0.17	-	0.2	5.5
Pyrene	mg/kg			-	0.13	-	0.17	4.6
Butyl benzyl phthalate	mg/kg	0.3	NONE	-	< 0.3	-	< 0.3	< 0.3
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	0.09	-	0.1	2.6
Chrysene	mg/kg	0.05	MCERTS	-	0.12	-	0.14	2.3
Benzo(b)fluoranthene	mg/kg	0.05	ISO 17025	-	0.16	-	0.14	3
Benzo(k)fluoranthene	mg/kg	0.05	ISO 17025	-	0.05	-	0.07	1.1
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	0.09	-	0.1	2
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	0.09	-	< 0.05	1.2
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	< 0.05	-	< 0.05	0.24
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	0.11	-	< 0.05	1.2

Project / Site name: Former Tata Site, High Street, Pontarddulais

Your Order No: 14180 FG

Lab Sample Number	-			2623801	2623802	2623803	2623804	2623805
Sample Reference				TP15	TP16	TP16	TP17	TP18
Sample Number				None Supplied				
Depth (m)	0.20	0.20	0.70	0.20	0.20			
Date Sampled	15/03/2023	15/03/2023	15/03/2023	14/03/2023	15/03/2023			
Time Taken	1030	1200	1205	1230	1300			
Analytical Parameter (Soil Analysis)								
PCBs by GC-MS								
PCB Congener 28	mg/kg	0.001	MCERTS	-	-	< 0.001	-	< 0.001
PCB Congener 52	mg/kg	0.001	MCERTS	-	-	< 0.001	-	< 0.001
PCB Congener 101	mg/kg	0.001	MCERTS	-	-	< 0.001	-	< 0.001
PCB Congener 118	mg/kg	0.001	MCERTS	-	-	< 0.001	-	< 0.001
PCB Congener 138	mg/kg	0.001	MCERTS	-	-	< 0.001	-	< 0.001
PCB Congener 153	mg/kg	0.001	MCERTS	-	-	< 0.001	-	< 0.001
PCB Congener 180	mg/kg	0.001	MCERTS	-	-	< 0.001	-	< 0.001
Total PCBs by GC-MS								
Total PCBs	mg/kg	0.007	MCERTS	-	-	< 0.007	-	< 0.007

 $\mbox{U/S} = \mbox{Unsuitable Sample} \quad \mbox{I/S} = \mbox{Insufficient Sample} \quad \mbox{ND} = \mbox{Not detected}$

Project / Site name: Former Tata Site, High Street, Pontarddulais

Your Order No: 14180 FG

Total PAH

Speciated Total EPA-16 PAHs

Lab Sample Number				2623806	2623807
Sample Reference	TP20	TP21			
Sample Number	None Supplied	None Supplied			
Depth (m)				0.50	0.40
Date Sampled				15/03/2023	15/03/2023
Time Taken				1330	1400
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Stone Content	%	0.1	NONE	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	18	16
Total mass of sample received	kg	0.001	NONE	0.8	0.8
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	Chrysotile
Asbestos in Soil	Туре	N/A	ISO 17025	-	Detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	< 0.001
Asbestos Quantification Total	%	0.001	ISO 17025	-	< 0.001
Asbestos Analyst ID	N/A	N/A	N/A	N/A	DSO
General Inorganics					
pH - Automated	pH Units	N/A	MCERTS	-	6.8
Total Cyanide	mg/kg	1	MCERTS	-	< 1.0
Total Sulphate as SO4	mg/kg	50	MCERTS	-	2200
Water Soluble SO4 16hr extraction (2:1 Leachate				_	0.13
Equivalent)	g/l	0.00125	MCERTS		
Sulphide	mg/kg	1	MCERTS	-	23
Total Sulphur	mg/kg %	50 0.1	MCERTS MCERTS	-	890
Total Organic Carbon (TOC) - Automated Loss on Ignition @ 450oC	%	0.1	MCERTS	-	4.2 9.8
Total Phenois	mg/kg	1	MCERTS	_	< 1.0
Total Phenols (monohydric)	9/9	-	HOLKID	-	< 1.0
Speciated PAHs		0.05	MOSERTO		
Naphthalene	mg/kg	0.05	MCERTS	-	0.51
Acenaphthylene	mg/kg		MCERTS		0.14
Acenaphthene	mg/kg	0.05	MCERTS	-	1.7
Fluorene	mg/kg	0.05	MCERTS	-	1.2
Phenanthrene	mg/kg	0.05	MCERTS MCERTS	-	7.8
Anthracene	mg/kg	0.05	MCERTS	-	1.2
Fluoranthene	mg/kg mg/kg	0.05	MCERTS	-	11 8.5
Pyrene Ronzo(a)anthracono	mg/kg	0.05	MCERTS	-	5.9
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	6.2
Chrysene Benzo(b)fluoranthene	mg/kg	0.05	ISO 17025	-	7
Benzo(k)fluoranthene	mg/kg	0.05	ISO 17025	-	3.2
	mg/kg	0.05	MCERTS	-	5.1
Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	3.1
111GC11G(1,4,5 CU)PYICHE	1119/109	0.05		-	
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	_	0.65

mg/kg

ISO 17025

66.8

Project / Site name: Former Tata Site, High Street, Pontarddulais

Lab Sample Number				2623806	2623807
Sample Reference				TP20	TP21
Sample Number				None Supplied	None Supplied
Depth (m)				0.50	0.40
Date Sampled				15/03/2023	15/03/2023
Time Taken				1330	1400
Time Taken		-		1550	1100
		Limit of detectior	Accreditation Status		
Analytical Parameter	_	of E	St G		
(Soil Analysis)	Units	det	함		
		8	s tio		
		ion	-		
Heavy Metals / Metalloids					
Arsenic (agua regia extractable)	mg/kg	1	MCERTS	-	42
Beryllium (agua regia extractable)	mg/kg	0.06	MCERTS	-	0.76
Boron (water soluble)	mg/kg	0.2	MCERTS	_	0.4
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	_	< 0.2
Chromium (hexavalent)	mg/kg	1.8	MCERTS		< 1.8
	mg/kg	1	MCERTS		24
Chromium (aqua regia extractable)		1	MCERTS		
Copper (aqua regia extractable)	mg/kg	1			210
Lead (aqua regia extractable)	mg/kg		MCERTS	-	510
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	-	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	-	38
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	-	< 1.0
/anadium (aqua regia extractable)	mg/kg	1	MCERTS	-	33
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	-	530
Petroleum Hydrocarbons					
TPH-CWG - Aliphatic >EC5 - EC6 HS 1D AL	mg/kg	0.001	NONE	-	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8 HS 1D AI	mg/kg	0.001	NONE	-	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10 _{HS 1D AL}	mg/kg	0.001	NONE	-	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12 _{EH_CU_1D_AL}	mg/kg	1	MCERTS	_	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_1D_AL	mg/kg	2	MCERTS	_	< 2.0
FPH-CWG - Aliphatic >EC16 - EC21 EH_CU_ID_AL	mg/kg	8	MCERTS	_	12
TPH-CWG - Aliphatic >EC21 - EC35 _{EH CU 1D AL}	mg/kg	8	MCERTS		110
FPH-CWG - Aliphatic >EC16 - EC35 EH_CU_ID_AL	mg/kg	10	MCERTS		120
FPH-CWG - Aliphatic > EC35 - EC44 _{EH CU 1D AL}	mg/kg	8.4	NONE		31
	mg/kg	10	NONE		120
FPH-CWG - Aliphatic (EC5 - EC35) _{EH_CU+HS_1D_AL}	mg/kg	10	NONE		
TPH-CWG - Aliphatic (EC5 - EC44) _{EH_CU+HS_1D_AL}	IIIg/kg	10	NONE		150
TPH-CWG - Aromatic >EC5 - EC7 HS_1D_AR	mg/kg	0.001	NONE	-	< 0.001
TPH-CWG - Aromatic >EC7 - EC8 HS_1D_AR	mg/kg	0.001	NONE	-	< 0.001
TPH-CWG - Aromatic >EC8 - EC10 HS_1D_AR	mg/kg	0.001	NONE	-	< 0.001
TPH-CWG - Aromatic >EC10 - EC12 EH_CU_1D_AR	mg/kg	1	MCERTS	-	< 1.0
TPH-CWG - Aromatic >EC12 - EC16 EH_CU_1D_AR	mg/kg	2	MCERTS	-	< 2.0
TPH-CWG - Aromatic >EC16 - EC21 EH_CU_1D_AR	mg/kg	10	MCERTS	-	12
TPH-CWG - Aromatic >EC21 - EC35 EH_CU_1D_AR	mg/kg	10	MCERTS	-	54
TPH-CWG - Aromatic >EC35 - EC40 EH CU 1D AR	mg/kg	10	NONE	-	< 10
TPH-CWG - Aromatic > EC35 - EC44 FH CU 1D AR	mg/kg	8.4	NONE	-	11
FPH-CWG - Aromatic (EC5 - EC35) _{EH_CU+HS_1D_AR}	mg/kg	10	NONE	-	68
FPH-CWG - Aromatic (EC5 - EC44) _{EH_CU+HS_1D_AR}	mg/kg	10	NONE		79
CH_COTHS_ID_AK	5. 5				,,,
PH Total C5 - C44 _{EH_CU+HS_1D_TOTAL}	mg/kg	10	NONE		220
EH_CU+HS_1D_TOTAL		-10		-	230
100					
/OCs		-	100 13		
Chloromethane	μg/kg 	5	ISO 17025	< 5.0	< 5.0
Chloroethane	μg/kg	5	NONE	< 5.0	< 5.0
	μg/kg	5	ISO 17025	< 5.0	< 5.0
Bromomethane		5	NONE	< 5.0	< 5.0
Bromomethane /inyl Chloride	μg/kg			< 5.0	< 5.0
	µg/kg µg/kg	5	NONE	< 3.0	٧ ٥.٥
/inyl Chloride Frichlorofluoromethane		5 5	NONE	< 5.0	< 5.0
/inyl Chloride Frichlorofluoromethane 1,1-Dichloroethene	μg/kg				< 5.0
/inyl Chloride Frichlorofluoromethane I,1-Dichloroethene I,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg μg/kg μg/kg	5	NONE NONE	< 5.0 < 5.0	< 5.0 < 5.0
/inyl Chloride Frichlorofluoromethane I,1-Dichloroethene I,1,2-Trichloro 1,2,2-Trifluoroethane Cis-1,2-dichloroethene	µg/kg µg/kg µg/kg µg/kg	5 5 5	NONE NONE ISO 17025	< 5.0 < 5.0 < 5.0	< 5.0 < 5.0 < 5.0
/inyl Chloride Frichlorofluoromethane I,1-Dichloroethene I,1,2-Trichloro 1,2,2-Trifluoroethane Dis-1,2-dichloroethene WTBE (Methyl Tertiary Butyl Ether)	µg/kg µg/kg µg/kg µg/kg µg/kg	5 5 5 5	NONE NONE ISO 17025 NONE	< 5.0 < 5.0 < 5.0 < 5.0	< 5.0 < 5.0 < 5.0 < 5.0
/inyl Chloride Frichlorofluoromethane I,1-Dichloroethene I,1,2-Trichloro 1,2,2-Trifluoroethane Cis-1,2-dichloroethene	µg/kg µg/kg µg/kg µg/kg	5 5 5	NONE NONE ISO 17025	< 5.0 < 5.0 < 5.0	< 5.0 < 5.0 < 5.0

Project / Site name: Former Tata Site, High Street, Pontarddulais

Your Order No: 14180 FG

Lab Sample Number				2623806	2623807
Sample Reference	TP20	TP21			
Sample Number	None Supplied	None Supplied			
Depth (m)	0.50	0.40			
Date Sampled	15/03/2023	15/03/2023			
Time Taken				1330	1400
Tanca.				1550	1.00
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
1,1,1-Trichloroethane	μg/kg	5	ISO 17025	< 5.0	< 5.0
1,2-Dichloroethane	μg/kg	5	ISO 17025	< 5.0	< 5.0
1,1-Dichloropropene	μg/kg	5	ISO 17025	< 5.0	< 5.0
Trans-1,2-dichloroethene	μg/kg	5	NONE	< 5.0	< 5.0
Benzene	μg/kg	5	MCERTS	< 5.0	< 5.0
Tetrachloromethane	μg/kg	5	NONE	< 5.0	< 5.0
1,2-Dichloropropane	μg/kg	5	ISO 17025	< 5.0	< 5.0
Trichloroethene	μg/kg	5	ISO 17025	< 5.0	< 5.0
Dibromomethane	μg/kg	5	ISO 17025	< 5.0	< 5.0
Bromodichloromethane	μg/kg	5	ISO 17025	< 5.0	< 5.0
Cis-1,3-dichloropropene	μg/kg	5	ISO 17025	< 5.0	< 5.0
Trans-1,3-dichloropropene	μg/kg	5	ISO 17025	< 5.0	< 5.0
Toluene	μg/kg	5	MCERTS	< 5.0	< 5.0
1,1,2-Trichloroethane	μg/kg	5	ISO 17025	< 5.0	< 5.0
1,3-Dichloropropane	μg/kg	5	ISO 17025	< 5.0	< 5.0
Dibromochloromethane	μg/kg	5	ISO 17025	< 5.0	< 5.0
Tetrachloroethene	μg/kg	5	NONE	< 5.0	< 5.0
1,2-Dibromoethane	μg/kg	5	ISO 17025	< 5.0	< 5.0
Chlorobenzene	μg/kg	5	ISO 17025	< 5.0	< 5.0
1,1,1,2-Tetrachloroethane	μg/kg	5	ISO 17025	< 5.0	< 5.0
Ethylbenzene	μg/kg	5	MCERTS	< 5.0	< 5.0
p & m-Xylene	μg/kg	5	MCERTS	< 5.0	< 5.0
Styrene	μg/kg	5	ISO 17025	< 5.0	< 5.0
Tribromomethane	μg/kg	5	NONE	< 5.0	< 5.0
o-Xylene	μg/kg	5	MCERTS	< 5.0	< 5.0
1,1,2,2-Tetrachloroethane	μg/kg	5	ISO 17025	< 5.0	< 5.0
Isopropylbenzene	μg/kg	5	ISO 17025	< 5.0	< 5.0
Bromobenzene	μg/kg	5	ISO 17025	< 5.0	< 5.0
n-Propylbenzene	μg/kg	5	ISO 17025	< 5.0	< 5.0
2-Chlorotoluene	μg/kg	5	ISO 17025	< 5.0	< 5.0
4-Chlorotoluene	μg/kg	5	ISO 17025	< 5.0	< 5.0
1,3,5-Trimethylbenzene	μg/kg	5	ISO 17025	< 5.0	< 5.0
tert-Butylbenzene	μg/kg	5	ISO 17025	< 5.0	< 5.0
1,2,4-Trimethylbenzene	μg/kg	5	ISO 17025	< 5.0	< 5.0
sec-Butylbenzene	μg/kg	5	ISO 17025	< 5.0	< 5.0
1,3-Dichlorobenzene	μg/kg	5	ISO 17025	< 5.0	< 5.0
p-Isopropyltoluene	μg/kg	5	ISO 17025	< 5.0	< 5.0
1,2-Dichlorobenzene	μg/kg 	5	ISO 17025	< 5.0	< 5.0
1,4-Dichlorobenzene	μg/kg	5	ISO 17025	< 5.0	< 5.0
Butylbenzene	μg/kg	5	NONE	< 5.0	< 5.0
1,2-Dibromo-3-chloropropane	μg/kg	5	ISO 17025	< 5.0	< 5.0
1,2,4-Trichlorobenzene	μg/kg	5	ISO 17025	< 5.0	< 5.0
Hexachlorobutadiene	μg/kg	5	NONE	< 5.0	< 5.0
1,2,3-Trichlorobenzene	μg/kg	5	ISO 17025	< 5.0	< 5.0

SVOCs

Aniline	mg/kg	0.1	NONE	0.5	0.9
Phenol	mg/kg	0.2	ISO 17025	< 0.2	< 0.2
2-Chlorophenol	mg/kg	0.1	MCERTS	< 0.1	< 0.1
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	< 0.2	< 0.2
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	< 0.2	< 0.2
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	< 0.1	< 0.1
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	< 0.2	< 0.2
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	< 0.1	< 0.1
2-Methylphenol	mg/kg	0.3	MCERTS	< 0.3	< 0.3

Project / Site name: Former Tata Site, High Street, Pontarddulais

Lab Sample Number	2623806	2623807			
Sample Reference	TP20	TP21			
Sample Number	None Supplied	None Supplied			
Depth (m)	0.50	0.40			
Date Sampled				15/03/2023	15/03/2023
Time Taken				1330	1400
		Limit	Acc		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Hexachloroethane	mg/kg	0.05	ISO 17025	< 0.05	< 0.05
Nitrobenzene	mg/kg	0.3	MCERTS	< 0.3	< 0.3
4-Methylphenol	mg/kg	0.2	NONE	< 0.2	< 0.2
Isophorone	mg/kg	0.2	MCERTS	< 0.2	< 0.2
2-Nitrophenol	mg/kg	0.3	NONE	< 0.3	< 0.3
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	< 0.3	< 0.3
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	< 0.3	< 0.3
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	< 0.3	< 0.3
Naphthalene	mg/kg	0.05	MCERTS	0.22	0.51
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	< 0.3	< 0.3
4-Chloroaniline	mg/kg	0.1	NONE	< 0.1	< 0.1
Hexachlorobutadiene	mg/kg	0.1	MCERTS	< 0.1	< 0.1
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	< 0.1	< 0.1
2,4,6-Trichlorophenol	mg/kg	0.1	NONE	< 0.1	< 0.1
2,4,5-Trichlorophenol	mg/kg	0.2	NONE	< 0.2	< 0.2
2-Methylnaphthalene	mg/kg	0.1	NONE	0.3	0.6
2-Chloronaphthalene	mg/kg	0.1	MCERTS	< 0.1	< 0.1
Dimethylphthalate	mg/kg	0.1	MCERTS	< 0.1	< 0.1
2,6-Dinitrotoluene	mg/kg	0.1	NONE	< 0.1	< 0.1
Acenaphthylene	mg/kg	0.05	MCERTS	0.13	0.14
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	1.7
2,4-Dinitrotoluene	mg/kg	0.2	NONE	< 0.2	< 0.2
Dibenzofuran	mg/kg	0.2	MCERTS	< 0.2	0.6
4-Chlorophenyl phenyl ether	mg/kg	0.3	MCERTS	< 0.3	< 0.3
Diethyl phthalate	mg/kg	0.2	MCERTS	< 0.2	< 0.2
4-Nitroaniline	mg/kg	0.2	NONE	< 0.2	< 0.2
Fluorene	mg/kg	0.05	MCERTS	< 0.05	1.2
Azobenzene	mg/kg	0.3	NONE	< 0.3	< 0.3
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	< 0.2	< 0.2
Hexachlorobenzene	mg/kg	0.3	MCERTS	< 0.3	< 0.3
Phenanthrene	mg/kg	0.05	MCERTS	1.5	7.8
Anthracene	mg/kg	0.05	MCERTS	0.2	1.2
Carbazole	mg/kg	0.3	MCERTS	< 0.3	0.6
Dibutyl phthalate	mg/kg	0.2	NONE	< 0.2	< 0.2
Anthraquinone	mg/kg	0.3	NONE	< 0.3	0.8
Fluoranthene	mg/kg	0.05	MCERTS	3.2	11
Pyrene	mg/kg	0.05	MCERTS	2.6	8.5
Butyl benzyl phthalate	mg/kg	0.3	NONE	< 0.3	< 0.3
Benzo(a)anthracene	mg/kg	0.05	MCERTS	1.9	5.9
Chrysene	mg/kg	0.05	MCERTS	2.2	6.2
Benzo(b)fluoranthene	mg/kg	0.05	ISO 17025	2.5	7
Benzo(k)fluoranthene	mg/kg	0.05	ISO 17025	1.3	3.2
Benzo(a)pyrene	mg/kg	0.05	MCERTS	1.9	5.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	1.2	3
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.25	0.65
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	1.4	3.3

Project / Site name: Former Tata Site, High Street, Pontarddulais

Your Order No: 14180 FG

Lab Sample Number	2623806	2623807			
Sample Reference				TP20	TP21
Sample Number				None Supplied	None Supplied
Depth (m)				0.50	0.40
Date Sampled				15/03/2023	15/03/2023
Time Taken				1330	1400
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
PCBs by GC-MS					-
PCB Congener 28	mg/kg	0.001	MCERTS	-	-
PCB Congener 52	mg/kg	0.001	MCERTS	-	-
PCB Congener 101	mg/kg	0.001	MCERTS	-	-
PCB Congener 118	mg/kg	0.001	MCERTS	-	-
PCB Congener 138	mg/kg	0.001	MCERTS	-	-
PCB Congener 153	mg/kg	0.001	MCERTS	-	-
PCB Congener 180	mg/kg	0.001	MCERTS	-	-

Total PCBs by GC-MS

Total T CDS By CC 110					
Total PCBs	mg/kg	0.007	MCERTS	-	-

 $\mbox{U/S} = \mbox{Unsuitable Sample} \quad \mbox{I/S} = \mbox{Insufficient Sample} \quad \mbox{ND} = \mbox{Not detected}$

Project / Site name: Former Tata Site, High Street, Pontarddulais

Your Order No:

Certificate of Analysis - Asbestos Quantification

Methods:

Qualitative Analysis

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative Analysis

The analysis was carried out using our documented in-house method A006-PL based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Both Qualitative and Quantitative Analyses are UKAS accredited.

Sample Number	Sample ID	Sample Depth (m)	Sample Weight (g)	Asbestos Containing Material Types Detected (ACM)	PLM Results	Asbestos by hand picking/weighing (%)	Total % Asbestos in Sample
2623796	TP09	0.30	120	Loose Fibres	Chrysotile	< 0.001	< 0.001
2623797	TP10	0.40	126	Loose Fibres	Chrysotile	< 0.001	< 0.001
2623805	TP18	0.20	131	Loose Fibres	Chrysotile	< 0.001	< 0.001
2623807	TP21	0.40	127	Loose Fibres	Chrysotile	< 0.001	< 0.001

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Project / Site name: Former Tata Site, High Street, Pontarddulais

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2623790	TP02	None Supplied	0.2	Brown loam and clay with gravel and vegetation.
2623791	TP03	None Supplied	0.1	Brown loam and clay with gravel and vegetation.
2623792	TP04	None Supplied	0.2	Brown clay and sand with vegetation and stones.
2623793	TP05	None Supplied	0.4	Brown gravelly sand with rubble.
2623794	TP06	None Supplied	0.5	Brown gravelly clay with stones.
2623795	TP07	None Supplied	0.1	Brown sand with gravel and vegetation.
2623796	TP09	None Supplied	0.3	Brown gravelly clay with vegetation and stones.
2623797	TP10	None Supplied	0.4	Brown gravelly clay with vegetation and stones.
2623798	TP11a	None Supplied	0	Brown clay and sand with vegetation and stones.
2623799	TP13	None Supplied	0.3	Brown sand with gravel and vegetation.
2623801	TP15	None Supplied	0.2	Brown loam and clay with gravel and vegetation.
2623802	TP16	None Supplied	0.2	Brown sand with stones.
2623803	TP16	None Supplied	0.7	Brown clay and sand with vegetation and gravel
2623804	TP17	None Supplied	0.2	Brown sand with gravel.
2623805	TP18	None Supplied	0.2	Brown sand with gravel and vegetation.
2623806	TP20	None Supplied	0.5	Brown sand with gravel.
2623807	TP21	None Supplied	0.4	Brown loam and sand with gravel and vegetation.

Project / Site name: Former Tata Site, High Street, Pontarddulais

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with dispersion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Loss on ignition of soil @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace.	In house method.	L047-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
PCB's By GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds in soil by extraction in dichloromethane and hexane followed by GC-MS.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS

Project / Site name: Former Tata Site, High Street, Pontarddulais

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	MCERTS
Asbestos Quantification - Gravimetric	Asbestos quantification by gravimetric method - in house method based on references.	HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft).	A006-PL	D	ISO 17025
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in NaOH and addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS

For method numbers ending in 'UK or A' analysis have been carried out in our laboratory in the United Kingdom (WATFORD).

For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride).

For method numbers ending in 'PL or B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Information in Support of Analytical Results

List of HWOL Acronyms and Operators

Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil®, silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - understore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total

Project / Site name: Former Tata Site, High Street, Pontarddulais

 $This \ deviation \ report \ indicates \ the \ sample \ and \ test \ deviations \ that \ apply \ to \ the \ samples \ submitted \ for \ analysis. Please$ note that the associated result(s) may be unreliable and should be interpreted with care.

Key: a - No sampling date b - Incorrect container c - Holding time d - Headspace e - Temperature

Sample ID	Other ID		Lab Sample Number	Sample Deviation	Test Name	Test Ref	Test Deviation
TP02	None Supplied	S	2623790	С	Sulphide in soil	L010-PL	С
TP02	None Supplied	S	2623790	С	Total cyanide in soil	L080-PL	с
TP03	None Supplied	S	2623791	С	Sulphide in soil	L010-PL	с
TP03	None Supplied	S	2623791	С	Total cyanide in soil	L080-PL	с
TP06	None Supplied	S	2623794	С	Sulphide in soil	L010-PL	с
TP06	None Supplied	S	2623794	С	Total cyanide in soil	L080-PL	с
TP07	None Supplied	S	2623795	С	Sulphide in soil	L010-PL	с
TP07	None Supplied	S	2623795	С	Total cyanide in soil	L080-PL	С
TP09	None Supplied	S	2623796	С	Sulphide in soil	L010-PL	С
TP09	None Supplied	S	2623796	С	Total cyanide in soil	L080-PL	с
TP10	None Supplied	S	2623797	С	Sulphide in soil	L010-PL	С
TP10	None Supplied	S	2623797	С	Total cyanide in soil	L080-PL	с
TP11a	None Supplied	S	2623798	С	Sulphide in soil	L010-PL	С
TP11a	None Supplied	S	2623798	С	Total cyanide in soil	L080-PL	С
TP13	None Supplied	S	2623799	С	Sulphide in soil	L010-PL	С
TP13	None Supplied	S	2623799	С	Total cyanide in soil	L080-PL	С
TP17	None Supplied	S	2623804	С	Sulphide in soil	L010-PL	С
TP17	None Supplied	S	2623804	С	Total cyanide in soil	L080-PL	С

Finn Guilfoyle

Integral Geotechnique Integral House 7 Beddau Way Castlegate Business Park CF83 2AX

t: 02920807991 **f:** 02920862176

e: finn@integralgeotec.com

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, **WD18 8YS**

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 23-25934

Replaces Analytical Report Number: 23-25934, issue no. 1 Additional analysis undertaken.

Asbestos Quantification added for possitive samples as per client's request

Project / Site name: Former Tata Steel Site Pontarddulais Samples received on: 31/03/2023

Your job number: 14180 Samples instructed on/

Analysis started on:

31/03/2023

Your order number: 14180 FG Analysis completed by: 13/04/2023

Report Issue Number: 2 Report issued on: 03/05/2023

Samples Analysed: 3 soil samples

Signed:

Dominika Warjan Junior Reporting Specialist

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Project / Site name: Former Tata Steel Site Pontarddulais

Your Order No: 14180 FG

Lab Sample Number				2635245	2635246	2635247
Sample Reference	WS01	WS03	WS06			
Sample Number	None Supplied	None Supplied	None Supplied			
Depth (m)				0.20	0.60	0.40
Date Sampled				29/03/2023	29/03/2023	29/03/2023
Time Taken				1300	1110	1200
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Stone Content	%	0.1	NONE	50	25	< 0.1
Moisture Content	%	0.01	NONE	8.1	12	12
Total mass of sample received	kg	0.001	NONE	1.4	1.3	1.8
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	Chrysotile & Amosite	Chrysotile	-
Asbestos in Soil	Туре	N/A	ISO 17025	Detected	Detected	-
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	0.068	< 0.001	-
Asbestos Quantification Total	%	0.001	ISO 17025	0.068	< 0.001	-
Asbestos Analyst ID	N/A	N/A	N/A	SCA	SCA	N/A
General Inorganics						
pH - Automated	pH Units	N/A	MCERTS	10.3	11.3	-
Total Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0	-
Total Sulphate as SO4	mg/kg	50	MCERTS	7400	6800	-
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	1.3	0.4	-
Sulphide	mg/kg	1	MCERTS	57	32	-
Total Sulphur	mg/kg	50	MCERTS	3300	2600	-
Total Organic Carbon (TOC) - Automated	%	0.1	MCERTS	3.1	1.6	-
Loss on Ignition @ 450oC	%	0.2	MCERTS	9.6	4.9	-
	•		-			
Total Phenols						
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	-
Speciated PAHs						
Naphthalene	mg/kg	0.05	MCERTS	0.28	0.13	-
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	0.05	-
Fluorene	mg/kg	0.05	MCERTS	< 0.05	0.06	-
Phenanthrene	mg/kg	0.05	MCERTS	0.58	1	-
Anthracene	mg/kg	0.05	MCERTS	< 0.05	0.07	-
Fluoranthene	mg/kg	0.05	MCERTS MCERTS	0.51	1.2	-
Pyrene Repressional Property Control Pro	mg/kg mg/kg	0.05	MCERTS	0.4	0.9	-
Benzo(a)anthracene	mg/kg mg/kg	0.05	MCERTS	0.27	0.39	-
Chrysene Repre/hythuranthone	mg/kg mg/kg	0.05	ISO 17025	0.41	0.71	-
Benzo(b)fluoranthene Benzo(k)fluoranthene	mg/kg	0.05	ISO 17025	0.33	0.78	-
Benzo(k)nuorantriene Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.24	0.43	-
	mg/kg	0.05	MCERTS	0.11	0.43	
Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	0.24	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.14	0.27	
penzo(gm/per yiene	5. 3			0.17	0.27	
Total PAH						

Speciated Total EPA-16 PAHs

mg/kg

ISO 17025

3.47

6.65

Project / Site name: Former Tata Steel Site Pontarddulais

Lab Sample Number				2635245	2635246	2635247
Sample Reference				WS01	WS03	WS06
Sample Number	None Supplied	None Supplied	None Supplied			
Depth (m)				0.20	0.60	0.40
Date Sampled				29/03/2023	29/03/2023	29/03/2023
Time Taken	1300	1110	1200			
Tune Tune.				1500	1110	1200
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Heavy Metals / Metalloids	=======================================	=	-			
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	44	34	-
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.98	0.61	-
Boron (water soluble)	mg/kg	0.2	MCERTS	2.1	1	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	-
Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8	< 1.8	-
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	18	15	-
Copper (aqua regia extractable)	mg/kg	1	MCERTS	140	82	-
Lead (aqua regia extractable)	mg/kg	1	MCERTS	95	150	-
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	-
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	37	25	-
Selenium (aqua regia extractable)	mg/kg	1	MCERTS MCERTS	< 1.0	< 1.0	-
Vanadium (aqua regia extractable)	mg/kg mg/kg	1	MCERTS	36	27	-
Zinc (aqua regia extractable)	nig/kg		PICERTS	130	240	-
Petroleum Hydrocarbons						
	mg/kg	0.001	NONE	< 0.001	< 0.001	
TPH-CWG - Aliphatic >EC5 - EC6 _{HS_1D_AL} TPH-CWG - Aliphatic >EC6 - EC8 _{HS_1D_AL}	mg/kg	0.001	NONE	< 0.001	< 0.001	-
TPH-CWG - Aliphatic >EC6 - EC6 HS_1D_AL TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL	mg/kg	0.001	NONE	< 0.001	< 0.001	-
TPH-CWG - Aliphatic >EC10 - EC12 _{EH_CU_1D_AL}	mg/kg	1	MCERTS	< 1.0	< 1.0	_
TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_ID_AL	mg/kg	2	MCERTS	< 2.0	< 2.0	-
TPH-CWG - Aliphatic > EC16 - EC21 EH CU 1D AL	mg/kg	8	MCERTS	< 8.0	< 8.0	-
TPH-CWG - Aliphatic >EC21 - EC35 _{EH_CU_1D_AL}	mg/kg	8	MCERTS	8.7	< 8.0	-
TPH-CWG - Aliphatic >EC16 - EC35 EH_CU_ID_AL	mg/kg	10	MCERTS	< 10	< 10	-
TPH-CWG - Aliphatic > EC35 - EC44 _{EH CU 1D AL}	mg/kg	8.4	NONE	< 8.4	< 8.4	-
TPH-CWG - Aliphatic (EC5 - EC35) EH_CU+HS_1D_AL	mg/kg	10	NONE	< 10	< 10	-
TPH-CWG - Aliphatic (EC5 - EC44) EH_CU+HS_1D_AL	mg/kg	10	NONE	< 10	< 10	-
TPH-CWG - Aromatic >EC5 - EC7 HS_1D_AR	mg/kg	0.001	NONE	< 0.001	< 0.001	-
TPH-CWG - Aromatic >EC7 - EC8 HS_1D_AR	mg/kg	0.001	NONE	< 0.001	< 0.001	-
TPH-CWG - Aromatic >EC8 - EC10 HS_1D_AR	mg/kg	0.001	NONE	< 0.001	< 0.001	-
TPH-CWG - Aromatic >EC10 - EC12 EH_CU_1D_AR	mg/kg	1	MCERTS	< 1.0	< 1.0	-
TPH-CWG - Aromatic >EC12 - EC16 _{EH_CU_1D_AR}	mg/kg	2	MCERTS	< 2.0	< 2.0	-
TPH-CWG - Aromatic >EC16 - EC21 _{EH_CU_1D_AR}	mg/kg	10	MCERTS	< 10	< 10	-
TPH-CWG - Aromatic >EC21 - EC35 EH_CU_1D_AR	mg/kg	10	MCERTS	< 10	< 10	-
TPH-CWG - Argentics - EC35 - EC40 EH_CU_1D_AR	mg/kg	10 8.4	NONE NONE	< 10	< 10	-
TPH-CWG - Aromatic > EC35 - EC44 _{EH_CU_1D_AR} TPH-CWG - Aromatic (EC5 - EC35) _{EH_CU+HS_1D_AR}	mg/kg mg/kg	8.4 10	NONE	< 8.4 < 10	< 8.4 < 10	-
TPH-CWG - Aromatic (EC5 - EC35) EH_CU+HS_1D_AR TPH-CWG - Aromatic (EC5 - EC44) EH_CU+HS_1D_AR	mg/kg	10	NONE	< 10	< 10	-
TITLEWS /Nomade (2005 ECTT) EH_CO+HS_ID_AR	919			< 10	< 10	
TPH Total C5 - C44 _{EH_CU+HS_ID_TOTAL}	mg/kg	10	NONE	< 10	< 10	_
THE TOWN CO CHIENCUTHS ID IOTAL	515			< 10	< 10	-
VOCs						
Chloromethane	μg/kg	5	ISO 17025	< 5.0	< 5.0	-
Chloroethane	μg/kg	5	NONE	< 5.0	< 5.0	-
Bromomethane	μg/kg	5	ISO 17025	< 5.0	< 5.0	-
Vinyl Chloride	μg/kg	5	NONE	< 5.0	< 5.0	-
Trichlorofluoromethane	μg/kg	5	NONE	< 5.0	< 5.0	-
1,1-Dichloroethene	μg/kg	5	NONE	< 5.0	< 5.0	-
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	5	NONE	< 5.0	< 5.0	-
Cis-1,2-dichloroethene	μg/kg	5	ISO 17025	< 5.0	< 5.0	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	5	NONE	< 5.0	< 5.0	-
1,1-Dichloroethane	μg/kg	5	ISO 17025	< 5.0	< 5.0	-
2,2-Dichloropropane	μg/kg	5	ISO 17025	< 5.0	< 5.0	-
Trichloromethane	μg/kg	5	ISO 17025	< 5.0	< 5.0	-

Project / Site name: Former Tata Steel Site Pontarddulais

Your Order No: 14180 FG

Lab Sample Number				2635245	2635246	2635247
Sample Reference	WS01	WS03	WS06			
Sample Number	None Supplied	None Supplied	None Supplied			
Depth (m)				0.20	0.60	0.40
Date Sampled				29/03/2023	29/03/2023	29/03/2023
Time Taken				1300	1110	1200
		E.				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
1,1,1-Trichloroethane	μg/kg	5	ISO 17025	< 5.0	< 5.0	-
1,2-Dichloroethane	μg/kg	5	ISO 17025	< 5.0	< 5.0	-
1,1-Dichloropropene	μg/kg	5	ISO 17025	< 5.0	< 5.0	-
Trans-1,2-dichloroethene	μg/kg	5	NONE	< 5.0	< 5.0	-
Benzene	μg/kg	5	MCERTS	< 5.0	< 5.0	-
Tetrachloromethane	μg/kg	5	NONE	< 5.0	< 5.0	-
1,2-Dichloropropane	μg/kg	5	ISO 17025	< 5.0	< 5.0	-
Trichloroethene	μg/kg	5	ISO 17025	< 5.0	< 5.0	-
Dibromomethane	μg/kg	5	ISO 17025	< 5.0	< 5.0	-
Bromodichloromethane	μg/kg	5	ISO 17025	< 5.0	< 5.0	-
Cis-1,3-dichloropropene	μg/kg	5	ISO 17025	< 5.0	< 5.0	-
Trans-1,3-dichloropropene	μg/kg	5	ISO 17025	< 5.0	< 5.0	_
Toluene	μg/kg	5	MCERTS	< 5.0	< 5.0	-
1,1,2-Trichloroethane	μg/kg	5	ISO 17025	< 5.0	< 5.0	_
1,3-Dichloropropane	μg/kg	5	ISO 17025	< 5.0	< 5.0	_
Dibromochloromethane	μg/kg	5	ISO 17025	< 5.0	< 5.0	-
Tetrachloroethene	μg/kg	5	NONE	< 5.0	< 5.0	-
1,2-Dibromoethane	μg/kg	5	ISO 17025	< 5.0	< 5.0	_
Chlorobenzene	μg/kg	5	ISO 17025	< 5.0	< 5.0	-
1,1,1,2-Tetrachloroethane	μg/kg	5	ISO 17025	< 5.0	< 5.0	-
Ethylbenzene	μg/kg	5	MCERTS	< 5.0	< 5.0	_
p & m-Xylene	μg/kg	5	MCERTS	< 5.0	< 5.0	-
Styrene	μg/kg	5	ISO 17025	< 5.0	< 5.0	_
Tribromomethane	μg/kg	5	NONE	< 5.0	< 5.0	_
o-Xylene	μg/kg	5	MCERTS	< 5.0	< 5.0	_
1,1,2,2-Tetrachloroethane	μg/kg	5	ISO 17025	< 5.0	< 5.0	-
Isopropylbenzene	μg/kg	5	ISO 17025	< 5.0	< 5.0	_
Bromobenzene	μg/kg	5	ISO 17025	< 5.0	< 5.0	-
n-Propylbenzene	μg/kg	5	ISO 17025	< 5.0	< 5.0	-
2-Chlorotoluene	μg/kg	5	ISO 17025	< 5.0	< 5.0	_
4-Chlorotoluene	μg/kg	5	ISO 17025	< 5.0	< 5.0	-
1,3,5-Trimethylbenzene	μg/kg	5	ISO 17025	< 5.0	< 5.0	-
tert-Butylbenzene	μg/kg	5	ISO 17025	< 5.0	< 5.0	_
1,2,4-Trimethylbenzene	μg/kg	5	ISO 17025	< 5.0	< 5.0	_
sec-Butylbenzene	μg/kg	5	ISO 17025	< 5.0	< 5.0	-
1,3-Dichlorobenzene	μg/kg	5	ISO 17025	< 5.0	< 5.0	_
p-Isopropyltoluene	μg/kg	5	ISO 17025	< 5.0	< 5.0	_
1,2-Dichlorobenzene	μg/kg	5	ISO 17025	< 5.0	< 5.0	-
1,4-Dichlorobenzene	μg/kg	5	ISO 17025	< 5.0	< 5.0	-
Butylbenzene	μg/kg	5	NONE	< 5.0	< 5.0	
	μg/kg	5	ISO 17025	< 5.0	< 5.0	-
1,2-Dibromo-3-chloropropane	μg/kg μg/kg	5	ISO 17025	< 5.0 < 5.0	< 5.0 < 5.0	-
1,2,4-Trichlorobenzene	μg/kg μg/kg	5	NONE	< 5.0 < 5.0	< 5.0 < 5.0	-
Hexachlorobutadiene 1,2,3-Trichlorobenzene	μg/kg μg/kg	5	ISO 17025	< 5.0 < 5.0	< 5.0 < 5.0	-
1,2,3-111011010001120110	F313			< 5.0	< 5.0	-

SVOCs

Aniline	mg/kg	0.1	NONE	< 0.1	< 0.1	-
Phenol	mg/kg	0.2	ISO 17025	< 0.2	< 0.2	-
2-Chlorophenol	mg/kg	0.1	MCERTS	< 0.1	< 0.1	-
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	< 0.2	< 0.2	-
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	< 0.2	< 0.2	-
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	< 0.1	< 0.1	-
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	< 0.2	< 0.2	-
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	< 0.1	< 0.1	-
2-Methylphenol	mg/kg	0.3	MCERTS	< 0.3	< 0.3	-

Project / Site name: Former Tata Steel Site Pontarddulais

Lab Sample Number				2635245	2635246	2635247
Sample Reference				WS01	WS03	WS06
Sample Number				None Supplied	None Supplied	None Supplied
Depth (m)				0.20	0.60	0.40
Date Sampled				29/03/2023	29/03/2023	29/03/2023
Time Taken				1300	1110	1200
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Hexachloroethane	mg/kg	0.05	ISO 17025	< 0.05	< 0.05	
Nitrobenzene	mg/kg	0.3	MCERTS	< 0.3	< 0.3	-
4-Methylphenol	mg/kg	0.2	NONE	< 0.2	< 0.2	-
Isophorone	mg/kg	0.2	MCERTS	< 0.2	< 0.2	-
2-Nitrophenol	mg/kg	0.3	NONE	< 0.3	< 0.3	-
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	< 0.3	< 0.3	-
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	< 0.3	< 0.3	-
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	< 0.3	< 0.3	-
Naphthalene	mg/kg	0.05	MCERTS	0.28	0.13	-
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	< 0.3	< 0.3	-
4-Chloroaniline	mg/kg	0.1	NONE	< 0.1	< 0.1	-
Hexachlorobutadiene	mg/kg	0.1	MCERTS	< 0.1	< 0.1	-
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	< 0.1	< 0.1	-
2,4,6-Trichlorophenol	mg/kg	0.1	NONE	< 0.1	< 0.1	-
2,4,5-Trichlorophenol	mg/kg	0.2	NONE	< 0.2	< 0.2	-
2-Methylnaphthalene	mg/kg	0.1	NONE	0.4	0.2	-
2-Chloronaphthalene	mg/kg	0.1	MCERTS	< 0.1	< 0.1	-
Dimethylphthalate	mg/kg	0.1	MCERTS	< 0.1	< 0.1	-
2,6-Dinitrotoluene	mg/kg	0.1	NONE	< 0.1	< 0.1	-
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	0.05	-
2,4-Dinitrotoluene	mg/kg	0.2	NONE	< 0.2	< 0.2	-
Dibenzofuran	mg/kg	0.2	MCERTS	< 0.2	< 0.2	-
4-Chlorophenyl phenyl ether	mg/kg	0.3	MCERTS	< 0.3	< 0.3	-
Diethyl phthalate	mg/kg	0.2	MCERTS	< 0.2	< 0.2	-
4-Nitroaniline	mg/kg	0.2	NONE	< 0.2	< 0.2	-
Fluorene	mg/kg	0.05	MCERTS	< 0.05	0.06	-
Azobenzene	mg/kg	0.3	NONE	< 0.3	< 0.3	-
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	< 0.2	< 0.2	-
Hexachlorobenzene	mg/kg	0.3	MCERTS	< 0.3	< 0.3	-
Phenanthrene	mg/kg	0.05	MCERTS	0.58	1	-
Anthracene	mg/kg	0.05	MCERTS	< 0.05	0.07	-
Carbazole	mg/kg	0.3	MCERTS	< 0.3	< 0.3	-
Dibutyl phthalate	mg/kg	0.2	NONE	< 0.2	< 0.2	-
Anthraquinone	mg/kg	0.3	NONE	< 0.3	< 0.3	-
Fluoranthene	mg/kg	0.05	MCERTS	0.51	1.2	-
Pyrene	mg/kg	0.05	MCERTS	0.4	0.9	-
Butyl benzyl phthalate	mg/kg	0.3	NONE	< 0.3	< 0.3	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.27	0.39	-
Chrysene	mg/kg	0.05	MCERTS	0.41	0.71	-
Benzo(b)fluoranthene	mg/kg	0.05	ISO 17025	0.33	0.78	-
Benzo(k)fluoranthene	mg/kg	0.05	ISO 17025	0.24	0.31	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.2	0.43	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.11	0.24	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	0.06	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.14	0.27	-

Project / Site name: Former Tata Steel Site Pontarddulais

Your Order No: 14180 FG

Lab Sample Number	_			2635245	2635246	2635247
Sample Reference	WS01	WS03	WS06			
Sample Number				None Supplied	None Supplied	None Supplied
Depth (m)				0.20	0.60	0.40
Date Sampled				29/03/2023	29/03/2023	29/03/2023
Time Taken				1300	1110	1200
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
PCBs by GC-MS	=======================================					
PCB Congener 28	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001
PCB Congener 52	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001
PCB Congener 101	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001
PCB Congener 118	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001
PCB Congener 138	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001
PCB Congener 153	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001
PCB Congener 180	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001
Total PCBs by GC-MS Total PCBs	mg/kg	0.007	MCERTS	< 0.007	< 0.007	< 0.007

 $\mbox{U/S} = \mbox{Unsuitable Sample} \quad \mbox{I/S} = \mbox{Insufficient Sample} \quad \mbox{ND} = \mbox{Not detected}$

Former Tata Steel Site Pontarddulais Project / Site name:

Your Order No:

Certificate of Analysis - Asbestos Quantification

Methods:

Qualitative Analysis

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative Analysis

The analysis was carried out using our documented in-house method A006-PL based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Both Qualitative and Quantitative Analyses are UKAS accredited.

Sampl Numbe	Samnia ID	Sample Depth (m)	Sample Weight (g)	Asbestos Containing Material Types Detected (ACM)	PLM Results	Asbestos by hand picking/weighing (%)	Total % Asbestos in Sample
263524	V S01	0.20	137	Loose Fibres & Loose Fibrous Debris	Chrysotile & Amosite	0.068	0.068
263524	W S03	0.60	180	Loose Fibres	Chrysotile	< 0.001	< 0.001

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Project / Site name: Former Tata Steel Site Pontarddulais

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2635245	WS01	None Supplied	0.2	Brown sand with stones.
2635246	WS03	None Supplied	0.6	Brown sand with gravel and stones.
2635247	WS06	None Supplied	0.4	Brown sand with gravel.

Project / Site name: Former Tata Steel Site Pontarddulais

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with dispersion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Loss on ignition of soil @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace.	In house method.	L047-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
PCB's By GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds in soil by extraction in dichloromethane and hexane followed by GC-MS.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS

Project / Site name: Former Tata Steel Site Pontarddulais

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	MCERTS
Asbestos Quantification - Gravimetric	Asbestos quantification by gravimetric method - in house method based on references.	HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft).	A006-PL	D	ISO 17025
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in NaOH and addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS

For method numbers ending in 'UK or A' analysis have been carried out in our laboratory in the United Kingdom (WATFORD).

For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride).

For method numbers ending in 'PL or B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Information in Support of Analytical Results

List of HWOL Acronyms and Operators

Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil*, silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - understore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total

Finn Guilfoyle

Integral Geotechnique Integral House 7 Beddau Way Castlegate Business Park CF83 2AX

t: 02920807991 **f:** 02920862176

e: finn@integralgeotec.com

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, **WD18 8YS**

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 23-28224

Project / Site name: Former Tata Site, Pontarddulais **Samples received on:** 14/04/2023

Your job number: 14180 Samples instructed on/ 14/04/2023

Analysis started on:

Your order number: 14180 FG **Analysis completed by:** 19/04/2023

Report Issue Number: 1 Report issued on: 21/04/2023

Samples Analysed: 5 soil samples

Signed:

Dominika Warjan Junior Reporting Specialist

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are: soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Project / Site name: Former Tata Site, Pontarddulais

Your Order No: 14180 FG

Lab Sample Number				2647198	2647199	2647200	2647201	2647202
Sample Reference				TP02	TP03	TP04	TP15	BH01
Sample Number				None Supplied				
Depth (m)				0.80	1.00	1.00	1.00	1.00
Date Sampled				12/04/2023	12/04/2023	12/04/2023	12/04/2023	12/04/2023
Time Taken				1420	1425	1430	1435	1440
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	23	7.3	18	20	24
Total mass of sample received	kg	0.001	NONE	0.5	0.5	0.5	0.5	0.5

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	7.6	6.9	7.2	7.5	7.5
Equivalent)	g/l	0.00125	MCERTS	0.0089	0.0038	0.0057	0.0071	0.05

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

Project / Site name: Former Tata Site, Pontarddulais

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2647198	TP02	None Supplied	0.8	Brown clay and sand.
2647199	TP03	None Supplied	1	Brown loam and sand with gravel.
2647200	TP04	None Supplied	1	Brown clay and sand with gravel.
2647201	TP15	None Supplied	1	Brown clay and sand with gravel.
2647202	BH01	None Supplied	1	Brown clay and sand with gravel.

Project / Site name: Former Tata Site, Pontarddulais

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE

For method numbers ending in 'UK or A' analysis have been carried out in our laboratory in the United Kingdom (WATFORD).

For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride).

For method numbers ending in 'PL or B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

APPENDIX J

LABORATORY CHEMICAL TEST RESULTS (WATER)

i2 Analytical Ltd. 7 Woodshots Meadow,

Croxley Green

Business Park,

Watford, Herts, **WD18 8YS**

Roger Hawkins

Integral Geotechnique Integral House 7 Beddau Way Castlegate Business Park CF83 2AX

t: 02920807991 t: 01923 225404 **f**: 02920862176 **f:** 01923 237404

e: reception@i2analytical.com e: roger@integralgeotec.com

Analytical Report Number: 23-28256

Project / Site name: Former Tata Site, Pontarddulais Samples received on: 14/04/2023

Your job number: 14180-RJH Samples instructed on/

Analysis started on:

14/04/2023

Your order number: Analysis completed by: 24/04/2023

Report Issue Number: Report issued on: 24/04/2023

Samples Analysed: 6 water samples

Signed:

Elżbieta Suchy Junior Reporting Specialist

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 23-28256

Cample Deference				2647471	2647472	2647473	2647474	2647475
Sample Reference				BH01	BH02	BH03	BH04	BH05
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Date Sampled				12/04/2023	12/04/2023	12/04/2023	12/04/2023	12/04/2023
Time Taken				1055	1135	1205	1235	1315
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
General Inorganics								
pH (L005B)	pH Units	N/A	ISO 17025	5.9	6.7	7	6.5	6
Total Cyanide	μg/l	10	ISO 17025	< 10	< 10	< 10	< 10	< 10
Sulphate as SO4	μg/l	45	ISO 17025	18600	19100	28100	29400	18200
Total Sulphur	μg/l	15	NONE	6200	6400	9400	9800	6100
Sulphide	μg/l	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Dissolved Organic Carbon (DOC)	mg/l	0.1	ISO 17025	0.9	0.95	5.8	1.15	1.15
Total Organic Carbon (TOC)	mg/l	0.1	ISO 17025	1.03	1.23	6.07	1.32	1.35
	Піцсасо							
Hardness - Total	3/I	1	ISO 17025	50.5	116	473	132	75.6
Total Phenols								
Total Phenols (monohydric)	μg/l	10	ISO 17025	< 10	< 10	< 10	< 10	< 10
Speciated PAHs								
Naphthalene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	. 0.01	
Acenaphthene	μg/l	0.01				₹ 0.01	< 0.01	< 0.01
псенарничене		0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01 < 0.01
Fluorene	μg/l	0.01	ISO 17025 ISO 17025	< 0.01 < 0.01				
Fluorene	μg/l μg/l				< 0.01	< 0.01	< 0.01	< 0.01
Fluorene		0.01	ISO 17025	< 0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01
Fluorene Phenanthrene Anthracene	μg/l	0.01	ISO 17025 ISO 17025	< 0.01 < 0.01	< 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01
Fluorene Phenanthrene Anthracene Fluoranthene	μg/l μg/l	0.01 0.01 0.01	ISO 17025 ISO 17025 ISO 17025	< 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01
Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	µg/l µg/l µg/l	0.01 0.01 0.01 0.01	ISO 17025 ISO 17025 ISO 17025 ISO 17025	< 0.01 < 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene	µg/l µg/l µg/l	0.01 0.01 0.01 0.01 0.01	ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene	µg/l µg/l µg/l µg/l	0.01 0.01 0.01 0.01 0.01 0.01	ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene	µg/I µg/I µg/I µg/I µg/I	0.01 0.01 0.01 0.01 0.01 0.01 0.01	ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene	ha\/ ha\/ ha\/ ha\/ ha\/ ha\/ ha\/	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene	ha\/ ha\/ ha\/ ha\/ ha\/ ha\/ ha\/ ha\/	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01
Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	ha\/\ ha\/\ha\/\	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Fluorene Phenanthrene Anthracene	ha\/\ ha\/\ha\/\	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	ISO 17025 ISO 17025	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	ha\/\	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	ISO 17025 ISO 17025	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

Analytical Report Number: 23-28256

Lab Sample Number				2647471	2647472	2647473	2647474	2647475
Sample Reference				BH01	BH02	BH03	BH04	BH05
Sample Number				None Supplied				
Depth (m)			None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	
Date Sampled				12/04/2023	12/04/2023	12/04/2023	12/04/2023	12/04/2023
Time Taken				1055	1135	1205	1235	1315
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Honor Motole / Motolleide		3						1
Heavy Metals / Metalloids		- 40	100 47025	2.5				
Boron (dissolved)	μg/l	10	ISO 17025	26	32	49	46	23
Calcium (dissolved)	mg/l	0.012 5	ISO 17025	11	31	170	42	26
Chromium (hexavalent)	μg/l mg/l	0.005	ISO 17025 ISO 17025	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Magnesium (dissolved)	IIIg/I	0.003	130 17023	5.3	9.1	11	6.7	2.7
Arcanic (discalled)	uc/l	0.15	ISO 17025	× 0.1F	- 0.15	0.0	- 0.15	-015
Arsenic (dissolved)	µg/l	0.15	ISO 17025	< 0.15	< 0.15	0.8	< 0.15	< 0.15
Beryllium (dissolved)	μg/l μg/l	0.1	ISO 17025	< 0.1 0.08	< 0.1 0.06	< 0.1 0.05	< 0.1 0.03	< 0.1 0.07
Cadmium (dissolved)		0.02	ISO 17025	< 0.2	< 0.2	< 0.2		< 0.2
Chromium (dissolved)	µg/l	0.2	ISO 17025	0.7	0.6	2.6	< 0.2 0.7	< 0.2 < 0.5
Copper (dissolved)	μg/l μg/l	0.5	ISO 17025	< 0.2	< 0.2	< 0.2	< 0.2	< 0.5 < 0.2
Lead (dissolved)	μg/l	0.05	ISO 17025	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Mercury (dissolved)		0.03	ISO 17025	< 0.05 11		2.4		
Nickel (dissolved)	µg/l	0.5	ISO 17025		1.4		4.9	2.4
Selenium (dissolved)	μg/l	0.6	ISO 17025	0.7	0.6	< 0.6	1.7	0.6
Vanadium (dissolved)	μg/l μg/l	0.2	ISO 17025	< 0.2	< 0.2	0.3	< 0.2	< 0.2
Zinc (dissolved)	μ9/1	0.5	130 17023	15	2.1	4.3	5.9	7.6
Monoaromatics & Oxygenates								
Benzene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Toluene	µg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Ethylbenzene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
p & m-xylene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
o-xylene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
MTBE (Methyl Tertiary Butyl Ether)	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >C5 - C6 HS_1D_AL	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8 _{HS 1D AL}	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10 HS_1D_AL	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12 EH_1D_AL_MS	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C12 - C16 EH_1D_AL_MS	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C16 - C21 EH_1D_AL_MS	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C21 - C35 EH_1D_AL_MS	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C35 - C44 EH_1D_AL_MS	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C35) HS+EH 1D AL MS	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C44) HS+EH_1D_AL_MS	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
	•	_			-		-	
TPH-CWG - Aromatic >C5 - C7 HS_1D_AR	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C7 - C8 _{HS_1D_AR}	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10 _{HS_1D_AR}	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C10 - C12 EH_1D_AR_MS	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C12 - C16 EH_1D_AR_MS	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C16 - C21 EH_1D_AR_MS	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C21 - C35 EH_1D_AR_MS	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C35 - C44 EH_1D_AR_MS	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C35) HS+EH_1D_AR_MS	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C44) HS+EH_1D_AR_MS	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG Total C5 - C44 EH+HS_1D_TOTAL_MS	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10

Analytical Report Number: 23-28256

Lab Sample Number				2647471	2647472	2647473	2647474	2647475
Sample Reference	BH01	BH02	BH03	BH04	BH05			
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied		
Depth (m)				None Supplied				
Date Sampled				12/04/2023	12/04/2023	12/04/2023	12/04/2023	12/04/2023
Time Taken				1055	1135	1205	1235	1315
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
VOCs		•						
Chloromethane	μg/l	3	ISO 17025	< 3.0#	< 3.0	< 3.0	< 3.0	< 3.0
Chloroethane	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Bromomethane	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Vinyl Chloride	μg/l	3	NONE	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Trichlorofluoromethane	μg/l	3	NONE	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
1,1-Dichloroethene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
1,1,2-Trichloro-1,2,2-trifluoroethane	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Cis-1,2-dichloroethene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
MTBE (Methyl Tertiary Butyl Ether)	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
1,1-Dichloroethane	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
2,2-Dichloropropane	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Trichloromethane	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
1,1,1-Trichloroethane	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
1,2-Dichloroethane	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
1,1-Dichloropropene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Trans-1,2-dichloroethene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Benzene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Tetrachloromethane	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
1,2-Dichloropropane	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Trichloroethene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Dibromomethane	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Bromodichloromethane	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Cis-1,3-dichloropropene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Trans-1,3-dichloropropene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Toluene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
1,1,2-Trichloroethane	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
1,3-Dichloropropane	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Dibromochloromethane	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Tetrachloroethene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
1,2-Dibromoethane	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Chlorobenzene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
1,1,1,2-Tetrachloroethane	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Ethylbenzene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
p & m-Xylene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Styrene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Tribromomethane	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
o-Xylene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
1,1,2,2-Tetrachloroethane	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Isopropylbenzene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Bromobenzene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
n-Propylbenzene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
2-Chlorotoluene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
4-Chlorotoluene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
1,3,5-Trimethylbenzene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
tert-Butylbenzene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
1,2,4-Trimethylbenzene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
sec-Butylbenzene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
1,3-Dichlorobenzene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
p-Isopropyltoluene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
1,2-Dichlorobenzene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
1,4-Dichlorobenzene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0

Lab Sample Number				2647471	2647472	2647473	2647474	2647475
Sample Reference		BH01	BH02	BH03	BH04	BH05		
Sample Number				None Supplied				
Depth (m)				None Supplied				
Date Sampled				12/04/2023	12/04/2023	12/04/2023	12/04/2023	12/04/2023
Time Taken				1055	1135	1205	1235	1315
		⊑						
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Butylbenzene	μg/l	3	ISO 17025	< 3.0#	< 3.0	< 3.0	< 3.0	< 3.0
1,2-Dibromo-3-chloropropane	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
1,2,4-Trichlorobenzene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Hexachlorobutadiene	μg/l	3	ISO 17025	< 3.0#	< 3.0	< 3.0	< 3.0	< 3.0
1,2,3-Trichlorobenzene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
SVOCs Aniline	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	μg/I	0.05	NONE	< 0.05	< 0.05 < 0.05	< 0.05	< 0.05 < 0.05	< 0.05
Phenol 2-Chlorophenol	μg/I	0.05	NONE	< 0.05	< 0.05 < 0.05	< 0.05	< 0.05 < 0.05	< 0.05
2-Chlorophenol Bis(2-chloroethyl)ether	μg/I	0.05	NONE	< 0.05	< 0.05 < 0.05	< 0.05	< 0.05	< 0.05
1,3-Dichlorobenzene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,3-Dichlorobenzene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,4-Dichlorobenzene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Bis(2-chloroisopropyl)ether	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
2-Methylphenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Hexachloroethane	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Nitrobenzene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
4-Methylphenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Isophorone	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
2-Nitrophenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
2,4-Dimethylphenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Bis(2-chloroethoxy)methane	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,2,4-Trichlorobenzene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Naphthalene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2,4-Dichlorophenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
4-Chloroaniline	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobutadiene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
4-Chloro-3-methylphenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
2,4,6-Trichlorophenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
2,4,5-Trichlorophenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
2-Methylnaphthalene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
2-Chloronaphthalene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dimethylphthalate	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
2,6-Dinitrotoluene	μg/l	0.05	NONE TCO 1702E	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2,4-Dinitrotoluene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibenzofuran 4-Chlorophanyl phenyl ether	μg/l μg/l	0.05	NONE NONE	< 0.05	< 0.05	< 0.05 < 0.05	< 0.05	< 0.05
4-Chlorophenyl phenyl ether	μg/I μg/I	0.05	NONE	< 0.05 < 0.05				
Diethyl phthalate 4-Nitroaniline	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Azobenzene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Bromophenyl phenyl ether	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Carbazole	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibutyl phthalate	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Anthraquinone	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

Analytical Report Number: 23-28256

Project / Site name: Former Tata Site, Pontarddulais

Lab Sample Number		2647471	2647472	2647473	2647474	2647475		
Sample Reference				BH01	BH02	BH03	BH04	BH05
Sample Number				None Supplied				
Depth (m)				None Supplied				
Date Sampled				12/04/2023	12/04/2023	12/04/2023	12/04/2023	12/04/2023
Time Taken				1055	1135	1205	1235	1315
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Butyl benzyl phthalate	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
3&4-Methylphenol	μg/l	0.1	NONE	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
PCBs by GC-MS								
PCB Congener 28	μg/l	0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
PCB Congener 52	μg/l	0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
PCB Congener 101	μg/l	0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
PCB Congener 118	μg/l	0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
PCB Congener 138	μg/l	0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
PCB Congener 153	μg/l	0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
PCB Congener 180	μg/l	0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
PCBs by GC-MS								
Total PCBs	μg/l	0.14	NONE	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

Analytical Report Number: 23-28256

Project / Site name: Former Tata Site, Pontarddulais

Lab Sample Number	2647476			
Sample Reference				BH06
Sample Number	None Supplied			
Depth (m)				None Supplied
Date Sampled				12/04/2023
Time Taken				1405
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status	
General Inorganics				
pH (L005B)	pH Units	N/A	ISO 17025	6.3
Total Cyanide	μg/l	10	ISO 17025	< 10
Sulphate as SO4	μg/l	45	ISO 17025	10800
Total Sulphur	μg/l	15	NONE	3600
Sulphide	μg/l	5	NONE	< 5.0
Dissolved Organic Carbon (DOC)	mg/l	0.1	ISO 17025	1.11
Total Organic Carbon (TOC)	mg/l	0.1	ISO 17025	1.14

Hardness - Total **Total Phenois**

Total Phenols (monohydric)	μg/l	10	ISO 17025	< 10

3/I

ISO 17025

59.5

Speciated PAHs

Naphthalene	μg/l	0.01	ISO 17025	< 0.01
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01
Acenaphthene	μg/l	0.01	ISO 17025	< 0.01
Fluorene	μg/l	0.01	ISO 17025	< 0.01
Phenanthrene	μg/l	0.01	ISO 17025	< 0.01
Anthracene	μg/l	0.01	ISO 17025	< 0.01
Fluoranthene	μg/l	0.01	ISO 17025	< 0.01
Pyrene	μg/l	0.01	ISO 17025	< 0.01
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01
Chrysene	μg/l	0.01	ISO 17025	< 0.01
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01
Indeno(1,2,3-cd)pyrene	μg/l	0.01	ISO 17025	< 0.01
Dibenz(a,h)anthracene	μg/l	0.01	ISO 17025	< 0.01
Benzo(ghi)perylene	μg/l	0.01	ISO 17025	< 0.01

Total PAH

Total FAII				
Total EPA-16 PAHs	μg/l	0.16	ISO 17025	< 0.16

Analytical Report Number: 23-28256

Lab Sample Number				2647476
Sample Reference				BH06
Sample Number				None Supplied
Depth (m)	None Supplied			
Date Sampled	12/04/2023			
Time Taken				1405
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status	
Heavy Metals / Metalloids				
Boron (dissolved)	μg/l	10	ISO 17025	< 10
Calcium (dissolved)	mg/l	0.012	ISO 17025	22
Chromium (hexavalent)	μg/l	5	ISO 17025	< 5.0
Magnesium (dissolved)	mg/l	0.005	ISO 17025	1.3
Arsenic (dissolved)	μg/l	0.15	ISO 17025	< 0.15
Beryllium (dissolved)	μg/l	0.1	ISO 17025	< 0.1
Cadmium (dissolved)	μg/l	0.02	ISO 17025	0.05
Chromium (dissolved)	μg/l	0.2	ISO 17025	< 0.2
Copper (dissolved)	μg/l	0.5	ISO 17025	1
Lead (dissolved)	μg/l	0.2	ISO 17025	< 0.2
Mercury (dissolved)	μg/l	0.05	ISO 17025	< 0.05
Nickel (dissolved)	μg/l	0.5	ISO 17025	1.1
Selenium (dissolved)	μg/l	0.6	ISO 17025	< 0.6
Vanadium (dissolved)	μg/l	0.2	ISO 17025	< 0.2
Zinc (dissolved)	μg/l	0.5	ISO 17025	4
Monoaromatics & Oxygenates Benzene Toluene Ethylbenzene p & m-xylene	µg/l µg/l µg/l µg/l	3 3 3	ISO 17025 ISO 17025 ISO 17025 ISO 17025	< 3.0 < 3.0 < 3.0 < 3.0
o-xylene	μg/l	3	ISO 17025	< 3.0
MTBE (Methyl Tertiary Butyl Ether)	μg/l	3	ISO 17025	< 3.0
Petroleum Hydrocarbons TPH-CWG - Aliphatic > C5 - C6 HS_1D_AL TPH-CWG - Aliphatic > C6 - C8 HS_1D_AL TPH-CWG - Aliphatic > C8 - C10 HS_1D_AL TPH-CWG - Aliphatic > C10 - C12 EH_1D_AL_MS TPH-CWG - Aliphatic > C12 - C16 EH_1D_AL_MS TPH-CWG - Aliphatic > C16 - C21 EH_1D_AL_MS TPH-CWG - Aliphatic > C21 - C35 EH_1D_AL_MS TPH-CWG - Aliphatic > C35 - C44 EH_1D_AL_MS TPH-CWG - Aliphatic > C35 - C44 EH_1D_AL_MS TPH-CWG - Aliphatic (C5 - C35) HS+EH_1D_AL_MS TPH-CWG - Aliphatic (C5 - C44) HS+EH_1D_AL_MS	рд/I рд/I рд/I рд/I рд/I рд/I рд/I рд/I	1 1 10 10 10 10 10 10 10	ISO 17025 ISO 17025 ISO 17025 NONE NONE NONE NONE NONE NONE NONE NON	< 1.0 < 1.0 < 1.0 < 1.0 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 1
, , , , , , , , , , , , , , , , , , , ,				- 10
TPH-CWG - Aromatic >C5 - C7 _{HS_1D_AR}	μg/l	1	ISO 17025	< 1.0
TPH-CWG - Aromatic > C7 - C8 _{HS_1D_AR}	μg/l	1	ISO 17025	< 1.0
TPH-CWG - Aromatic >C8 - C10 _{HS_1D_AR}	μg/l	1	ISO 17025	< 1.0
TPH-CWG - Aromatic >C10 - C12 _{EH_1D_AR_MS}	μg/l	10	NONE	< 10
TPH-CWG - Aromatic >C12 - C16 _{EH_1D_AR_MS}	μg/l	10	NONE	< 10
TPH-CWG - Aromatic >C16 - C21 _{EH_1D_AR_MS}	μg/l	10	NONE	< 10
TPH-CWG - Aromatic >C21 - C35 _{EH_1D_AR_MS}	μg/l	10	NONE	< 10
TPH-CWG - Aromatic >C35 - C44 _{EH_1D_AR_MS}	μg/l 	10	NONE	< 10
TPH-CWG - Aromatic (C5 - C35) HS+EH_1D_AR_MS	μg/l	10	NONE	< 10
TPH-CWG - Aromatic (C5 - C44) _{HS+EH_1D_AR_MS}	μg/l	10	NONE	< 10
TPH-CWG Total C5 - C44 EH+HS_1D_TOTAL_MS	μg/l	10	NONE	. 10
THEHHHS_ID_TOTAL_MS	P9/1			< 10

Analytical Report Number: 23-28256

Lab Sample Number				2647476
Sample Reference				BH06
Sample Number	None Supplied			
Depth (m)	None Supplied			
Date Sampled	12/04/2023			
Time Taken				1405
		Lim	A	
Analytical Parameter	_	Limit of detection	Accreditation Status	
(Water Analysis)	Units	det	creditat Status	
		e <u>ct</u> i	* tion	
		9		
VOCs				
Chloromethane	μg/l	3	ISO 17025	< 3.0
Chloroethane	μg/l	3	ISO 17025	< 3.0
Bromomethane	μg/l	3	ISO 17025	< 3.0
Vinyl Chloride	μg/l	3	NONE	< 3.0
Trichlorofluoromethane	μg/l 	3	NONE	< 3.0
1,1-Dichloroethene	μg/l	3	ISO 17025	< 3.0
1,1,2-Trichloro-1,2,2-trifluoroethane	μg/l	3	ISO 17025	< 3.0
Cis-1,2-dichloroethene	μg/l	3	ISO 17025	< 3.0
MTBE (Methyl Tertiary Butyl Ether) 1.1-Dichloroethane	μg/l	3	ISO 17025 ISO 17025	< 3.0
1,1-Dichloroethane 2,2-Dichloropropane	μg/l μg/l	3	ISO 17025	< 3.0 < 3.0
Z,Z-Dicnioropropane Trichloromethane	μg/l	3	ISO 17025	< 3.0
1,1,1-Trichloroethane	μg/l	3	ISO 17025	< 3.0
1,2-Dichloroethane	μg/l	3	ISO 17025	< 3.0
1,1-Dichloropropene	μg/l	3	ISO 17025	< 3.0
Trans-1,2-dichloroethene	μg/l	3	ISO 17025	< 3.0
Benzene	μg/l	3	ISO 17025	< 3.0
Tetrachloromethane	μg/l	3	ISO 17025	< 3.0
1,2-Dichloropropane	μg/l	3	ISO 17025	< 3.0
Trichloroethene	μg/l	3	ISO 17025	< 3.0
Dibromomethane	μg/l	3	ISO 17025	< 3.0
Bromodichloromethane	μg/l	3	ISO 17025	< 3.0
Cis-1,3-dichloropropene	μg/l	3	ISO 17025	< 3.0
Trans-1,3-dichloropropene	μg/l	3	ISO 17025	< 3.0
Toluene	μg/l	3	ISO 17025	< 3.0
1,1,2-Trichloroethane	μg/l	3	ISO 17025	< 3.0
1,3-Dichloropropane	μg/l	3	ISO 17025	< 3.0
Dibromochloromethane	μg/l	3	ISO 17025	< 3.0
Tetrachloroethene	μg/l	3	ISO 17025	< 3.0
1,2-Dibromoethane	μg/l	3	ISO 17025	< 3.0
Chlorobenzene	μg/l	3	ISO 17025 ISO 17025	< 3.0
1,1,1,2-Tetrachloroethane	μg/l	3		< 3.0
Ethylbenzene	μg/l μg/l	3	ISO 17025 ISO 17025	< 3.0 < 3.0
p & m-Xylene Styrene	μg/l	3	ISO 17025	< 3.0
Tribromomethane	μg/l	3	ISO 17025	< 3.0
o-Xylene	μg/l	3	ISO 17025	< 3.0
1,1,2,2-Tetrachloroethane	μg/l	3	ISO 17025	< 3.0
Isopropylbenzene	μg/l	3	ISO 17025	< 3.0
Bromobenzene	μg/l	3	ISO 17025	< 3.0
n-Propylbenzene	μg/l	3	ISO 17025	< 3.0
2-Chlorotoluene	μg/l	3	ISO 17025	< 3.0
4-Chlorotoluene	μg/l	3	ISO 17025	< 3.0
1,3,5-Trimethylbenzene	μg/l	3	ISO 17025	< 3.0
tert-Butylbenzene	μg/l	3	ISO 17025	< 3.0
1,2,4-Trimethylbenzene	μg/l	3	ISO 17025	< 3.0
sec-Butylbenzene	μg/l	3	ISO 17025	< 3.0
1,3-Dichlorobenzene	μg/l	3	ISO 17025	< 3.0
p-Isopropyltoluene	μg/l	3	ISO 17025	< 3.0
1,2-Dichlorobenzene	μg/l	3	ISO 17025	< 3.0
1,4-Dichlorobenzene	μg/l	3	ISO 17025	< 3.0

Analytical Report Number: 23-28256

Project / Site name: Former Tata Site, Pontarddulais

Lab Sample Number		2647476		
Sample Reference	BH06			
Sample Number	None Supplied			
Depth (m)	None Supplied			
Date Sampled	12/04/2023			
Time Taken				1405
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status	
Butylbenzene	μg/l	3	ISO 17025	< 3.0
1,2-Dibromo-3-chloropropane	μg/l	3	ISO 17025	< 3.0
1,2,4-Trichlorobenzene	μg/l	3	ISO 17025	< 3.0
Hexachlorobutadiene	μg/l	3	ISO 17025	< 3.0
1,2,3-Trichlorobenzene	μg/l	3	ISO 17025	< 3.0

SVOCs

Aniline μg/l 0.05 NONE < 0.05	SVOCs				
2-Chlorophenol μg/l 0.05 NONE < 0.05 Bis(2-chloroethylylether μg/l 0.05 NONE < 0.05 1,3-Dichlorobenzene μg/l 0.05 NONE < 0.05 1,3-Dichlorobenzene μg/l 0.05 NONE < 0.05 1,4-Dichlorobenzene μg/l 0.05 NONE < 0.05 1,2-Dichlorobenzene μg/l 0.05 NONE <	Aniline	μg/l	0.05	NONE	< 0.05
Bis(2-chloroethyl)ether	Phenol	μg/l	0.05	NONE	< 0.05
1,2-Dichlorobenzene	2-Chlorophenol	μg/l	0.05	NONE	< 0.05
1,2-Dichlorobenzene	Bis(2-chloroethyl)ether	μg/l	0.05	NONE	< 0.05
1,4-Dichlorobenzene	1,3-Dichlorobenzene	μg/l	0.05	NONE	< 0.05
Bis(2-chloroisopropyl)ether	1,2-Dichlorobenzene	μg/l	0.05	NONE	< 0.05
2-Methylphenol μg/l 0.05 NONE < 0.05	1,4-Dichlorobenzene	μg/l	0.05	NONE	< 0.05
Hexachloroethane	Bis(2-chloroisopropyl)ether	μg/l	0.05	NONE	< 0.05
Nitrobenzene µg/ 0.05 NONE < 0.05	2-Methylphenol	μg/l	0.05	NONE	< 0.05
### dethylphenol μg/l 0.05 NONE < 0.05 Sophorone μg/l 0.0	Hexachloroethane	μg/l	0.05	NONE	< 0.05
Sephorone	Nitrobenzene	μg/l	0.05	NONE	< 0.05
2-Nitrophenol	4-Methylphenol	μg/l	0.05	NONE	< 0.05
2,4-Dimethylphenol	Isophorone	μg/l	0.05	NONE	< 0.05
Bis(2-chloroethoxy)methane	2-Nitrophenol	μg/l	0.05	NONE	< 0.05
1,2,4-Trichlorobenzene µg/l 0.05 NONE < 0.05	2,4-Dimethylphenol	μg/l	0.05	NONE	< 0.05
Naphthalene	Bis(2-chloroethoxy)methane	μg/l	0.05	NONE	< 0.05
2,4-Dichlorophenol	1,2,4-Trichlorobenzene	μg/l	0.05	NONE	< 0.05
4-Chloroaniline μg/l 0.05 NONE < 0.05	Naphthalene	μg/l	0.01	ISO 17025	< 0.01
Hexachlorobutadiene μg/l 0.05 NONE < 0.05 4-Chloro-3-methylphenol μg/l 0.05 NONE < 0.05	2,4-Dichlorophenol	μg/l	0.05	NONE	< 0.05
4-Chloro-3-methylphenol	4-Chloroaniline	μg/l	0.05	NONE	< 0.05
2,4,6-Trichlorophenol µg/l 0.05 NONE < 0.05	Hexachlorobutadiene	μg/l	0.05	NONE	< 0.05
2,4,5-Trichlorophenol	4-Chloro-3-methylphenol	μg/l	0.05	NONE	< 0.05
2-Methylnaphthalene µg/l 0.05 NONE < 0.05	2,4,6-Trichlorophenol	μg/l	0.05	NONE	< 0.05
2-Chloronaphthalene	2,4,5-Trichlorophenol	μg/l	0.05	NONE	< 0.05
Dimethylphthalate µg/l 0.05 NONE < 0.05 2,6-Dinitrotoluene µg/l 0.05 NONE < 0.05	2-Methylnaphthalene	μg/l	0.05	NONE	< 0.05
2,6-Dinitrotoluene	2-Chloronaphthalene	μg/l	0.05	NONE	< 0.05
Acenaphthylene	Dimethylphthalate	μg/l	0.05	NONE	< 0.05
Acenaphtene μg/l 0.01 ISO 17025 < 0.01	2,6-Dinitrotoluene	μg/l	0.05	NONE	< 0.05
2,4-Dinitrotoluene µg/l 0.05 NONE < 0.05	Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01
Pig/I 0.05 NONE < 0.05	Acenaphthene	μg/l	0.01	ISO 17025	< 0.01
4-Chlorophenyl phenyl ether μg/l 0.05 NONE < 0.05	2,4-Dinitrotoluene	μg/l	0.05	NONE	< 0.05
Diethyl phthalate µg/l 0.05 NONE < 0.05 4-Nitroaniline µg/l 0.05 NONE < 0.05	Dibenzofuran	μg/l	0.05	NONE	< 0.05
4-Nitroaniline μg/l 0.05 NONE < 0.05	4-Chlorophenyl phenyl ether	μg/l	0.05	NONE	< 0.05
Fluorene μg/l 0.01 ISO 17025 < 0.01 Azobenzene μg/l 0.05 NONE < 0.05	Diethyl phthalate	μg/l	0.05	NONE	< 0.05
Azobenzene μg/l 0.05 NONE < 0.05	4-Nitroaniline	μg/l	0.05	NONE	< 0.05
Bromophenyl phenyl ether μg/l 0.05 NONE < 0.05 Hexachlorobenzene μg/l 0.05 NONE < 0.05	Fluorene	μg/l	0.01	ISO 17025	< 0.01
Hexachlorobenzene μg/l 0.05 NONE < 0.05 Phenanthrene μg/l 0.01 ISO 17025 < 0.01 Anthracene μg/l 0.01 ISO 17025 < 0.01 Carbazole μg/l 0.05 NONE < 0.05 Dibutyl phthalate μg/l 0.05 NONE < 0.05 Anthraquinone μg/l 0.05 NONE < 0.05 Anthraquinone μg/l 0.05 NONE < 0.05	Azobenzene	μg/l		NONE	< 0.05
Phenanthrene μg/l 0.01 ISO 17025 < 0.01 Anthracene μg/l 0.01 ISO 17025 < 0.01	Bromophenyl phenyl ether				< 0.05
Anthracene μg/l 0.01 ISO 17025 < 0.01 Carbazole μg/l 0.05 NONE < 0.05	Hexachlorobenzene	μg/l			< 0.05
Carbazole $\mu g/l$ 0.05 NONE < 0.05 Dibutyl phthalate $\mu g/l$ 0.05 NONE < 0.05 Anthraquinone $\mu g/l$ 0.05 NONE < 0.05	Phenanthrene	μg/l	0.01		< 0.01
Dibutyl phthalate $\mu g/l$ 0.05 NONE < 0.05 Anthraquinone $\mu g/l$ 0.05 NONE < 0.05	Anthracene	μg/l			< 0.01
Anthraquinone μg/l 0.05 NONE < 0.05	Carbazole	μg/l			< 0.05
Tital adament	Dibutyl phthalate	μg/l	0.05	NONE	< 0.05
Florenathers	Anthraquinone				< 0.05
Huorantnene µg/1 0.01 150 17025 < 0.01	Fluoranthene	μg/l	0.01	ISO 17025	< 0.01

Project / Site name: Former Tata Site, Pontarddulais

Lab Sample Number				2647476	
Sample Reference				BH06	
Sample Number				None Supplied	
Depth (m)				None Supplied	
Date Sampled				12/04/2023	
Time Taken				1405	
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status		
Pyrene	μg/l	0.01	ISO 17025	< 0.01	
Butyl benzyl phthalate	μg/l	0.05	NONE	< 0.05	
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01	
Chrysene	μg/l	0.01	ISO 17025	< 0.01	
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01	
Indeno(1,2,3-cd)pyrene	μg/l	0.01	ISO 17025	< 0.01	
Dibenz(a,h)anthracene	μg/l	0.01	ISO 17025	< 0.01	
Benzo(ghi)perylene	µg/I	0.01	ISO 17025	< 0.01	
3&4-Methylphenol	μg/l	0.1	NONE	< 0.10	
PCBs by GC-MS					
PCB Congener 28	μg/l	0.02	NONE	< 0.02	
PCB Congener 52	μg/l	0.02	NONE	< 0.02	

PCB Congener 28	μg/l	0.02	NONE	< 0.02
PCB Congener 52	μg/l	0.02	NONE	< 0.02
PCB Congener 101	μg/l	0.02	NONE	< 0.02
PCB Congener 118	μg/l	0.02	NONE	< 0.02
PCB Congener 138	μg/l	0.02	NONE	< 0.02
PCB Congener 153	μg/l	0.02	NONE	< 0.02
PCB Congener 180	μg/l	0.02	NONE	< 0.02

PCBs by GC-MS

Total PCBs	μg/l	0.14	NONE	< 0.14

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

Project / Site name: Former Tata Site, Pontarddulais

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

1			1	
Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(Al, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Determination of boron in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM	L039-PL	W	ISO 17025
Determination of hexavalent chromium in water by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method by continuous flow analyser. Accredited Matrices SW, GW, PW.	L080-PL	W	ISO 17025
Determination of hardness in waters by calculation from calcium and magnesium. Accredited Matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045-PL	W	ISO 17025
Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	W	ISO 17025
Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L028-PL	W	NONE
Determination of sulphide in water by ion selective electrode.	In-house method	L029-PL	W	NONE
Determination of sulphate in water after filtration by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Determination of total sulphur in water by acidification followed by ICP-OES.	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L039-PL	W	NONE
Determination of semi-volatile organic compounds in leachate by extraction in dichloromethane followed by GC-MS.	In-house method based on USEPA 8270	L102B-PL	W	ISO 17025
Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	W	ISO 17025
Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	ISO 17025
Determination of dissolved organic carbon in water by TOC/DOC NDIR analyser. Accredited matrices: SW PW GW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	ISO 17025
Determination of volatile organic compounds in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(AI, Cu,Fe,Zn). Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, AI=SW,PW. Determination of boron in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW Determination of hexavalent chromium in water by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry. Determination of hardness in waters by calculation from calcium and magnesium. Accredited Matrices SW, GW, PW. Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW Determination of PCB by extraction with acetone and hexane followed by GC-MS. Determination of sulphide in water by ion selective electrode. Determination of sulphate in water after filtration by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW. Determination of total sulphur in water by acidification followed by ICP-OES. Determination of semi-volatile organic compounds in leachate by extraction in dichloromethane followed by GC-MS. Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation. Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW. Determination of of olatile organic carbon in water by TOC/DOC NDIR analyser. Accredited matrices: SW PW GW.	Determination of metals in water by acidification followed by (CP-DES. Accredited Matrices SW, GW, PW, PW.(Al., Cu,Fe,Zn). Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices SW, GW, PW except B=SW, GW, Hg=SW, PW, Al=SW, PW, Al=SW, PW, Al=SW, PW, Al=SW, PW. Al=SW, PW. Al=SW, PW. PW. Al=SW, PW. Alexandrication followed by ICP-DES. Accredited matrices: SW PW GW Determination of hosovalent chromium in water by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry. Determination of hardness in waters by calculation from calcium and magnesium. Accredited Matrices SW, GW, PW. Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW Determination of Phenols in water by continuous flow analyser. Accredited matrices: SW PW GW Determination of PAH compounds in water by extraction in dichloromethane followed by GC-Ms with the use of surrogate and internal standards. Accredited matrices: SW PW GW Determination of PCB by extraction with acetone and hexane followed by GC-Ms. Determination of sulphide in water by ion selective electrode. Determination of sulphide in water by acidification followed by ICP-DES. Accredited Matrices SW, GW, PW. Determination of total sulphur in water by acidification followed by ICP-DES. Accredited Matrices SW, GW, PW. Determination of sulphide in water by acidification followed by ICP-DES. Accredited Matrices SW, GW, PW. Determination of sulphide in water by acidification followed by ICP-DES. Accredited Matrices SW, GW, PW. Determination of sulphide in water by acidification followed by ICP-DES. Accredited Matrices SW, GW, PW. Determination of disolved organic compounds in leachate by extraction in dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation. Determination of dissolved org	Determination of metals in water by addification followed by ICP-OES. Accredited Matrices SW, GW, PW, PWI.(A), for the Determination of metals in water by addification followed by ICP-OES. Accredited Matrices SW, GW, PW except B=SW, GW, Hg=SW, PW, Al=SW, PW. Determination of metals in water by addification followed by ICP-OES. Accredited Matrices: SW, GW, PW except B=SW, GW, Hg=SW, PW, Al=SW, PW. Determination of metals in water by addification followed by ICP-OES. Accredited matrices: SW PW GW LOPER Accredited matrices: SW PW GW Determination of hexavalent chromium in water by addification followed by ICP-OES. Accredited matrices: SW PW GW Determination of hexavalent chromium in water by addification followed by Colorimetry. Determination of hardness in waters by calculation from calcium and magnesium. Accredited Matrices SW, GW, PW. Determination of hardness in water by continuous flow analyser. Accredited Matrices SW, GW, PW. Determination of phenois in water by continuous flow analyser. Accredited matrices: SW PW GW Between the compounds in water by continuous flow analyser. Accredited matrices: SW PW GW Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW Determination of PCB by extraction with acctance and hexane followed by GC-MS. Determination of Sulphide in water after filtration by addification followed by ICP-OES. Accredited Matrices SW, GW, PW. Determination of sulphide in water after filtration by addification followed by ICP-OES. Accredited Matrices SW, for the Determination of Metals in Soil. Determination of dichloromethane followed by GC-MS. Determination of dichloromethane extractable hydrocarbors in water by GC-MS, speciation by interpretation. Determination of discloved organic campounds in water by GC-M	Analytical Method Description Analytical Method Reference number Analysis Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, KW, PW, PW, KW, AV, CW, EX, CW, CW, CW, CW, CW, CW, CW, CW, CW, CW

Project / Site name: Former Tata Site, Pontarddulais

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Dissolved Organic Carbon in water	Determination of dissolved inorganic carbon in water by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	ISO 17025
BTEX in water (Monoaromatics)	Determination of BTEX in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
BTEX and MTBE in water (Monoaromatics)	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
pH at 20oC in water (automated)	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In house method.	L099-PL	W	ISO 17025
TPH in (Water)	Determination of TPH bands by HS-GC-MS/GC-MS	In-house method, TPH with carbon banding.	L070-PL	W	NONE

For method numbers ending in 'UK or A' analysis have been carried out in our laboratory in the United Kingdom (WATFORD).

For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride).

For method numbers ending in 'PL or B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Information in Support of Analytical Results

List of HWOL Acronyms and Operators

	the contract of the contract o
Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil®, silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - understore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS Total or EH CU+HS Total

Data reported unaccredited due to quality control parameter failure associated with this result; other checks applied prior to reporting the data have been accepted. The result should be considered as being deviating and may be compromised.

i2 Analytical Ltd.

Croxley Green

Business Park,

Watford, Herts, **WD18 8YS**

7 Woodshots Meadow,

Roger Hawkins

Integral Geotechnique Integral House 7 Beddau Way Castlegate Business Park CF83 2AX

t: 02920807991 t: 01923 225404 **f:** 02920862176 **f:** 01923 237404

e: roger@integralgeotec.com e: reception@i2analytical.com

Analytical Report Number: 23-32194

Project / Site name: 05/05/2023 Former Tata Site, Pontarddulais Samples received on:

Your job number: 14180-RJH Samples instructed on/

Analysis started on:

05/05/2023

Your order number: Analysis completed by: 15/05/2023

Report Issue Number: Report issued on: 15/05/2023

Samples Analysed: 6 water samples

Signed:

Dominika Warjan Junior Reporting Specialist

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 23-32194

Lab Sample Number				2670094	2670095	2670096	2670097	2670098
Sample Reference				BH 01	BH 02	BH 03	BH 04	BH 05
Sample Number				None Supplied				
•				None Supplied				
Depth (m) Date Sampled				03/05/2023	03/05/2023	03/05/2023	03/05/2023	03/05/2023
Time Taken				1055	1135	1205	1235	1315
Time Taken	1	-	1	1055	1133	1205	1235	1313
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
General Inorganics								
pH (L005B)	pH Units	N/A	ISO 17025	5.8	6.5	7	6.4	6
Total Cyanide	μg/l	10	ISO 17025	< 10	< 10	< 10	< 10	< 10
Sulphate as SO4	μg/l	45	ISO 17025	17400	16500	23200	26000	16500
Total Sulphur	μg/l	15	NONE	5800	5500	7700	8700	5500
Sulphide	μg/l	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Dissolved Organic Carbon (DOC)	mg/l	0.1	ISO 17025	0.85	0.43	4.51	0.71	0.61
Total Organic Carbon (TOC)	mg/l	0.1	ISO 17025	1.12	0.58	4.57	0.73	0.7
. ,	•					-	-	
	iligcaco			38.3	83.9	495	120	62.3
Hardness - Total	3/I	1	ISO 17025	36.3	63.9	495	139	62.3
Total Phenols								
Total Phenols (monohydric)	μg/l	10	ISO 17025	< 10	< 10	< 10	< 10	< 10
Speciated PAHs					1			
Naphthalene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluorene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Phenanthrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Total PAH								
Total EPA-16 PAHs	μg/l	0.16	ISO 17025	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16
	. 5.			, 0.10	, 0.10	, 0.10	, 0.10	, 0.10
Heavy Metals / Metalloids	=n	10	ICO 17025	22	22	FF	45	26
Boron (dissolved)	μg/l	10	ISO 17025	22	33	55	45	26
Calcium (dissolved)	mg/l	0.012	ISO 17025	8.2	20	180	46	21
Chromium (hexavalent)	μg/l	5	ISO 17025	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Magnesium (dissolved)	mg/l	0.005	ISO 17025	4.3	8.4	10	5.8	2.2

Analytical Report Number: 23-32194

Lab Sample Number		2670094	2670095	2670096	2670097	2670098		
Sample Reference				BH 01	BH 02	BH 03	BH 04	BH 05
Sample Number				None Supplied				
Depth (m)				None Supplied				
Date Sampled				03/05/2023	03/05/2023	03/05/2023	03/05/2023	03/05/2023
Time Taken				1055	1135	1205	1235	1315
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
		on .	,					
Arsenic (dissolved)	μg/l	0.15	ISO 17025	< 0.15	< 0.15	0.56	< 0.15	< 0.15
Beryllium (dissolved)	μg/l	0.1	ISO 17025	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Cadmium (dissolved)	μg/l	0.02	ISO 17025	0.12	0.03	0.05	0.03	0.06
Chromium (dissolved)	μg/l	0.2	ISO 17025	< 0.2	0.2	< 0.2	< 0.2	< 0.2
Copper (dissolved)	μg/l	0.5	ISO 17025	1.2	1.5	3	0.9	0.6
Lead (dissolved)	μg/l	0.2	ISO 17025	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Mercury (dissolved)	μg/l	0.05	ISO 17025	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Nickel (dissolved)	μg/l 	0.5	ISO 17025	14	1.4	2	8.3	4
Selenium (dissolved)	μg/l 	0.6	ISO 17025	0.9	< 0.6	< 0.6	1.4	0.7
Vanadium (dissolved)	μg/l	0.2	ISO 17025	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Zinc (dissolved)	μg/l	0.5	ISO 17025	17	3.6	4.8	9.3	5
Monoaromatics & Oxygenates								
Benzene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Toluene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Ethylbenzene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
p & m-xylene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
o-xylene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
MTBE (Methyl Tertiary Butyl Ether)	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >C5 - C6# HS_1D_AL	μg/l	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8# HS_1D_AL	μg/l	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10# HS_1D_AL	μg/l	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12 _{EH_1D_AL_MS}	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C12 - C16 EH_1D_AL_MS	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C16 - C21 EH_1D_AL_MS	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C21 - C35 EH_1D_AL_MS	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C35 - C44 EH_1D_AL_MS	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C35) HS+EH_1D_AL_MS	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C44) HS+EH_1D_AL_MS	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C5 - C7# HS_1D_AR	μg/l	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C7 - C8# _{HS_1D_AR}	μg/l	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10# _{HS_1D_AR}	μg/l	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C10 - C12 _{EH_1D_AR_MS}	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C12 - C16 EH_ID_AR_MS	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C16 - C21 _{EH_1D_AR_MS}	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C21 - C35 _{EH_1D_AR_MS}	μg/l 	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C35 - C44 _{EH_1D_AR_MS}	μg/l 	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C35) HS+EH_ID_AR_MS	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C44) _{HS+EH_1D_AR_MS}	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG Total C5 - C44 _{EH+HS_1D_TOTAL_MS}	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
VOCs								
Chloromethane	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Chloroethane	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Bromomethane	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Vinyl Chloride	μg/l	3	NONE	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Trichlorofluoromethane	μg/l	3	NONE	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
1,1-Dichloroethene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0

Analytical Report Number: 23-32194

Project / Site name: Former Tata Site, Pontarddulais

Lab Sample Number		2670094	2670095	2670096	2670097	2670098		
Sample Reference				BH 01	BH 02	BH 03	BH 04	BH 05
Sample Number				None Supplied				
Depth (m)				None Supplied				
Date Sampled				03/05/2023	03/05/2023	03/05/2023	03/05/2023	03/05/2023
Time Taken				1055	1135	1205	1235	1315
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
. , ,		ection	ition s					
1,1,2-Trichloro-1,2,2-trifluoroethane##	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Cis-1,2-dichloroethene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
MTBE (Methyl Tertiary Butyl Ether)	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
1,1-Dichloroethane	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
2,2-Dichloropropane#	μg/l	3	NONE	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Trichloromethane	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
1,1,1-Trichloroethane	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
1,2-Dichloroethane	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
1,1-Dichloropropene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Trans-1,2-dichloroethene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Benzene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Tetrachloromethane##	μg/l	3	ISO 17025 ISO 17025	< 3.0 < 3.0	< 3.0 < 3.0	< 3.0	< 3.0	< 3.0
1,2-Dichloropropane	μg/l	3	ISO 17025			< 3.0	< 3.0	< 3.0
Trichloroethene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Dibromomethane Promodichlessmethane	μg/l μg/l	3	ISO 17025	< 3.0 < 3.0				
Bromodichloromethane	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Cis-1,3-dichloropropene Trans-1,3-dichloropropene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Toluene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
1,1,2-Trichloroethane	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
1,3-Dichloropropane	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Dibromochloromethane	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Tetrachloroethene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
1,2-Dibromoethane	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Chlorobenzene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
1,1,1,2-Tetrachloroethane	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Ethylbenzene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
p & m-Xylene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Styrene#	μg/l	3	NONE	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Tribromomethane	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
o-Xylene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
1,1,2,2-Tetrachloroethane	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Isopropylbenzene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Bromobenzene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
n-Propylbenzene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
2-Chlorotoluene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
4-Chlorotoluene	μg/l 	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
1,3,5-Trimethylbenzene	μg/l 	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
tert-Butylbenzene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
1,2,4-Trimethylbenzene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
sec-Butylbenzene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
1,3-Dichlorobenzene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
p-Isopropyltoluene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
1,2-Dichlorobenzene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
1,4-Dichlorobenzene	µg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Butylbenzene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
1,2-Dibromo-3-chloropropane	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
1,2,4-Trichlorobenzene	μg/l		ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Hexachlorobutadiene	μg/l μg/l	3	ISO 17025 ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
1,2,3-Trichlorobenzene	μ9/1	ر	130 1/023	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0

SVOCs

Analytical Report Number: 23-32194

Lab Sample Number		2670094	2670095	2670096	2670097	2670098		
Sample Reference				BH 01	BH 02	BH 03	BH 04	BH 05
Sample Number				None Supplied				
Depth (m)				None Supplied				
Date Sampled				03/05/2023	03/05/2023	03/05/2023	03/05/2023	03/05/2023
Time Taken				1055	1135	1205	1235	1315
14.6.		=		1000	1100	1200	1200	1010
Analytical Parameter	_	Limit of detection	Accreditation Status					
(Water Analysis)	Units	det	dita					
		ecti	s tion					
		on .	_					
Aniline	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
2-Chlorophenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Bis(2-chloroethyl)ether	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,3-Dichlorobenzene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,2-Dichlorobenzene	μg/l 	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,4-Dichlorobenzene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Bis(2-chloroisopropyl)ether	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
2-Methylphenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Hexachloroethane	μg/l	0.05	NONE NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Nitrobenzene	μg/l μg/l	0.05	NONE	< 0.05 < 0.05				
4-Methylphenol Isophorone	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
2-Nitrophenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
2,4-Dimethylphenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Bis(2-chloroethoxy)methane	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,2,4-Trichlorobenzene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Naphthalene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2,4-Dichlorophenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
4-Chloroaniline	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobutadiene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
4-Chloro-3-methylphenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
2,4,6-Trichlorophenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
2,4,5-Trichlorophenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
2-Methylnaphthalene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
2-Chloronaphthalene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dimethylphthalate	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
2,6-Dinitrotoluene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2,4-Dinitrotoluene	μg/l 	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibenzofuran	μg/l 	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
4-Chlorophenyl phenyl ether	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Diethyl phthalate	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
4-Nitroaniline	μg/l	0.05	NONE ISO 17025	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	μg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Azobenzene Bromophenyl phenyl ether	μg/l μg/l	0.05	NONE	< 0.05 < 0.05				
Hexachlorobenzene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	μg/l	0.01	ISO 17025	< 0.03	< 0.01	< 0.03	< 0.01	< 0.03
Anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Carbazole	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibutyl phthalate	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Anthraquinone	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Butyl benzyl phthalate	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
			-		-			-

Analytical Report Number: 23-32194

Project / Site name: Former Tata Site, Pontarddulais

Lab Sample Number	Lab Sample Number						2670097	2670098
Sample Reference				BH 01	BH 02	BH 03	BH 04	BH 05
Sample Number				None Supplied				
Depth (m)				None Supplied				
Date Sampled				03/05/2023	03/05/2023	03/05/2023	03/05/2023	03/05/2023
Time Taken				1055	1135	1205	1235	1315
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Indeno(1,2,3-cd)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
3&4-Methylphenol	μg/l	0.1	NONE	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
PCBs by GC-MS								
PCB Congener 28	μg/l	0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
PCB Congener 52	μg/l	0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
PCB Congener 101	μg/l	0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
PCB Congener 118	μg/l	0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
PCB Congener 138	μg/l	0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
PCB Congener 153	μg/l	0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
PCB Congener 180	μg/l	0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
PCBs by GC-MS Total PCBs	μg/l	0.14	NONE	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

Boron (dissolved)

Calcium (dissolved)

Chromium (hexavalent)

Magnesium (dissolved)

Analytical Report Number: 23-32194

Project / Site name: Former Tata Site, Pontarddulais

Lab Sample Number				2670099
Sample Reference				BH 06
Sample Number				None Supplied
Depth (m)				None Supplied
Date Sampled				03/05/2023
Time Taken				1405
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status	
General Inorganics				
pH (L005B)	pH Units	N/A	ISO 17025	6.2
Total Cyanide	μg/l	10	ISO 17025	< 10
Sulphate as SO4	μg/l	45	ISO 17025	8310
Total Sulphur	μg/l	15	NONE	2800
Sulphide	μg/l	5	NONE	< 5.0
Dissolved Organic Carbon (DOC)	mg/l	0.1	ISO 17025	0.57
Total Organic Carbon (TOC)	mg/l	0.1	ISO 17025	0.65
Hardness - Total	iligeaco 3/I	1	ISO 17025	45.2
Total Phenois	. 10			
Total Phenols (monohydric)	μg/l	10	ISO 17025	< 10
Speciated PAHs				
Naphthalene	μg/l	0.01	ISO 17025	< 0.01
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01
Acenaphthene	μg/l	0.01	ISO 17025	< 0.01
Fluorene	μg/l	0.01	ISO 17025	< 0.01
Phenanthrene	μg/l	0.01	ISO 17025	< 0.01
Anthracene	μg/l	0.01	ISO 17025	< 0.01
Fluoranthene	μg/l	0.01	ISO 17025	< 0.01
Pyrene	μg/l	0.01	ISO 17025	< 0.01
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01
Chrysene	μg/l	0.01	ISO 17025	< 0.01
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01
	μg/l	0.01	ISO 17025	< 0.01
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01
Indeno(1,2,3-cd)pyrene		0.01	ISO 17025	< 0.01
Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	μg/l			
Indeno(1,2,3-cd)pyrene	µg/I µg/I	0.01	ISO 17025	< 0.01
Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene				

μg/l

mg/l

μg/l

mg/l

10

0.012

5

0.005

ISO 17025

ISO 17025

ISO 17025

ISO 17025

15

16

< 5.0

1.1

Analytical Report Number: 23-32194

Project / Site name: Former Tata Site, Pontarddulais

Lab Sample Number		2670099		
Sample Reference				BH 06
Sample Number		None Supplied		
Depth (m)				None Supplied
Date Sampled				03/05/2023
Time Taken				1405
Analytical Parameter (Water Analysis)				
Arsenic (dissolved)	μg/l	0.15	ISO 17025	< 0.15
Beryllium (dissolved)	μg/l	0.1	ISO 17025	< 0.1
Cadmium (dissolved)	μg/l	0.02	ISO 17025	0.02
Chromium (dissolved)	μg/l	0.2	ISO 17025	< 0.2
Copper (dissolved)	μg/l	0.5	ISO 17025	< 0.5
Lead (dissolved)	μg/l	0.2	ISO 17025	< 0.2
Mercury (dissolved)	μg/l	0.05	ISO 17025	< 0.05
Nickel (dissolved)	μg/l	0.5	ISO 17025	0.8
Selenium (dissolved)	μg/l	0.6	ISO 17025	< 0.6
Vanadium (dissolved)	μg/l	0.2	ISO 17025	< 0.2
Zinc (dissolved)	μg/l	0.5	ISO 17025	3.7

Monoaromatics & Oxygenates

Benzene	μg/l	3	ISO 17025	< 3.0
Toluene	μg/l	3	ISO 17025	< 3.0
Ethylbenzene	μg/l	3	ISO 17025	< 3.0
p & m-xylene	μg/l	3	ISO 17025	< 3.0
o-xylene	μg/l	3	ISO 17025	< 3.0
MTBE (Methyl Tertiary Butyl Ether)	μg/l	3	ISO 17025	< 3.0

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >C5 - C6# HS_1D_AL	μg/l	1	NONE	< 1.0
TPH-CWG - Aliphatic >C6 - C8# HS_1D_AL	μg/l	1	NONE	< 1.0
TPH-CWG - Aliphatic >C8 - C10# HS_1D_AL	μg/l	1	NONE	< 1.0
TPH-CWG - Aliphatic >C10 - C12 EH_1D_AL_MS	μg/l	10	NONE	< 10
TPH-CWG - Aliphatic >C12 - C16 EH_1D_AL_MS	μg/l	10	NONE	< 10
TPH-CWG - Aliphatic >C16 - C21 EH_1D_AL_MS	μg/l	10	NONE	< 10
TPH-CWG - Aliphatic >C21 - C35 EH_1D_AL_MS	μg/l	10	NONE	< 10
TPH-CWG - Aliphatic >C35 - C44 EH_1D_AL_MS	μg/l	10	NONE	< 10
TPH-CWG - Aliphatic (C5 - C35) HS+EH_1D_AL_MS	μg/l	10	NONE	< 10
TPH-CWG - Aliphatic (C5 - C44) HS+EH_1D_AL_MS	μg/l	10	NONE	< 10

TPH-CWG - Aromatic >C5 - C7# HS_1D_AR	μg/l	1	NONE	< 1.0
TPH-CWG - Aromatic >C7 - C8# HS_1D_AR	μg/l	1	NONE	< 1.0
TPH-CWG - Aromatic >C8 - C10# HS_1D_AR	μg/l	1	NONE	< 1.0
TPH-CWG - Aromatic >C10 - C12 _{EH_1D_AR_MS}	μg/l	10	NONE	< 10
TPH-CWG - Aromatic >C12 - C16 EH_1D_AR_MS	μg/l	10	NONE	< 10
TPH-CWG - Aromatic >C16 - C21 EH_1D_AR_MS	μg/l	10	NONE	< 10
TPH-CWG - Aromatic >C21 - C35 _{EH_1D_AR_MS}	μg/l	10	NONE	< 10
TPH-CWG - Aromatic >C35 - C44 _{EH_1D_AR_MS}	μg/l	10	NONE	< 10
TPH-CWG - Aromatic (C5 - C35) HS+EH_ID_AR_MS	μg/l	10	NONE	< 10
TPH-CWG - Aromatic (C5 - C44) HS+EH_1D_AR_MS	μg/l	10	NONE	< 10

TPH-CWG Total C5 - C44 EH+HS_1D_TOTAL_MS	μg/l	10	NONE	< 10

VOCs

Chloromethane	μg/l	3	ISO 17025	< 3.0
Chloroethane	μg/l	3	ISO 17025	< 3.0
Bromomethane	μg/l	3	ISO 17025	< 3.0
Vinyl Chloride	μg/l	3	NONE	< 3.0
Trichlorofluoromethane	μg/l	3	NONE	< 3.0
1,1-Dichloroethene	μg/l	3	ISO 17025	< 3.0

Environmental Science

Analytical Report Number: 23-32194

Project / Site name: Former Tata Site, Pontarddulais

Lab Sample Number				2670099
Sample Reference				BH 06
Sample Number				None Supplied
Depth (m)				None Supplied
Date Sampled				03/05/2023
Time Taken				1405
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status	
1,1,2-Trichloro-1,2,2-trifluoroethane##	μg/l	3	ISO 17025	< 3.0
Cis-1,2-dichloroethene	μg/l	3	ISO 17025	< 3.0
MTBE (Methyl Tertiary Butyl Ether)	μg/l	3	ISO 17025	< 3.0
1,1-Dichloroethane	μg/l	3	ISO 17025	< 3.0
2,2-Dichloropropane#	μg/l	3	NONE	< 3.0
Trichloromethane	μg/l	3	ISO 17025	< 3.0
1,1,1-Trichloroethane	μg/l	3	ISO 17025	< 3.0
1,2-Dichloroethane	μg/l	3	ISO 17025	< 3.0
1,1-Dichloropropene	μg/l	3	ISO 17025	< 3.0
Trans-1,2-dichloroethene	μg/l	3	ISO 17025	< 3.0
Benzene	μg/l	3	ISO 17025	< 3.0
Tetrachloromethane##	μg/l	3	ISO 17025	< 3.0
1,2-Dichloropropane	μg/l	3	ISO 17025	< 3.0
Trichloroethene	μg/l	3	ISO 17025	< 3.0
Dibromomethane	μg/l	3	ISO 17025	< 3.0
Bromodichloromethane	μg/l	3	ISO 17025	< 3.0
Cis-1,3-dichloropropene	μg/l	3	ISO 17025	< 3.0
Trans-1,3-dichloropropene	μg/l	3	ISO 17025	< 3.0
Toluene	μg/l	3	ISO 17025	< 3.0
1,1,2-Trichloroethane	μg/l	3	ISO 17025	< 3.0
1,3-Dichloropropane	μg/l	3	ISO 17025	< 3.0
Dibromochloromethane	μg/l	3	ISO 17025	< 3.0
Tetrachloroethene	μg/l	3	ISO 17025	< 3.0
1,2-Dibromoethane	μg/l	3	ISO 17025	< 3.0
Chlorobenzene	μg/l	3	ISO 17025	< 3.0
1,1,1,2-Tetrachloroethane	μg/l	3	ISO 17025	< 3.0
Ethylbenzene	μg/l	3	ISO 17025	< 3.0
p & m-Xylene	μg/l	3	ISO 17025	< 3.0
Styrene#	μg/l	3	NONE	< 3.0
Tribromomethane	μg/l	3	ISO 17025	< 3.0
o-Xylene	μg/l	3	ISO 17025	< 3.0
1,1,2,2-Tetrachloroethane	μg/l	3	ISO 17025	< 3.0
Isopropylbenzene	μg/l	3	ISO 17025	< 3.0
Bromobenzene	μg/l	3	ISO 17025	< 3.0
n-Propylbenzene	μg/l	3	ISO 17025	< 3.0
2-Chlorotoluene	μg/l	3	ISO 17025	< 3.0
4-Chlorotoluene	μg/l	3	ISO 17025	< 3.0
1,3,5-Trimethylbenzene	μg/l	3	ISO 17025	< 3.0
tert-Butylbenzene	μg/l	3	ISO 17025	< 3.0
1,2,4-Trimethylbenzene	μg/l	3	ISO 17025	< 3.0
	μg/l	3	ISO 17025	< 3.0
sec-Butylbenzene		3	ISO 17025	
1,3-Dichlorobenzene	μg/l	3	ISO 17025	< 3.0
p-Isopropyltoluene	μg/l	3	ISO 17025	< 3.0
1,2-Dichlorobenzene	μg/l	3	ISO 17025	< 3.0
1,4-Dichlorobenzene	μg/l			< 3.0
Butylbenzene	μg/l	3	ISO 17025	< 3.0
1,2-Dibromo-3-chloropropane	μg/l	3	ISO 17025	< 3.0
1,2,4-Trichlorobenzene	μg/l	3	ISO 17025	< 3.0
Hexachlorobutadiene	µg/l	3	ISO 17025 ISO 17025	< 3.0
1,2,3-Trichlorobenzene	μg/l	٠	150 1/023	< 3.0

SVOCs

Analytical Report Number: 23-32194

Lab Sample Number				2670099
Sample Reference				BH 06
Sample Number				None Supplied
Depth (m)				None Supplied
Date Sampled				03/05/2023
Time Taken				1405
		Ę		
	_	Limit of detection	Accreditation Status	
Analytical Parameter (Water Analysis)	Units	of de	reditat Status	
(Water Analysis)	v	ted	atio	
		Š	5	
Aniline	μg/l	0.05	NONE	< 0.05
Phenol	μg/l	0.05	NONE	< 0.05
2-Chlorophenol	μg/l	0.05	NONE	< 0.05
Bis(2-chloroethyl)ether	μg/l	0.05	NONE	< 0.05
1,3-Dichlorobenzene	μg/l	0.05	NONE	< 0.05
1,2-Dichlorobenzene	μg/l	0.05	NONE	< 0.05
1,4-Dichlorobenzene	μg/l	0.05	NONE	< 0.05
Bis(2-chloroisopropyl)ether	μg/l	0.05	NONE	< 0.05
2-Methylphenol	μg/l	0.05	NONE	< 0.05
Hexachloroethane	μg/l	0.05	NONE	< 0.05
Nitrobenzene	μg/l	0.05	NONE	< 0.05
4-Methylphenol	μg/l	0.05	NONE NONE	< 0.05
Isophorone 2-Nitrophenol	μg/l μg/l	0.05	NONE	< 0.05 < 0.05
2,4-Dimethylphenol	μg/I	0.05	NONE	< 0.05
Bis(2-chloroethoxy)methane	μg/l	0.05	NONE	< 0.05
1.2.4-Trichlorobenzene	μg/l	0.05	NONE	< 0.05
Naphthalene	µg/l	0.01	ISO 17025	< 0.01
2,4-Dichlorophenol	µg/l	0.05	NONE	< 0.05
4-Chloroaniline	μg/l	0.05	NONE	< 0.05
Hexachlorobutadiene	μg/l	0.05	NONE	< 0.05
4-Chloro-3-methylphenol	μg/l	0.05	NONE	< 0.05
2,4,6-Trichlorophenol	μg/l	0.05	NONE	< 0.05
2,4,5-Trichlorophenol	μg/l	0.05	NONE	< 0.05
2-Methylnaphthalene	μg/l	0.05	NONE	< 0.05
2-Chloronaphthalene	μg/l	0.05	NONE	< 0.05
Dimethylphthalate	μg/l	0.05	NONE	< 0.05
2,6-Dinitrotoluene	μg/l	0.05	NONE	< 0.05
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01
Acenaphthene	μg/l 	0.01	ISO 17025	< 0.01
2,4-Dinitrotoluene	μg/l	0.05	NONE	< 0.05
Dibenzofuran	μg/l	0.05	NONE	< 0.05
4-Chlorophenyl phenyl ether	µg/l	0.05	NONE	< 0.05
Diethyl phthalate	μg/l μg/l	0.05	NONE	< 0.05
4-Nitroaniline Fluorene	μg/l	0.01	ISO 17025	< 0.05 < 0.01
Azobenzene	μg/l	0.05	NONE	< 0.05
Bromophenyl phenyl ether	μg/l	0.05	NONE	< 0.05
Hexachlorobenzene	μg/l	0.05	NONE	< 0.05
Phenanthrene	µg/l	0.01	ISO 17025	< 0.01
Anthracene	μg/l	0.01	ISO 17025	< 0.01
Carbazole	μg/l	0.05	NONE	< 0.05
Dibutyl phthalate	μg/l	0.05	NONE	< 0.05
Anthraquinone	μg/l	0.05	NONE	< 0.05
Fluoranthene	μg/l	0.01	ISO 17025	< 0.01
Pyrene	μg/l	0.01	ISO 17025	< 0.01
Butyl benzyl phthalate	μg/l	0.05	NONE	< 0.05
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01
Chrysene	μg/l	0.01	ISO 17025	< 0.01
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01

PCBs by GC-MS Total PCBs

Analytical Report Number: 23-32194

Project / Site name: Former Tata Site, Pontarddulais

Lab Sample Number		2670099		
Sample Reference		BH 06		
Sample Number	None Supplied			
Depth (m)	None Supplied			
Date Sampled	03/05/2023			
Time Taken				1405
Analytical Parameter (Water Analysis)				
Indeno(1,2,3-cd)pyrene	μg/l	0.01	ISO 17025	< 0.01
Dibenz(a,h)anthracene	μg/l	0.01	ISO 17025	< 0.01
Benzo(ghi)perylene	μg/l	0.01	ISO 17025	< 0.01
3&4-Methylphenol	μg/l	0.1	NONE	< 0.10
PCBs by GC-MS				
PCB Congener 28	μg/l	0.02	NONE	< 0.02
PCB Congener 52	μg/l	0.02	NONE	< 0.02
PCB Congener 101	μg/l	0.02	NONE	< 0.02
PCB Congener 118	μg/l	0.02	NONE	< 0.02
PCB Congener 138	μg/l	0.02	NONE	< 0.02
PCB Congener 153	μg/l	0.02	NONE	< 0.02
PCB Congener 180	μg/l	0.02	NONE	< 0.02

μg/l

0.14

NONE

< 0.14

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

Project / Site name: Former Tata Site, Pontarddulais

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status	
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	w	ISO 17025	
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(Al, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025	
Boron in water	Determination of boron in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM	L039-PL	W	ISO 17025	
Hexavalent chromium in water	Determination of hexavalent chromium in water by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method by continuous flow analyser. Accredited Matrices SW, GW, PW.	L080-PL	W	ISO 17025	
Total Hardness of water	Determination of hardness in waters by calculation from calcium and magnesium. Accredited Matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045-PL	w	ISO 17025	
Monohydric phenols in water	Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025	
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	w	ISO 17025	
PCB's By GC-MS in water	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L028-PL	W	NONE	
Sulphide in water	Determination of sulphide in water by ion selective electrode.	In-house method	L029-PL	W	NONE	
Sulphate in water	Determination of sulphate in water after filtration by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025	
Total Sulphur in water	Determination of total sulphur in water by acidification followed by ICP-OES.	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L039-PL	W	NONE	
Semi-volatile organic compounds in water	Determination of semi-volatile organic compounds in leachate by extraction in dichloromethane followed by GC-MS.	In-house method based on USEPA 8270	L102B-PL	W	ISO 17025	
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	W	NONE	
Total cyanide in water	Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	ISO 17025	
Total organic carbon in water	Determination of dissolved organic carbon in water by TOC/DOC NDIR analyser. Accredited matrices: SW PW GW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	ISO 17025	
Volatile organic compounds in water	Determination of volatile organic compounds in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025	

Project / Site name: Former Tata Site, Pontarddulais

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Dissolved Organic Carbon in water	Determination of dissolved inorganic carbon in water by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	ISO 17025
BTEX in water (Monoaromatics)	Determination of BTEX in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
BTEX and MTBE in water (Monoaromatics)	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
pH at 20oC in water (automated)	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In house method.	L099-PL	W	ISO 17025
TPH in (Water)	Determination of TPH bands by HS-GC-MS/GC-MS	In-house method, TPH with carbon banding.	L070-PL	W	NONE

For method numbers ending in 'UK or A' analysis have been carried out in our laboratory in the United Kingdom (WATFORD).

For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride).

For method numbers ending in 'PL or B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Information in Support of Analytical Results

List of HWOL Acronyms and Operators

Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil®, silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - understore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS Total or EH CU+HS Total

#Data reported unaccredited due to quality control parameter failure associated with this result; other checks applied prior to reporting the data have been accepted. The result should be considered as being deviating and therefore may be compromised.

##Quality control parameter has a high recovery (outside of limit); however the associated result is below the reporting limit, other checks applied prior to reporting the data have been accepted. The result should be considered as being deviating and may be compromised.

Roger Hawkins

Integral Geotechnique Integral House 7 Beddau Way Castlegate Business Park CF83 2AX

t: 02920807991 **f:** 02920862176

e: roger@integralgeotec.com

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, **WD18 8YS**

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 23-37286

Project / Site name: 05/06/2023 Formet Tata Site, Ponatarddulais Samples received on:

Your job number: 14180 RJH Samples instructed on/

Analysis started on:

05/06/2023

Your order number: Analysis completed by: 13/06/2023

Report Issue Number: Report issued on: 13/06/2023

Samples Analysed: 6 water samples

Signed:

Dominika Warjan Reporting Specialist

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : - 4 weeks from reporting soils

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 23-37286

Lab Sample Number				2700749	2700750	2700751	2700752	2700753
Sample Reference				BH 01	BH 02	BH 03	BH 04	BH 05
Sample Number				None Supplied				
Depth (m)				None Supplied				
Date Sampled				01/06/2023	01/06/2023	01/06/2023	01/06/2023	01/06/2023
Time Taken				1055	1135	1205	1235	1315
		Ε.	I					
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
General Inorganics								
pH (L005B)	pH Units	N/A	ISO 17025	5.4	6.6	6.9	6.5	6.8
Total Cyanide	μg/l	10	ISO 17025	< 10	< 10	< 10	< 10	< 10
Sulphate as SO4	μg/l	45	ISO 17025	19100	19300	26500	26100	23300
Total Sulphur	μg/l	15	NONE	6400	6400	8800	8700	7800
Sulphide	μg/l	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Dissolved Organic Carbon (DOC)	mg/l	0.1	ISO 17025	0.38	0.54	5.18	0.75	0.82
Total Organic Carbon (TOC)	mg/l	0.1	ISO 17025	0.57	0.69	5.33	0.81	0.92
Hardness - Total	3/I	1	ISO 17025	38.2	106	529	118	87.6
Total Phenols								
Total Phenols (monohydric)	μg/l	10	ISO 17025	< 10	< 10	< 10	< 10	< 10
Speciated PAHs		0.04	100 17025		0.01		0.01	0.01
Naphthalene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluorene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Phenanthrene	μg/l 	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	_					. 0.01	. 0.01	. 0.01
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
` `	_	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	µg/I µg/I µg/I	0.01	ISO 17025 ISO 17025	< 0.01 < 0.01				
Benzo(k)fluoranthene Benzo(a)pyrene	µg/I µg/I µg/I µg/I	0.01 0.01 0.01	ISO 17025 ISO 17025 ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	µg/I µg/I µg/I	0.01	ISO 17025 ISO 17025	< 0.01 < 0.01				
Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	µg/I µg/I µg/I µg/I	0.01 0.01 0.01	ISO 17025 ISO 17025 ISO 17025	< 0.01 < 0.01 < 0.01				

Analytical Report Number: 23-37286

Lab Sample Number				2700749	2700750	2700751	2700752	2700753
Sample Reference				BH 01	BH 02	BH 03	BH 04	BH 05
Sample Number				None Supplied				
Depth (m)				None Supplied				
Date Sampled				01/06/2023	01/06/2023	01/06/2023	01/06/2023	01/06/2023
Time Taken				1055	1135	1205	1235	1315
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status	300	333			303
		ion	3					
Heavy Metals / Metalloids								
Boron (dissolved)	μg/l	10	ISO 17025	25	35	63	44	32
Calcium (dissolved)	mg/l	0.012	ISO 17025	7.6	25	200	37	29
Chromium (hexavalent)	μg/l	5	ISO 17025	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Magnesium (dissolved)	mg/l	0.005	ISO 17025	4.7	10	8.8	6.4	3.5
	=======================================	=	=		-			-
Arsenic (dissolved)	μg/l	0.15	ISO 17025	< 0.15	< 0.15	0.61	< 0.15	< 0.15
Beryllium (dissolved)	μg/l	0.1	ISO 17025	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Cadmium (dissolved)	μg/l	0.02	ISO 17025	0.11	0.02	0.06	0.04	0.05
Chromium (dissolved)	μg/l	0.2	ISO 17025	< 0.2	0.3	< 0.2	< 0.2	< 0.2
Copper (dissolved)	μg/l	0.5	ISO 17025	3.1	0.6	3.4	1.3	< 0.5
Lead (dissolved)	μg/l	0.2	ISO 17025	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Mercury (dissolved)	μg/l	0.05	ISO 17025	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Nickel (dissolved)	μg/l	0.5	ISO 17025	13	0.8	2.1	3.5	2.4
Selenium (dissolved)	μg/l	0.6	ISO 17025	0.9	< 0.6	< 0.6	1.9	1.3
Vanadium (dissolved)	μg/l	0.2	ISO 17025	< 0.2	< 0.2	0.4	< 0.2	< 0.2
Zinc (dissolved)	μg/l	0.5	ISO 17025	13	3	1.7	5.1	3.1
Monoaromatics & Oxygenates Benzene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Toluene	μg/l	3	ISO 17025 ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Ethylbenzene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
p & m-xylene	μg/l μg/l	3	ISO 17025	< 3.0 < 3.0				
o-xylene MTBE (Methyl Tertiary Butyl Ether)	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
PITE (Pedity Terdary Bucyr Edier)	F5/ ·			< 5.0	< 5.0	< 3.0	< 3.0	< 5.0
Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >C5 - C6 HS_1D_AL	μg/l	1	NONE	< 1.0#	< 1.0#	< 1.0#	< 1.0#	< 1.0#
TPH-CWG - Aliphatic >C6 - C8 _{HS_1D_AL}	μg/l	1	NONE	< 1.0#	< 1.0#	< 1.0#	< 1.0#	< 1.0#
TPH-CWG - Aliphatic >C8 - C10 _{HS_1D_AL}	μg/l	1	NONE	< 1.0#	< 1.0#	< 1.0#	< 1.0#	< 1.0#
TPH-CWG - Aliphatic >C10 - C12 EH_1D_AL_MS	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C12 - C16 EH_1D_AL_MS	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C16 - C21 _{EH_1D_AL_MS}	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C21 - C35 EH_1D_AL_MS	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C35 - C44 EH_1D_AL_MS	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C35) HS+EH 1D AL MS	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C44) HS+EH_1D_AL_MS	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C5 - C7 HS_1D_AR	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0#
TPH-CWG - Aromatic >C7 - C8 _{HS_1D_AR}	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0#
TPH-CWG - Aromatic >C8 - C10 HS_1D_AR	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0#
TPH-CWG - Aromatic >C10 - C12 EH_1D_AR_MS	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C12 - C16 EH_1D_AR_MS	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C16 - C21 EH_1D_AR_MS	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C21 - C35 EH_1D_AR_MS	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C35 - C44 EH_1D_AR_MS	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C35) HS+FH 1D AR MS	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C44) HS+EH_1D_AR_MS	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG Total C5 - C44 _{EH+HS_1D_TOTAL_MS}	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
		_						

Analytical Report Number: 23-37286

Lab Sample Number	2700749	2700750	2700751	2700752	2700753			
Sample Reference				BH 01	BH 02	BH 03	BH 04	BH 05
Sample Number				None Supplied				
Depth (m)				None Supplied				
Date Sampled				01/06/2023	01/06/2023	01/06/2023	01/06/2023	01/06/2023
Time Taken				1055	1135	1205	1235	1315
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
VOCs					1			
Chloromethane	μg/l	3	ISO 17025	< 3.0##	< 3.0##	< 3.0##	< 3.0##	< 3.0
Chloroethane	µg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Bromomethane	µg/l	3	ISO 17025	< 3.0##	< 3.0##	< 3.0##	< 3.0##	< 3.0
Vinyl Chloride	µg/l	3	NONE	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Trichlorofluoromethane	μg/l	3	NONE	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
1,1-Dichloroethene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
1,1,2-Trichloro-1,2,2-trifluoroethane	μg/l	3	ISO 17025	< 3.0##	< 3.0##	< 3.0##	< 3.0##	< 3.0#
Cis-1,2-dichloroethene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
MTBE (Methyl Tertiary Butyl Ether)	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
1,1-Dichloroethane	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
2,2-Dichloropropane	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Trichloromethane	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
1,1,1-Trichloroethane	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
1,2-Dichloroethane	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
1,1-Dichloropropene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Trans-1,2-dichloroethene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Benzene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Tetrachloromethane	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
1,2-Dichloropropane	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Trichloroethene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Dibromomethane	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Bromodichloromethane	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Cis-1,3-dichloropropene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Trans-1,3-dichloropropene	μg/l	3	ISO 17025	< 3.0##	< 3.0##	< 3.0##	< 3.0##	< 3.0
Toluene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
1,1,2-Trichloroethane	μg/l	3	ISO 17025	< 3.0##	< 3.0##	< 3.0##	< 3.0##	< 3.0
1,3-Dichloropropane	μg/l	3	ISO 17025	< 3.0##	< 3.0##	< 3.0##	< 3.0##	< 3.0
Dibromochloromethane	μg/l	3	ISO 17025	< 3.0##	< 3.0##	< 3.0##	< 3.0##	< 3.0
Tetrachloroethene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
1,2-Dibromoethane	μg/l	3	ISO 17025	< 3.0##	< 3.0##	< 3.0##	< 3.0##	< 3.0
Chlorobenzene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
1,1,1,2-Tetrachloroethane	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Ethylbenzene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
p & m-Xylene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Styrene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Tribromomethane	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
o-Xylene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
1,1,2,2-Tetrachloroethane	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Isopropylbenzene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Bromobenzene	μg/l 	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
n-Propylbenzene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
2-Chlorotoluene	μg/l 	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
4-Chlorotoluene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
1,3,5-Trimethylbenzene	μg/l	3	ISO 17025	< 3.0#	< 3.0#	< 3.0#	< 3.0#	< 3.0
tert-Butylbenzene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
1,2,4-Trimethylbenzene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
sec-Butylbenzene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
1,3-Dichlorobenzene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
p-Isopropyltoluene	μg/l	3	ISO 17025	< 3.0#	< 3.0#	< 3.0#	< 3.0#	< 3.0
1,2-Dichlorobenzene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
1,4-Dichlorobenzene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0

Lab Sample Number				2700749	2700750	2700751	2700752	2700753
Sample Reference				BH 01	BH 02	BH 03	BH 04	BH 05
Sample Number			None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)			None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	
Date Sampled			01/06/2023	01/06/2023	01/06/2023	01/06/2023	01/06/2023	
Time Taken				1055	1135	1205	1235	1315
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Butylbenzene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
1,2-Dibromo-3-chloropropane	μg/l	3	ISO 17025	< 3.0##	< 3.0##	< 3.0##	< 3.0##	< 3.0
1,2,4-Trichlorobenzene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Hexachlorobutadiene	μg/l	3	ISO 17025	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
1,2,3-Trichlorobenzene	μg/l	3	ISO 17025	< 3.0##	< 3.0##	< 3.0##	< 3.0##	< 3.0

Analytical Report Number: 23-37286

Lab Sample Number	2700749	2700750	2700751	2700752	2700753			
Sample Reference				BH 01	BH 02	BH 03	BH 04	BH 05
Sample Number				None Supplied				
Depth (m)				None Supplied				
Date Sampled				01/06/2023	01/06/2023	01/06/2023	01/06/2023	01/06/2023
Time Taken				1055	1135	1205	1235	1315
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
CIOC-								
SVOCs		0.05	NONE	0.05	0.05	0.05	0.05	0.05
Aniline	μg/l	0.05	NONE NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenol	μg/l μg/l	0.05	NONE	< 0.05	< 0.05 < 0.05	< 0.05	< 0.05	< 0.05
2-Chlorophenol	μg/I	0.05	NONE	< 0.05 < 0.05				
Bis(2-chloroethyl)ether 1,3-Dichlorobenzene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,2-Dichlorobenzene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,4-Dichlorobenzene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Bis(2-chloroisopropyl)ether	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
2-Methylphenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Hexachloroethane	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Nitrobenzene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
4-Methylphenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Isophorone	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
2-Nitrophenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
2,4-Dimethylphenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Bis(2-chloroethoxy)methane	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,2,4-Trichlorobenzene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Naphthalene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2,4-Dichlorophenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
4-Chloroaniline	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobutadiene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
4-Chloro-3-methylphenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
2,4,6-Trichlorophenol	μg/l 	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
2,4,5-Trichlorophenol	μg/l 	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
2-Methylnaphthalene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
2-Chloronaphthalene	μg/l	0.05	NONE NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dimethylphthalate 2.6-Dinitrotoluene	μg/l μg/l	0.05	NONE	< 0.05 < 0.05				
	μg/l	0.03	ISO 17025	< 0.03	< 0.03	< 0.03	< 0.03	< 0.01
Acenaphthylene Acenaphthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2,4-Dinitrotoluene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibenzofuran	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
4-Chlorophenyl phenyl ether	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Diethyl phthalate	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
4-Nitroaniline	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Azobenzene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Bromophenyl phenyl ether	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Carbazole	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibutyl phthalate	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Anthraquinone	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Butyl benzyl phthalate	μg/l 	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

Analytical Report Number: 23-37286

Project / Site name: Formet Tata Site, Ponatarddulais

Lab Sample Number				2700749	2700750	2700751	2700752	2700753
Sample Reference				BH 01	BH 02	BH 03	BH 04	BH 05
Sample Number				None Supplied				
Depth (m)				None Supplied				
Date Sampled				01/06/2023	01/06/2023	01/06/2023	01/06/2023	01/06/2023
Time Taken				1055	1135	1205	1235	1315
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
3&4-Methylphenol	μg/l	0.1	NONE	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
PCBs by GC-MS								
PCB Congener 28	μg/l	0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
PCB Congener 52	μg/l	0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
PCB Congener 101	μg/l	0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
PCB Congener 118	μg/l	0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
PCB Congener 138	μg/l	0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
PCB Congener 153	μg/l	0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
PCB Congener 180	μg/l	0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
PCBs by GC-MS Total PCBs	µg/l	0.14	NONE	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14

 $\mbox{U/S} = \mbox{Unsuitable Sample} \quad \mbox{I/S} = \mbox{ Insufficient Sample} \quad \mbox{ND} = \mbox{Not detected}$

Analytical Report Number: 23-37286

Project / Site name: Formet Tata Site, Ponatarddulais

Lab Sample Number	•	•	•	2700754
Sample Reference	BH 06			
Sample Number	None Supplied			
Depth (m)	None Supplied			
Date Sampled	01/06/2023			
Time Taken	1405			
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status	

pH (L005B)	pH Units	N/A	ISO 17025	6.1
Total Cyanide	μg/l	10	ISO 17025	< 10
Sulphate as SO4	μg/l	45	ISO 17025	14200
Total Sulphur	μg/l	15	NONE	4700
Sulphide	μg/l	5	NONE	< 5.0
Dissolved Organic Carbon (DOC)	mg/l	0.1	ISO 17025	0.56
Total Organic Carbon (TOC)	mg/l	0.1	ISO 17025	0.61

	mgcaco			
Hardness - Total	3/I	1	ISO 17025	53.8

Total Phenois

Total Phenols (monohydric)	μg/l	10	ISO 17025	< 10
----------------------------	------	----	-----------	------

Speciated PAHs

Naphthalene	μg/l	0.01	ISO 17025	< 0.01
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01
Acenaphthene	μg/l	0.01	ISO 17025	< 0.01
Fluorene	μg/l	0.01	ISO 17025	< 0.01
Phenanthrene	μg/l	0.01	ISO 17025	< 0.01
Anthracene	μg/l	0.01	ISO 17025	< 0.01
Fluoranthene	μg/l	0.01	ISO 17025	< 0.01
Pyrene	μg/l	0.01	ISO 17025	< 0.01
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01
Chrysene	μg/l	0.01	ISO 17025	< 0.01
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01
Indeno(1,2,3-cd)pyrene	μg/l	0.01	ISO 17025	< 0.01
Dibenz(a,h)anthracene	μg/l	0.01	ISO 17025	< 0.01
Benzo(ghi)perylene	μg/l	0.01	ISO 17025	< 0.01

Total PAH

TOTAL PAIL				
Total EPA-16 PAHs	μg/l	0.16	ISO 17025	< 0.16

Analytical Report Number: 23-37286

Lab Sample Number				2700754
Sample Reference				BH 06
Sample Number				None Supplied
Depth (m)				None Supplied
Date Sampled				01/06/2023
Time Taken				1405
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status	
Heavy Metals / Metalloids				
Boron (dissolved)	μg/l	10	ISO 17025	15
Calcium (dissolved)	mg/l	0.012	ISO 17025	19
Chromium (hexavalent)	μg/l	5	ISO 17025	< 5.0
Magnesium (dissolved)	mg/l	0.005	ISO 17025	1.4
	· ·		-	-
Arsenic (dissolved)	μg/l	0.15	ISO 17025	< 0.15
Beryllium (dissolved)	μg/l	0.1	ISO 17025	< 0.1
Cadmium (dissolved)	μg/l	0.02	ISO 17025	0.03
Chromium (dissolved)	μg/l	0.2	ISO 17025	< 0.2
Copper (dissolved)	μg/l	0.5	ISO 17025	< 0.5
Lead (dissolved)	μg/l	0.2	ISO 17025	< 0.2
Mercury (dissolved)	μg/l	0.05	ISO 17025	< 0.05
Nickel (dissolved)	μg/l	0.5	ISO 17025	0.8
Selenium (dissolved)	μg/l	0.6	ISO 17025	< 0.6
Vanadium (dissolved)	μg/l	0.2	ISO 17025	< 0.2
Zinc (dissolved)	μg/l	0.5	ISO 17025	2.5
Toluene Ethylbenzene p & m-xylene o-xylene	µg/l µg/l µg/l	3 3 3	ISO 17025 ISO 17025 ISO 17025 ISO 17025	< 3.0 < 3.0 < 3.0 < 3.0
MTBE (Methyl Tertiary Butyl Ether)	μg/l	3	ISO 17025	< 3.0
Petroleum Hydrocarbons TPH-CWG - Aliphatic >C5 - C6 _{HS_1D_AL}	µg/I	1	NONE	< 1.0#
TPH-CWG - Aliphatic >C6 - C8 _{HS_1D_AL}	μg/l	1	NONE	< 1.0#
TPH-CWG - Aliphatic > C8 - C10 _{HS_1D_AL}	μg/l	1	NONE	< 1.0#
TPH-CWG - Aliphatic >C10 - C12 _{EH_1D_AL_MS}	μg/l	10	NONE	< 10
TPH-CWG - Aliphatic >C12 - C16 _{EH_ID_AL_MS}	μg/l	10	NONE	< 10
TPH-CWG - Aliphatic >C16 - C21 _{EH_1D_AL_MS}	μg/l	10	NONE	< 10
TPH-CWG - Aliphatic >C21 - C35 _{EH_1D_AL_MS}	μg/l	10	NONE	< 10
TPH-CWG - Aliphatic > C35 - C44 _{EH_1D_AL_MS}	μg/l	10	NONE	< 10
TPH-CWG - Aliphatic (C5 - C35) HS+EH_1D_AL_MS	μg/l	10	NONE	< 10
TPH-CWG - Aliphatic (C5 - C44) _{HS+EH_1D_AL_MS}	μg/l	10	NONE	< 10
TDH CMC Aromatics CF C7	/!	1	ICO 17025	. 10#
TPH-CWG - Aromatic >C5 - C7 _{HS_1D_AR}	μg/l	1	ISO 17025 ISO 17025	< 1.0#
TPH-CWG - Aromatic > C7 - C8 _{HS_1D_AR}	µg/l			< 1.0#
TPH-CWG - Aromatic > C8 - C10 _{HS_1D_AR}	μg/l	1	ISO 17025 NONE	< 1.0#
TPH-CWG - Aromatic > C10 - C12 _{EH_1D_AR_MS}	μg/l	10		< 10
TPH-CWG - Aromatic >C12 - C16 _{EH_1D_AR_MS}	µg/l	10	NONE	< 10
TPH-CWG - Aromatic > C16 - C21 _{EH_1D_AR_MS}	μg/l		NONE	< 10
TPH-CWG - Aromatic >C21 - C35 _{EH_1D_AR_MS}	μg/l	10	NONE	< 10
TPH-CWG - Aromatic >C35 - C44 _{EH_1D_AR_MS}	μg/l	10	NONE	< 10
TPH-CWG - Aromatic (C5 - C35) HS+EH_1D_AR_MS	μg/l μg/l	10	NONE NONE	< 10
TPH-CWG - Aromatic (C5 - C44) _{HS+EH_1D_AR_MS}	µ9/1	10	INOINE	< 10
TDH CWC Total CE CAA	ug/l	10	NONE	- 10
TPH-CWG Total C5 - C44 EH+HS_1D_TOTAL_MS	μg/l	10	NONE	< 10

Analytical Report Number: 23-37286

Lab Sample Number				2700754
Sample Reference				BH 06
Sample Number				None Supplied
Depth (m)				None Supplied
Date Sampled				01/06/2023
Time Taken				1405
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status	
VOCs				
Chloromethane	μg/l	3	ISO 17025	< 3.0
Chloroethane	μg/l	3	ISO 17025	< 3.0
Bromomethane	μg/l	3	ISO 17025	< 3.0
Vinyl Chloride	μg/l	3	NONE	< 3.0
Trichlorofluoromethane	μg/l	3	NONE	< 3.0
1,1-Dichloroethene	μg/l	3	ISO 17025	< 3.0
1,1,2-Trichloro-1,2,2-trifluoroethane	μg/l	3	ISO 17025	< 3.0#
Cis-1,2-dichloroethene	μg/l	3	ISO 17025	< 3.0
MTBE (Methyl Tertiary Butyl Ether)	μg/l	3	ISO 17025	< 3.0
1,1-Dichloroethane	μg/l	3	ISO 17025	< 3.0
2,2-Dichloropropane	μg/l	3	ISO 17025	< 3.0
Trichloromethane	μg/l	3	ISO 17025	< 3.0
1,1,1-Trichloroethane	μg/l	3	ISO 17025	< 3.0
1,2-Dichloroethane	μg/l	3	ISO 17025	< 3.0
1,1-Dichloropropene	μg/l	3	ISO 17025	< 3.0
Trans-1,2-dichloroethene	μg/l	3	ISO 17025	< 3.0
Benzene	μg/l	3	ISO 17025	< 3.0
Tetrachloromethane	μg/l	3	ISO 17025 ISO 17025	< 3.0
1,2-Dichloropropane	μg/l μg/l	3	ISO 17025	< 3.0 < 3.0
Trichloroethene Dibromomethane	μg/I	3	ISO 17025	< 3.0
Bromodichloromethane	μg/l	3	ISO 17025	< 3.0
Cis-1,3-dichloropropene	μg/l	3	ISO 17025	< 3.0
Trans-1,3-dichloropropene	μg/l	3	ISO 17025	< 3.0
Toluene	μg/l	3	ISO 17025	< 3.0
1,1,2-Trichloroethane	μg/l	3	ISO 17025	< 3.0
1,3-Dichloropropane	μg/l	3	ISO 17025	< 3.0
Dibromochloromethane	μg/l	3	ISO 17025	< 3.0
Tetrachloroethene	μg/l	3	ISO 17025	< 3.0
1,2-Dibromoethane	μg/l	3	ISO 17025	< 3.0
Chlorobenzene	μg/l	3	ISO 17025	< 3.0
1,1,1,2-Tetrachloroethane	μg/l	3	ISO 17025	< 3.0
Ethylbenzene	μg/l	3	ISO 17025	< 3.0
p & m-Xylene	μg/l	3	ISO 17025	< 3.0
Styrene	μg/l	3	ISO 17025	< 3.0
Tribromomethane	μg/l	3	ISO 17025	< 3.0
o-Xylene	μg/l	3	ISO 17025	< 3.0
1,1,2,2-Tetrachloroethane	μg/l	3	ISO 17025	< 3.0
Isopropylbenzene	μg/l	3	ISO 17025	< 3.0
Bromobenzene	μg/l	3	ISO 17025	< 3.0
n-Propylbenzene	μg/l	3	ISO 17025	< 3.0
2-Chlorotoluene	μg/l	3	ISO 17025	< 3.0
4-Chlorotoluene	µg/I µg/I	3	ISO 17025 ISO 17025	< 3.0
1,3,5-Trimethylbenzene	μg/I μg/I	3	ISO 17025	< 3.0
tert-Butylbenzene	μg/I μg/I	3	ISO 17025	< 3.0
1,2,4-Trimethylbenzene sec-Butylbenzene	μg/I μg/I	3	ISO 17025	< 3.0 < 3.0
sec-Butylbenzene 1,3-Dichlorobenzene	μg/I μg/I	3	ISO 17025	< 3.0
p-Isopropyltoluene	μg/l	3	ISO 17025	< 3.0
1,2-Dichlorobenzene	μg/l	3	ISO 17025	< 3.0
1,4-Dichlorobenzene	μg/l	3	ISO 17025	< 3.0
1,4-DICHIORODENZENE	µg/1	3	150 1/025	< 3.0

Analytical Report Number: 23-37286

Lab Sample Number					2700754
Sample Reference				BH 06	
Sample Number					None Supplied
Depth (m)					None Supplied
Date Sampled					01/06/2023
Time Taken				1405	
Analytical Parameter (Water Analysis)		Units	Limit of detection	Accreditation Status	
Butylbenzene	I	μg/l	3	ISO 17025	< 3.0
1,2-Dibromo-3-chloropropane	1	μg/l	3	ISO 17025	< 3.0
1,2,4-Trichlorobenzene	1	μg/l	3	ISO 17025	< 3.0
Hexachlorobutadiene	1	μg/l	3	ISO 17025	< 3.0
1,2,3-Trichlorobenzene	I	μg/l	3	ISO 17025	< 3.0

4041

Analytical Report Number: 23-37286

Project / Site name: Formet Tata Site, Ponatarddulais

Lab Sample Number				2700754
Sample Reference				BH 06
Sample Number	None Supplied			
Depth (m)	None Supplied			
Date Sampled	01/06/2023			
Time Taken				1405
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status	
SVOCs				
Aniline	μg/l	0.05	NONE	< 0.05
Phenol	μg/l	0.05	NONE	< 0.05
2-Chlorophenol	μg/l	0.05	NONE	< 0.05
Bis(2-chloroethyl)ether	μg/l	0.05	NONE	< 0.05
1,3-Dichlorobenzene	μg/l	0.05	NONE	< 0.05
1,2-Dichlorobenzene	μg/l	0.05	NONE	< 0.05
1,4-Dichlorobenzene	μg/l	0.05	NONE	< 0.05
Bis(2-chloroisopropyl)ether	μg/l	0.05	NONE	< 0.05
2-Methylphenol	μg/l	0.05	NONE	< 0.05
Hexachloroethane	μg/l	0.05	NONE	< 0.05
Nitrobenzene	μg/l 	0.05	NONE	< 0.05
4-Methylphenol	μg/l 	0.05	NONE	< 0.05
Isophorone	μg/l	0.05	NONE	< 0.05
2-Nitrophenol	μg/l	0.05	NONE	< 0.05
2,4-Dimethylphenol	μg/l	0.05	NONE	< 0.05
Bis(2-chloroethoxy)methane	μg/l	0.05	NONE	< 0.05
1,2,4-Trichlorobenzene	μg/l	0.05	NONE ISO 17025	< 0.05
Naphthalene	μg/l	0.01	NONE	< 0.01
2,4-Dichlorophenol 4-Chloroaniline	μg/l μg/l	0.05	NONE	< 0.05 < 0.05
Hexachlorobutadiene	μg/l	0.05	NONE	< 0.05
4-Chloro-3-methylphenol	μg/l	0.05	NONE	< 0.05
2,4,6-Trichlorophenol	μg/l	0.05	NONE	< 0.05
2,4,5-Trichlorophenol	µg/l	0.05	NONE	< 0.05
2-Methylnaphthalene	μg/l	0.05	NONE	< 0.05
2-Chloronaphthalene	μg/l	0.05	NONE	< 0.05
Dimethylphthalate	μg/l	0.05	NONE	< 0.05
2,6-Dinitrotoluene	μg/l	0.05	NONE	< 0.05
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01
Acenaphthene	μg/l	0.01	ISO 17025	< 0.01
2,4-Dinitrotoluene	μg/l	0.05	NONE	< 0.05
Dibenzofuran	μg/l	0.05	NONE	< 0.05
4-Chlorophenyl phenyl ether	μg/l	0.05	NONE	< 0.05
Diethyl phthalate	μg/l	0.05	NONE	< 0.05
4-Nitroaniline	μg/l	0.05	NONE	< 0.05
Fluorene	μg/l	0.01	ISO 17025	< 0.01
Azobenzene	μg/l	0.05	NONE	< 0.05
Bromophenyl phenyl ether	μg/l	0.05	NONE	< 0.05
Hexachlorobenzene	μg/l 	0.05	NONE	< 0.05
Phenanthrene	μg/l	0.01	ISO 17025	< 0.01
Anthracene	μg/l	0.01	ISO 17025	< 0.01
Carbazole	μg/l	0.05	NONE	< 0.05
Dibutyl phthalate	µg/l	0.05	NONE NONE	< 0.05
Anthraquinone	μg/l	0.05	ISO 17025	< 0.05
Fluoranthene	μg/l μg/l	0.01	ISO 17025	< 0.01
Pyrene Rutyl henzyl phthalate	μg/I	0.05	NONE	< 0.01 < 0.05
Butyl benzyl phthalate Benzo(a)anthracene	μg/I	0.03	ISO 17025	< 0.05
Chrysene	μg/I μg/I	0.01	ISO 17025	< 0.01
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01
DC120(K)11UU a1IU ICIIC	P9/1	5.01	200 1/023	/ 0.01

Analytical Report Number: 23-37286

Project / Site name: Formet Tata Site, Ponatarddulais

Lab Sample Number	2700754			
Sample Reference	BH 06			
Sample Number				None Supplied
Depth (m)				None Supplied
Date Sampled				01/06/2023
Time Taken				1405
Analytical Parameter (Water Analysis)				
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01
Indeno(1,2,3-cd)pyrene	μg/l	0.01	ISO 17025	< 0.01
Dibenz(a,h)anthracene	μg/l	0.01	ISO 17025	< 0.01
Benzo(ghi)perylene	< 0.01			
3&4-Methylphenol	μg/l	0.1	NONE	< 0.10

PCBs by GC-MS

PCB Congener 28	μg/l	0.02	NONE	< 0.02
PCB Congener 52	μg/l	0.02	NONE	< 0.02
PCB Congener 101	μg/l	0.02	NONE	< 0.02
PCB Congener 118	μg/l	0.02	NONE	< 0.02
PCB Congener 138	μg/l	0.02	NONE	< 0.02
PCB Congener 153	μg/l	0.02	NONE	< 0.02
PCB Congener 180	μg/l	0.02	NONE	< 0.02

PCBs by GC-MS

Total PCBs	μg/l	0.14	NONE	< 0.14

 $\label{eq:U/S} \mbox{U/S} = \mbox{Unsuitable Sample} \quad \mbox{I/S} = \mbox{ Insufficient Sample} \quad \mbox{ND} = \mbox{Not detected}$

Analytical Report Number: 23-37286

Project / Site name: Formet Tata Site, Ponatarddulais

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(Al, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	w	ISO 17025
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Boron in water	Determination of boron in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM	L039-PL	W	ISO 17025
Hexavalent chromium in water	Determination of hexavalent chromium in water by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method by continuous flow analyser. Accredited Matrices SW, GW, PW.	L080-PL	w	ISO 17025
Total Hardness of water	Determination of hardness in waters by calculation from calcium and magnesium. Accredited Matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045-PL	W	ISO 17025
Monohydric phenols in water	Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	W	ISO 17025
PCB's By GC-MS in water	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L028-PL	W	NONE
Sulphide in water	Determination of sulphide in water by ion selective electrode.	In-house method	L029-PL	W	NONE
Sulphate in water	Determination of sulphate in water after filtration by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Total Sulphur in water	Determination of total sulphur in water by acidification followed by ICP-OES.	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L039-PL	W	NONE
Semi-volatile organic compounds in water	Determination of semi-volatile organic compounds in leachate by extraction in dichloromethane followed by GC-MS.	In-house method based on USEPA 8270	L102B-PL	w	ISO 17025
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	W	ISO 17025
Total cyanide in water	Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	ISO 17025
Total organic carbon in water	Determination of dissolved organic carbon in water by TOC/DOC NDIR analyser. Accredited matrices: SW PW GW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	ISO 17025
Volatile organic compounds in water	Determination of volatile organic compounds in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025

Environmental Science

Analytical Report Number: 23-37286

Project / Site name: Formet Tata Site, Ponatarddulais

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Dissolved Organic Carbon in water	Determination of dissolved inorganic carbon in water by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	ISO 17025
BTEX and MTBE in water (Monoaromatics)	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
pH at 20oC in water (automated)	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In house method.	L099-PL	W	ISO 17025
TPH in (Water)	Determination of TPH bands by HS-GC-MS/GC-MS	In-house method, TPH with carbon banding.	L070-PL	W	NONE

For method numbers ending in 'UK or A' analysis have been carried out in our laboratory in the United Kingdom (WATFORD). For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride).

For method numbers ending in 'PL or B' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC. Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Information in Support of Analytical Results

List of HWOL Acronyms and Operators

Acro	onym [Descriptions Descriptions
H	HS H	Headspace Analysis
N	AS N	Mass spectrometry
F	ID F	Elame Ionisation Detector
G	GC G	Gas Chromatography
E	H E	extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
C	CU C	Clean-up - e.g. by Florisil®, silica gel
1	.D 0	GC - Single coil/column gas chromatography
2	.D 0	GC-GC - Double coil/column gas chromatography
To	otal A	Aliphatics & Aromatics
A	AL A	Aliphatics
Α	AR A	Aromatics
#	‡1 E	:H_2D_Total but with humics mathematically subtracted
#	‡2 E	:H_2D_Total but with fatty acids mathematically subtracted
	_ (Operator - understore to separate acronyms (exception for +)
	+ (Operator to indicate cumulative e.g. EH+HS Total or EH CU+HS Total

#Data reported unaccredited due to quality control parameter failure associated with this result; other checks applied prior to reporting the data have been accepted. The result should be considered as being deviating and therefore may be compromised.

##Quality control parameter has a high recovery (outside of limit); however the associated result is below the reporting limit, other checks applied prior to reporting the data have been accepted. The result should be considered as being deviating and may be compromised.

Sample Deviation Report

Analytical Report Number: 23-37286

Project / Site name: Formet Tata Site, Ponatarddulais

This deviation report indicates the sample and test deviations that apply to the samples submitted for analysis. Please note that the associated result(s) may be unreliable and should be interpreted with care.

Key: a - No sampling date b - Incorrect container c - Holding time d - Headspace e - Temperature

Sample ID	Other ID	Sample Type		Sample Deviation	Test Name	Test Ref	Test Deviation
BH 01	None Supplied	W	2700749	С	pH at 20oC in water (automated)	L099-PL	С
BH 02	None Supplied	W	2700750	С	pH at 20oC in water (automated)	L099-PL	С
BH 03	None Supplied	W	2700751	С	pH at 20oC in water (automated)	L099-PL	С
BH 04	None Supplied	W	2700752	С	pH at 20oC in water (automated)	L099-PL	С
BH 05	None Supplied	W	2700753	С	pH at 20oC in water (automated)	L099-PL	С
BH 06	None Supplied	W	2700754	С	pH at 20oC in water (automated)	L099-PL	С

APPENDIX K

LABORATORY GEOTECHNICAL TESTING RESULTS

Results Summary

Apex Testing Solutions Limited

Sturmi Way Village Farm Industrial Estate Pyle

Pyle Bridgend CF33 6BZ

Telephone: 01656 746762

E-mail: andrew.grogan@apex-drilling.com laura.davis@apex-drilling.com

Key Information Reporting Details Former TATA Site, **Company Name:** Integral Geotechnique Site Name: Pontarddulais Address: 7 Beddau Way D23172 Castlegate Business Park Job Number: 14/04/2023 Date Received: Caerphilly CF83 2AX A. Grogan Job Coordinator: **Contact Name:** Finn **Contact Number:**

Item No.	Tests Undertaken	Number of Tests
1	Moisture Content - BS1377 -2: 1990	5
2	Atterburg Limits (4 point) - BS1377-2: 1990	5
3	Particle Size Distribution - BS1377-2: 1990	3
4	OMC - BS1377-4: 1990 using 2.5kg Rammer in 1L mould	2

Results Issued: 20/04/2023

Comments

Results herein relate only to samples received in the laboratory and where not sampled by Apex Testing Solutions personnel relate to the samples as received.

Where tests are UKAS accredited any Opinion and/or Interpretation expressed herein are outside the scope of the UKAS Accreditation. The reports shall not be reproduced in full without the written approval of the laboratory.

Please contact the job coordinator should any further information be required.

PARTICLE SIZE DISTRIBUTION ANALYSIS

BS1377:Part 2:1990

D23172 **Project No:**

Project Name: 14180 - Former TATA Site,

Pontarddulais

Integral Geotechnique Client:

Address 7 Beddau Way

Castlegate Business Park

1.00

Caerphilly CF83 2AX

ATS Sample No: 32523

Bulk Sample No: Sample Type:

Sampling Certificate

Site Ref / Hole ID:

Received:

No

BH03

Material Description:

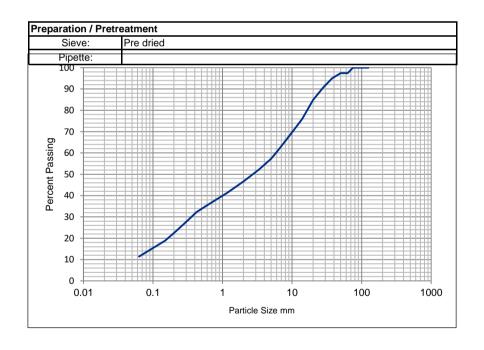
Depth (m):

Black clayey very sandy GRAVEL

with low cobble content

Location in Works: Ex Site

> **Material Source:** Site Generated


Unknown Site Generated **Date Sampled: Material Supplier:**

Sampled By: Client Specification: BS1377

Date Received: 14 April 2023 Date Tested: 18 April 2023

Test Results

Sieving					
Particle Size mm	% Passing				
125	100				
90	100				
75	100				
63	97				
50	97				
37.5	95				
28	91				
20	85				
14	76				
10	70				
6.3	61				
5.0	57				
3.35	52				
2.00	47				
1.18	41				
0.600	35				
0.425	32				
0.300	28				
0.212	23				
0.150	19				
0.063	11				

Sample Porti	ons	Particle Density Mg/m3	Uniformity Coefficient
Cobbles / Boulders	3	N/A	Officiality Coefficient
Gravel	51	IN/A	D ₆₀ / D ₁₀
Sand	35	Dry mass of sample, kg	D ₆₀ / D ₁₀
Silt / Clay	11	12.3	n/a

Remarks:

QA Ref.	7	P
BS1377 - 4 Rev. 2.0	А	(2

Apex Testing	Solutions
---------------------	-----------

Sturmi Way, Village CF33 6BZ	Farm Industrial Est, Pyle, Bridgend,
Tel: 01656 746762	Fax: 01656 749096

	d
	(⊁∢)
ıd,	UKAS

_	Approver
-	
5	

Date

Fig

18/04/2023

PSD

7771 L Davis, Quality Manager

L Davis

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP BS1377:Part 4:1990

Project No:

D23172

Project Name:

14180 - Former TATA Site,

Pontarddulais

Client: Integral Geotechnique

Address: 7 Beddau Way

Castlegate Business Park

Caerphilly

ATS Sample No:

32523

CF83 2AX

Site Ref / Hole ID:

BH03

Depth (m):

1.00

Bulk

Sample No:

Received:

No

N/A

Sample Type:

Black clayey very sandy

Material Description:

GRAVEL with low cobble

content

Location in Works:

Sampling Certificate

Material Source:

Site Generated

Date Sampled:

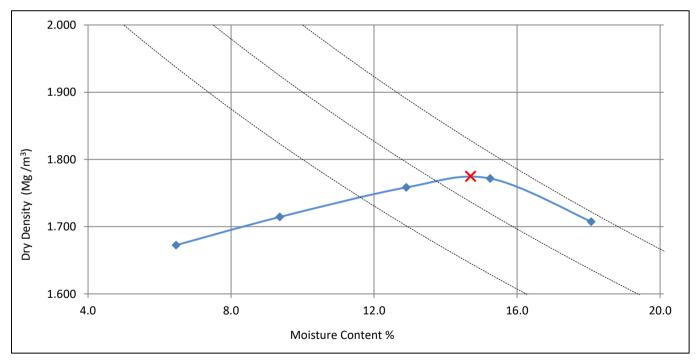
Unknown

Material Supplier:

Site Generated

Sampled By:

Client


Specification:

BS1377

Date Received:

14 April 2023

17 April 2023 **Date Tested:**

Test Method:	BS 1377: part 4: 1990: clause 3.3, 2.5kg rammer in a 1 litre mould
Preparation:	Original sample was oven dried @ 105 oC, separate specimens tested

Particle Density, Mg/m ³	2.50	assumed
Material > 37.5mm	2	%
Material < 37.5mm > 20mm	6	%

Derived Parameters x		
Maximum Dry Density, Mg/m ³	1.78	
Optimum Moisture Content %	14.7	

L Davis, Quality Manager

Remarks:

NMC = 23.7%

QA Ref. BS1377 - 4

Apex Testing Solutions Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

UKAS
7771

L Davis

Approver

Date

Fig.

18/04/2023

COMP

Rev. 2.0

Tel: 01656 746762 Fax: 01656 749096

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP BS1377:Part 4:1990

Project No:

D23172

Project Name:

14180 - Former TATA Site,

Pontarddulais

Client: Integral Geotechnique

Address: 7 Beddau Way

Castlegate Business Park

Caerphilly

ATS Sample No:

32524

CF83 2AX

Site Ref / Hole ID:

Sampling Certificate

Location in Works:

BH04

Depth (m):

Sample Type:

1.00 Bulk

Sample No:

No

Material Description:

Black clayey very sandy

GRAVEL

Received:

N/A

Material Source:

Site Generated

Date Sampled:

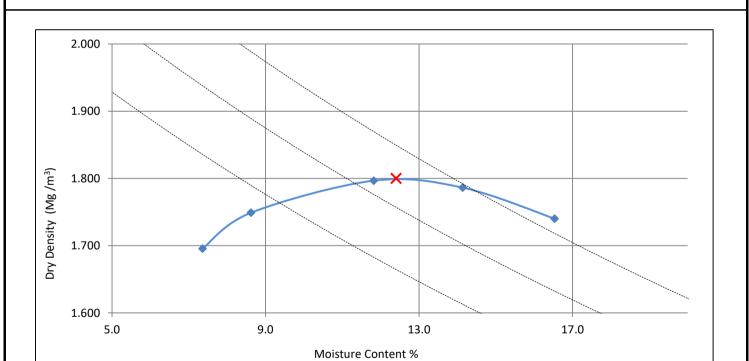
Unknown

Material Supplier:

Site Generated

Sampled By:

Client


Specification:

Date Tested:

17 April 2023

BS1377

Date Received: 14 April 2023

Test Method:	BS 1377: part 4: 1990: clause 3.3, 2.5kg rammer in a 1 litre mould
Preparation:	Original sample was oven dried @ 105 oC, separate specimens tested

Particle Density, Mg/m ³	2.40	assumed
Material > 37.5mm	20	%
Material < 37.5mm > 20mm	10	%

Derived Parameters ×		
Maximum Dry Density, Mg/m ³	1.80	
Optimum Moisture Content %	12.4	

Remarks:

NMC =20.9 %

Tested a 'X' sample due to oversize material

QA Ref.

BS1377 - 4 Rev. 2.0

Apex Testing Solutions
Sturmi Way, Village Farm Industrial Est, Pyle,

Bridgend, CF33 6BZ

Tel: 01656 746762 Fax: 01656 749096

U KAS	
7771	

Approver

L Davis

Date

Fig.

18/04/2023

COMP

Determination Of Water Content

ISO 17892-1: 2014

Project No: D23172

Project Name: 14180 - Former TATA Site,

Pontarddulais

Client: Integral Geotechnique

Address: 7 Beddau Way

Castlegate Business Park

Caerphilly

ATS Sample No: 32525 CF83 2AX

Site Ref / Hole ID:

BH05

Depth (m):

1.00

Sample No:

Sample Type:

Bulk

Sampling Certificate

Received:

No

Material Description:

Brown sandy clayey GRAVEL with high

cobble content

Location in Works:

Ex Site

Material Source:

Site Generated

Date Sampled:

Unknown

Material Supplier:

Site Generated

Sampled By:

Client

Specification:

BS1377

Date Received:

14 April 2023

Date Tested:

20 April 2023

Test Results

Moisture Content (%)

9.4

Remarks:

QA Ref.

EN ISO 17892-1:2014 E

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

Tel: 01656 746762 Fax: 01656 749096

UKAS

Approver

A Grogan

Date

A Grogan, Laboratory Manager

Fig

2

20/04/2023

MC

LIQUID LIMIT, PLASTIC LIMIT & PLASTICITY INDEX

BS 1377:Part 2:1990. Clause 4.3/5.3/5.4

Project No: Project Name:

D23172

14180 - Former TATA Site,

Pontarddulais

Client: Integral Geotechnique

Address: 7 Beddau Way

Castlegate Business Park

Caerphilly

ATS Sample No: 32525

Sampling Certificate No

CF83 2AX

Site Ref / Hole ID:

BH05

Depth (m):

1.00

Bulk

Sample No:

Sample Type:

Material Description:

Brown sandy clayey GRAVEL

with high cobble content

Received:

Material Source:

Site Generated

Date Sampled:

Location in Works:

Unknown

Material Supplier:

Site Generated

Sampled By:

Client

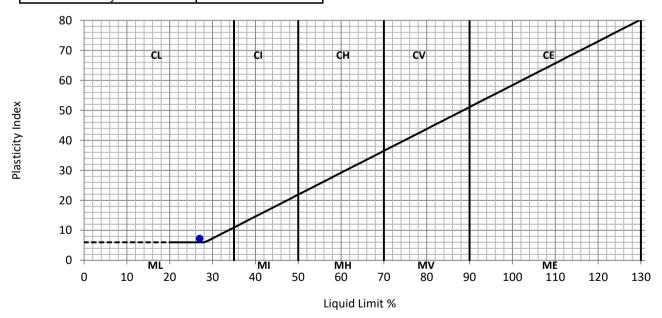
Ex Site

Specification:

BS1377

Date Received:

14 April 2023


Date Tested:

19 April 2023

Test Results

Liquid Limit	27	%
Plastic Limit	20	%
Plasticity Index	7	%

Preparation:	4.2.4 Sieved Spe	cimen	
Proportion retained	on 425µm sieve:	78	%

Remarks:

QA Ref.

BS1377 - 2 Rev. 3.0

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle Bridgend, CF33 6BZ Tel: 01656 746762 Fax: 01656 749096

Approver

A Grogan

Date

Fig.

20/04/2023

ATT

A Grogan, Laboratory Manager

PARTICLE SIZE DISTRIBUTION ANALYSIS

BS1377:Part 2:1990

D23172 **Project No:**

Project Name: 14180 - Former TATA Site,

Pontarddulais

Integral Geotechnique Client:

Address 7 Beddau Way

Castlegate Business Park

Caerphilly CF83 2AX

ATS Sample No: 32525

> **BH05** Depth (m): 1.00

Bulk Sample No: Sample Type:

Sampling Certificate

Site Ref / Hole ID:

Received:

No

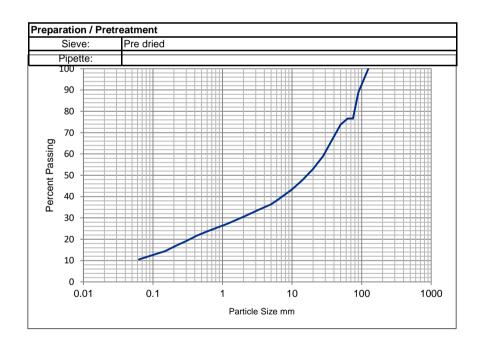
Material Description:

Brown sandy clayey GRAVEL with

high cobble content

Location in Works: Ex Site

> **Material Source:** Site Generated


Unknown Site Generated **Date Sampled: Material Supplier:**

Sampled By: Client Specification: **BS1377**

20 April 2023 **Date Received:** 14 April 2023 **Date Tested:**

Test Results

Sieving		
Particle Size mm	% Passing	
125	100	
90	89	
75	77	
63	77	
50	74	
37.5	67	
28	59	
20	53	
14	48	
10	43	
6.3	39	
5.0	36	
3.35	34	
2.00	30	
1.18	27	
0.600	24	
0.425	22	
0.300	19	
0.212	17	
0.150	14	
0.063	11	

Sample Portions		Particle Density Mg/m3	Uniformity Coefficient	
Cobbles / Boulders	23	N/A	Officiality Coefficient	
Gravel	46	IV/A	D ₆₀ / D ₁₀	
Sand	20	Dry mass of sample, kg	D ₆₀ / D ₁₀	
Silt / Clay	11	17.5	n/a	

Remarks:

QA Ref.	
BS1377 - 4 Rev. 2.0	A C

Apex Testing S	olutions
-----------------------	----------

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

	d d
	(⊁∢)
,	UKAS

F	Αp
]	-
'_	
.5	

prover

Date

Fig

20/04/2023

PSD

Tel: 01656 746762 Fax: 01656 749096

7771

A Grogan, Laboratory Manager

Determination Of Water Content

ISO 17892-1: 2014

Project No: D23172

Project Name: 14180 - Former TATA Site,

Pontarddulais

Client: Integral Geotechnique

Address: 7 Beddau Way

Castlegate Business Park

Caerphilly

ATS Sample No: 32526 CF83 2AX

Site Ref / Hole ID:

TP01

No

Depth (m):

1.50

Sample No:

Sample Type:

Bulk

Sampling Certificate

Received:

Material Description:

Yellowish brown slightly

gravelly sandy CLAY

Location in Works:

Ex Site

Material Source:

Site Generated

Date Sampled:

Unknown

Material Supplier:

Site Generated

Sampled By:

Client

Specification:

BS1377

Date Received:

14 April 2023

Date Tested:

17 April 2023

Test Results

Moisture Content (%)

29.7

Remarks:

QA Ref.

EN ISO 17892-1:2014 E

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

Tel: 01656 746762 Fax: 01656 749096

UKAS

Approver

Date

Fig

L Davis

19/04/2023

MC

LIQUID LIMIT, PLASTIC LIMIT & PLASTICITY INDEX

BS 1377:Part 2:1990. Clause 4.3/5.3/5.4

Project No:

D23172

Project Name: 14180 - Former TATA Site,

Pontarddulais

Client: Integral Geotechnique

Address: 7 Beddau Way

Castlegate Business Park

Caerphilly

ATS Sample No: 32526 **CF83 2AX**

Site Ref / Hole ID:

TP01

Depth (m):

1.50

Bulk

Sample No:

Sample Type:

Received:

Sampling Certificate No **Material Description:**

Yellowish brown slightly gravelly sandy CLAY

Material Source:

Site Generated

Date Sampled:

Location in Works:

Unknown

Material Supplier:

Site Generated

Sampled By:

Client

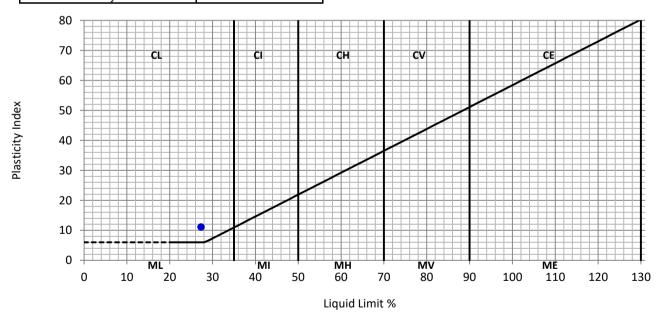
Ex Site

Specification:

BS1377

Date Received:

14 April 2023


Date Tested:

18 April 2023

Test Results

Liquid Limit	27	%
Plastic Limit	16	%
Plasticity Index	11	%

Preparation:	4.2.4 Sieved Spe	cimen	
Proportion retained	on 425µm sieve:	11	%

Remarks:

QA Ref.

BS1377 - 2 Rev. 3.0

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ Tel: 01656 746762 Fax: 01656 749096

Approver

L Davis

Date

Fig.

19/04/2023

ATT

Determination Of Water Content

ISO 17892-1: 2014

Project No: D23172

Project Name: 14180 - Former TATA Site,

Pontarddulais

Client: Integral Geotechnique

Address: 7 Beddau Way

Castlegate Business Park

Caerphilly

ATS Sample No: 32527 CF83 2AX

Site Ref / Hole ID:

TP13

Depth (m):

1.10

Sample No:

Sample Type:

Bulk

Sampling Certificate

Received:

No

Material Description:

Yellowish grey gravelly

SAND

Location in Works:

Ex Site

Material Source:

Site Generated

Date Sampled:

Unknown

Material Supplier:

Site Generated

Sampled By:

Client

Specification:

BS1377

Date Received:

14 April 2023

Date Tested:

17 April 2023

Test Results

Moisture Content (%)

25.6

Remarks:

QA Ref.

EN ISO 17892-1:2014 E

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

Tel: 01656 746762 Fax: 01656 749096

Approver

Date

Fig

L Davis

19/04/2023

MC

LIQUID LIMIT, PLASTIC LIMIT & PLASTICITY INDEX

BS 1377:Part 2:1990. Clause 4.3/5.3/5.4

Project No:

D23172

Project Name: 14180 - Former TATA Site,

Pontarddulais

Client: Integral Geotechnique

Address: 7 Beddau Way

Castlegate Business Park

Caerphilly

ATS Sample No: 32527

CF83 2AX

Site Ref / Hole ID:

TP13

Depth (m):

Sample Type:

1.10

Bulk

Sample No:

. No

Material Description:

Yellowish grey gravelly SAND

Received:

Location in Works:

Sampling Certificate

Ex Site

Material Source:

Site Generated

Date Sampled:

Unknown

Material Supplier:

Site Generated

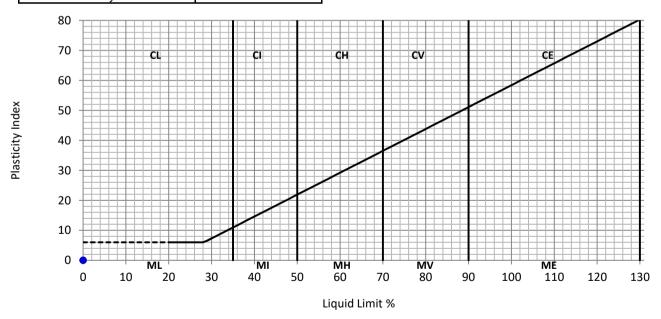
Sampled By:

Client

Specification:

BS1377

Date Received:


14 April 2023

Date Tested: 19 April 2023

Test Results

Liquid Limit	0	%
Plastic Limit	0	%
Plasticity Index	0	%

Preparation:	4.2.4 Sieved Spe	cimen	
Proportion retained	on 425µm sieve:	13	%

Remarks: Sample is non-plastic

QA Ref.

BS1377 - 2 Rev. 3.0 Apex Testing Solutions
Sturmi Way, Village Farm Industrial Est, Pyle,

Bridgend, CF33 6BZ
Tel: 01656 746762 Fax: 01656 749096

Approver

L Davis

Date

19/04/2023

.

Fig.

ATT

PARTICLE SIZE DISTRIBUTION ANALYSIS

BS1377:Part 2:1990

Address

Project No: D23172

Project Name: 14180 - Former TATA Site,

TP14

Pontarddulais

Client: Integral Geotechnique

7 Beddau Way

Castlegate Business Park

Caerphilly CF83 2AX

ATS Sample No: 32528

Depth (m): 1.50

Sample No: Sample Type: Bulk

1 //

Sampling Certificate

Site Ref / Hole ID:

Received:

No

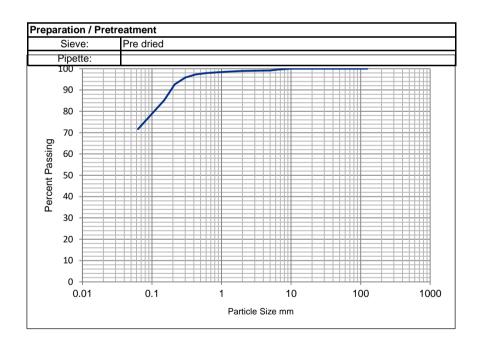
Material Description:

Greyish brown slightly gravelly

slightly sandy CLAY

Location in Works: Ex Site

Material Source: Site Generated


Date Sampled: Unknown Material Supplier: Site Generated

Sampled By: Client Specification: BS1377

Date Received: 14 April 2023 Date Tested: 18 April 2023

Test Results

Sieving		
Particle Size mm	% Passing	
125	100	
90	100	
75	100	
63	100	
50	100	
37.5	100	
28	100	
20	100	
14	100	
10	100	
6.3	100	
5.0	99	
3.35	99	
2.00	99	
1.18	99	
0.600	98	
0.425	97	
0.300	96	
0.212	93	
0.150	85	
0.063	72	

Sample Porti	ions	Particle Density Mg/m3	Uniformity Coefficient	
Cobbles / Boulders	0	N/A	Officiality Coefficient	
Gravel	1	IV/A	D ₆₀ / D ₁₀	
Sand	27	Dry mass of sample, kg	D ₆₀ / D ₁₀	
Silt / Clay	72	0.5	n/a	

Remarks:

QA Ref.	\sim	P
BS1377 - 4 Rev. 2.0	A	(2

Apex Testing	Solutions
---------------------	-----------

	G L a
	(⊁∢)
d,	UKAS

)	Аp
٧_ <u>ا</u>	
12	

Approver

Date

Fig

L Davis 18/04/2023

L Davis, Quality Manager

PSD

Tel: 01656 746762 Fax: 01656 749096

7771

Determination Of Water Content

ISO 17892-1: 2014

Project No: D23172

Project Name: 14180 - Former TATA Site,

Pontarddulais

Client: Integral Geotechnique

Address: 7 Beddau Way

Castlegate Business Park

Caerphilly

ATS Sample No: 32529 CF83 2AX

Site Ref / Hole ID:

TP15

Depth (m):

1.10

Sample No:

Sample Type:

Bulk

Sampling Certificate

Received:

No

Material Description:

Yellowish brown sandy

CLAY

Location in Works:

Ex Site

Material Source:

Site Generated

Date Sampled:

Unknown

Material Supplier:

Site Generated

Sampled By:

Client

Specification:

BS1377

Date Received:

14 April 2023

Date Tested:

17 April 2023

Test Results

Moisture Content (%)

24.7

Remarks:

QA Ref.

EN ISO 17892-1:2014 E

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

Tel: 01656 746762 Fax: 01656 749096

Approver

A Grogan

Date

A Grogan, Laboratory Manager

Fig

1

18/04/2023

MC

LIQUID LIMIT, PLASTIC LIMIT & PLASTICITY INDEX

BS 1377:Part 2:1990. Clause 4.3/5.3/5.4

Project No:

Project Name:

D23172

14180 - Former TATA Site,

Pontarddulais

Client: Integral Geotechnique

Address: 7 Beddau Way

Castlegate Business Park

Caerphilly

ATS Sample No: 32529

CF83 2AX

Site Ref / Hole ID:

TP15

Depth (m):

Sample Type:

1.10

Bulk

Sample No:

Sampling Certificate No

Received:

Material Description:

Yellowish brown sandy CLAY

Neceiveu.

Location in Works: Ex Site

Material Source:

Site Generated

Date Sampled:

Unknown

Material Supplier:

Site Generated

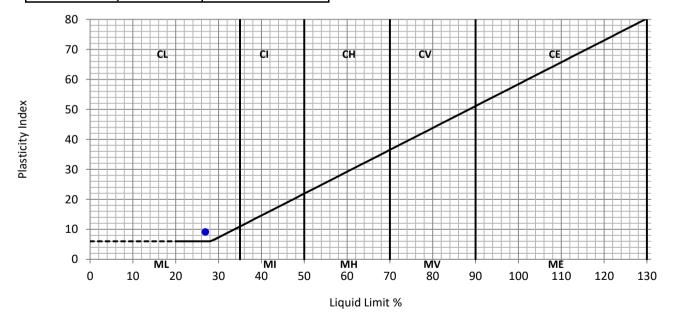
Sampled By:

Client

Specification:

BS1377

Date Received:


14 April 2023

Date Tested: 17 April 2023

Test Results

Liquid Limit	27	%
Plastic Limit	18	%
Plasticity Index	9	%

Preparation:	4.2.3 Natural Spe	cimen	
Proportion retained	on 425µm sieve:	0	%

Remarks:

QA Ref.

BS1377 - 2 Rev. 3.0

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle Bridgend, CF33 6BZ Tel: 01656 746762 Fax: 01656 749096

Approver

L Davis

Date

Fig.

18/04/2023

ATT

Determination Of Water Content

ISO 17892-1: 2014

Project No: D23172

14180 - Former TATA Site, **Project Name:**

Pontarddulais

Client: Integral Geotechnique

7 Beddau Way Address:

Castlegate Business Park

Caerphilly

CF83 2AX ATS Sample No: 32530

Site Ref / Hole ID:

TP16

Depth (m):

1.50 Bulk

Sample No:

Sample Type: **Material Description:**

Yellowish brown slightly

gravelly sandy CLAY

Sampling Certificate Received:

Location in Works:

No

Material Source:

Site Generated

Date Sampled:

Unknown

Ex Site

Material Supplier:

Site Generated

Sampled By:

Client

Specification:

BS1377

Date Received:

14 April 2023

Date Tested:

17 April 2023

Test Results

Moisture Content (%)

28.5

Remarks:

QA Ref.

EN ISO 17892-1:2014 E

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

Tel: 01656 746762 Fax: 01656 749096

Approver

Date

Fig

L Davis

19/04/2023

MC

LIQUID LIMIT, PLASTIC LIMIT & PLASTICITY INDEX

BS 1377:Part 2:1990. Clause 4.3/5.3/5.4

Project No:

D23172

Project Name: 14180 - Former TATA Site,

Pontarddulais

Client: Integral Geotechnique

Address: 7 Beddau Way

Castlegate Business Park

Caerphilly

ATS Sample No: 32530 **CF83 2AX**

Site Ref / Hole ID:

TP16

Depth (m):

1.50

Bulk

Sample No:

Sample Type:

Yellowish brown slightly

Received:

Sampling Certificate No **Material Description:**

gravelly sandy CLAY

Location in Works:

Ex Site

Material Source:

Site Generated

Date Sampled:

Unknown

Material Supplier:

Site Generated

Sampled By:

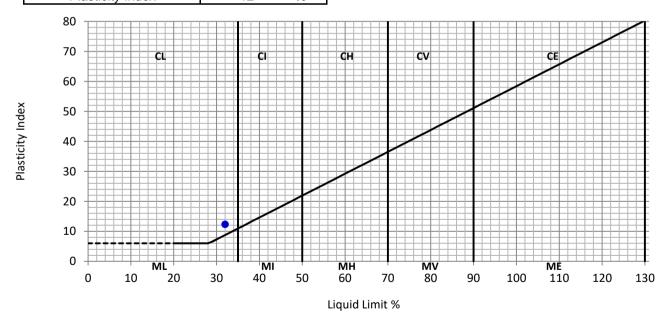
Client

Specification:

BS1377

Date Received:

14 April 2023


Date Tested:

18 April 2023

Test Results

Liquid Limit	32	%
Plastic Limit	20	%
Plasticity Index	12	%

Preparation:	4.2.4 Sieved Spe	cimen	
Proportion retained	on 425µm sieve:	22	%

Remarks:

QA Ref.

BS1377 - 2 Rev. 3.0

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ Tel: 01656 746762 Fax: 01656 749096

Approver

L Davis

Date

Fig.

19/04/2023

ATT

Contract Number: 65850

Client Ref: 14180 Date Received: 18-04-2023
Client PO: 14180/FG Date Completed: 18-05-2023
Report Date: 18-05-2023

Client: Integral Geotechnique (Wales) Limited

7 Beddau Way

Castlegate Business Park

Caerphilly Cardiff CF83 2AX

Contract Title: Former TATA Site, Pontarddulais

For the attention of: Finn Gullfoyle

Disposal of samples for job

This report has been checked and approved by:

B. Evms

Brendan Evans
Office Administrator

Test Description	Qty
Determination of the Swelling Potential of Fill Material (Slag Expansion Test 14 day test) BR 481 - Part B - Appendix B	1

Notes: Observations and Interpretations are outside the UKAS Accreditation

* - denotes test included in laboratory scope of accreditation

- denotes test carried out by approved contractor

@ - denotes non accredited tests

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This test report/certificate shall not be reproduced except in full, without the approval of GEO Site & Testing Services Ltd. Any opinions or interpretations stated - within this report/certificate are excluded from the laboratories UKAS accreditation.

Approved Signatories:

Brendan Evans (Office Administrator) - Darren Bourne (Quality Senior Technician) - Paul Evans (Director) Richard John (Quality/Technical Manager) - Shaun Jones (Laboratory manager) - Shaun Thomas (Site Manager) Wayne Honey (Human Resources/ Health and Safety Manager)

GEO Site & Testing Services Ltd

Units 3-4, Heol Aur, Dafen, Llanelli, Carmarthenshire, Wales SA14 8QN Tel: 01554 784040 Fax: 01554 784041 info@gstl.co.uk gstl.co.uk

Date: 16 May 2023

Test Report Ref: TR 950824

GEO Site & Testing Services Ltd Unit 4 Hoel Aur Dafen Ind Estate

Dafen

Carmarthenshire Order No: 14180/FG

Wales

SA14 8QN Page 1 of 1

Contract: Former Tata Site, Pontarddulais

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Expansion of Steel Slag over 28 days at 80°C by

BRE in-house method (BR 481 Part B - Appendix B)

SAMPLE DETAILS:

Certificate of sampling received: No Laboratory Ref. No: S110204

Client Ref. No:

Date and Time of Sampling:

Date of Receipt at Lab:

26/04/2023

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

26/04/2023

16/05/2023

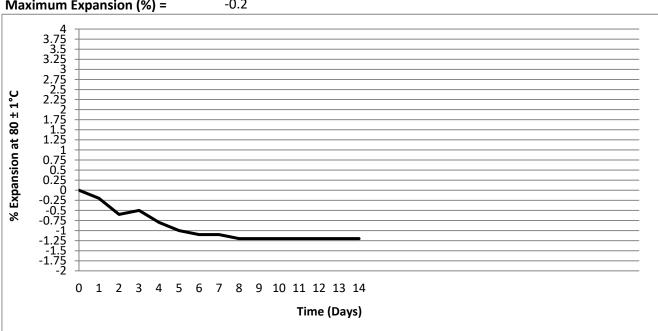
Unknown

Name of Source: Former Tata Site, Pontarddulais

Method of Sampling: Unknown

Sampled By: Client (Test results apply to sample as received)

N/A


Tested By: AW

Material Description: Passing 20mm

Target Specification:

RESULTS:

Total Expansion at 14 days (%) = -1.21 Maximum Expansion (%) = -0.2

This test report shall not be reproduced, except in full, without the written approval of Celtest Company Limited.

These results relate only to the items tested.

Comments:

% of material retained on the 20mm sieve = 5.2

Deviation from standard procedure, test duration 14 days instead of 28

days.

Report checked and approved by:

Chantelle Kopec-Williams
Job Coordinator

APPENDIX L

In-situ Ground Gas Monitoring Results

Job No.: 14180 **Monitoring Conditions** Barometric Pressure (mb)

Site: Former Tata Site Pontarddulais Light Rain On Arrival: 988 Weather: Monitoring Date: 12.04.23 °C **During Monitoring:** Ambient Temp: 8 988

Monitoring Round: 1 Instrument: GA5000 **End of Monitoring:** 987

Location	Well Base Level	Water Level	Methane ((CH4) %v/v	Methan	e % LEL	Oxygen	(O2) %v/v	Carbon Dioxi	de (CO2) %v/v	Carbon Monoxide (CO)	Hydrogen Sulphide (H2S)	Peak Gas Flow	VOC Vapours
	(mbgl)	(mbgl)	Peak	Steady	Peak	Steady	Peak	Steady	Peak	Steady	(ppm)	(ppm)	(l/hr)	(ppm>background)
BH 01	2.03	1.02	0.10	0.10	2.00	2.00	20.10	20.10	1.30	1.30	1.00	<1	<0.3	0.10
BH 02	1.25	1.01	<0.5	<0.5			16.90	16.90	<0.5	<0.5	1.00	<1	<0.3	0.30
BH 03	7.07	2.11	0.20	0.10	4.00	2.00	17.30	17.40	0.20	0.20	1.00	<1	<0.3	0.10
BH 04	2.13	2.06	<0.5	<0.5			16.10	16.40	4.40	4.40	2.00	<1	<0.3	0.30
BH 05	3.07	Dry	<0.5	<0.5			21.60	21.60	0.20	0.20	<1	<1	<0.3	0.10
BH 06	2.56	Dry	<0.5	<0.5			17.30	17.70	2.90	2.90	<1	<1	<0.3	0.30
		·												

Typical Instrument Accuracy:

%CH₄ 0-70% +/- 0.5% СО 0-500ppm +/- 2% FS LEL = Lower Explosive Limit %CO₂ 0-60% +/- 0.5% H_2S 0-5000ppm +/- 2.0% FS N/R = No Reading Taken FS = Full Scale

%O₂ 0-25% +/- 1.0% Flow from borehole +/- 0.3l/h

Job No.: 14180 Monitoring Conditions Barometric Pressure (mb)

Site: Former Tata Site Pontarddulais Weather: Cloudy On Arrival: 993
Monitoring Date: 27.04.23 Ambient Temp: 9 °C During Monitoring: 993

Monitoring Round: 2 Instrument: GA5000 End of Monitoring: 993

Location	Well Base Level	Water Level	Methane ((CH4) %v/v	Methan	e % LEL	Oxygen	(O2) %v/v	Carbon Dioxi	de (CO2) %v/v	Carbon Monoxide (CO)	Hydrogen Sulphide (H2S)	Peak Gas Flow	VOC Vapours
	(mbgl)	(mbgl)	Peak	Steady	Peak	Steady	Peak	Steady	Peak	Steady	(ppm)	(ppm)	(I/hr)	(ppm>background)
BH 01	2.03	1.08	0.10	0.10	2.00	2.00	19.60	19.60	1.10	1.10	1.00	<1	<0.3	0.10
BH 02	1.25	0.98	<0.5	<0.5			17.20	17.50	<0.5	<0.5	1.00	<1	<0.3	0.10
BH 03	7.07	2.13	0.10	0.10	2.00	2.00	18.10	18.10	0.10	0.10	1.00	<1	<0.3	0.10
BH 04	2.13	Dry	<0.5	<0.5			17.50	17.90	3.50	3.40	1.00	<1	<0.3	0.20
BH 05	3.07	Dry	<0.5	<0.5			20.80	21.10	0.10	0.10	<1	<1	<0.3	0.20
BH 06	2.56	Dry	<0.5	<0.5			18.20	18.30	1.80	1.70	<1	<1	<0.3	0.20
		·												

Typical Instrument Accuracy:

 %CH4
 0-70% +/- 0.5%
 CO
 0-500ppm +/- 2% FS
 LEL = Lower Explosive Limit

 %CO2
 0-60% +/- 0.5%
 H₂S
 0-5000ppm +/- 2.0% FS
 N/R = No Reading Taken

 %O2
 0-25% +/- 1.0%
 Flow from borehole +/- 0.3l/h
 FS = Full Scale

Job No.: 14180 **Monitoring Conditions** Barometric Pressure (mb)

Site: Former Tata Site Pontarddulais Sunny On Arrival: Weather: Monitoring Date: 03.05.23 **During Monitoring:** Ambient Temp: 14 °C

1007 Monitoring Round: 3 Instrument: GA5000 End of Monitoring: 1007

Location	Well Base Level	Water Level	Methane (CH4) %v/v	Methan	e % LEL	Oxygen	(O2) %v/v	Carbon Dioxi	de (CO2) %v/v	Carbon Monoxide (CO)	Hydrogen Sulphide (H2S)	Peak Gas Flow	VOC Vapours
	(mbgl)	(mbgl)	Peak	Steady	Peak	Steady	Peak	Steady	Peak	Steady	(ppm)	(ppm)	(I/hr)	(ppm>background)
BH 01	2.03	1.04	0.10	0.10	2.00	2.00	19.10	19.10	1.20	1.00	1.00	<1	<0.3	0.20
BH 02	1.25	1.11	<0.5	<0.5			18.10	18.40	<0.5	<0.5	1.00	<1	<0.3	0.10
BH 03	7.07	2.20	0.20	0.10	4.00	2.00	19.60	19.60	0.10	0.10	2.00	<1	<0.3	0.20
BH 04	2.13	Dry	<0.5	<0.5			18.20	18.20	3.60	3.40	1.00	<1	<0.3	0.10
BH 05	3.07	Dry	<0.5	<0.5			19.80	19.90	0.10	0.10	<1	<1	<0.3	0.10
BH 06	2.56	Dry	<0.5	<0.5			20.00	20.00	1.40	1.40	<1	<1	<0.3	0.30
·		·										•		

Typical Instrument Accuracy:

%CH₄ 0-70% +/- 0.5% 0-500ppm +/- 2% FS CO LEL = Lower Explosive Limit %CO₂ 0-60% +/- 0.5% H_2S 0-5000ppm +/- 2.0% FS N/R = No Reading Taken FS = Full Scale

%O₂ 0-25% +/- 1.0% Flow from borehole +/- 0.3l/h

Notes:

1007

Job No.: 14180 **Monitoring Conditions** Barometric Pressure (mb)

Site: Former Tata Site Pontarddulais Sunny On Arrival: 1025 Weather: Monitoring Date: 18.05.23 **During Monitoring:** Ambient Temp: 19 °C 1025

Monitoring Round: 4 Instrument: GA5000 **End of Monitoring:** 1025

Location	Well Base Level	Water Level	Methane (CH4) %v/v	Methan	e % LEL	Oxygen	(O2) %v/v	Carbon Dioxi	de (CO2) %v/v	Carbon Monoxide (CO)	Hydrogen Sulphide (H2S)	Peak Gas Flow	VOC Vapours
	(mbgl)	(mbgl)	Peak	Steady	Peak	Steady	Peak	Steady	Peak	Steady	(ppm)	(ppm)	(l/hr)	(ppm>background)
BH 01	2.03	1.03	0.20	0.10	4.00	2.00	19.60	19.60	0.80	0.80	1.00	<1	<0.3	0.10
BH 02	1.25	1.12	<0.5	<0.5			18.90	19.20	<0.5	<0.5	2.00	<1	<0.3	0.20
BH 03	7.07	2.21	0.10	0.10	2.00	2.00	18.90	18.90	0.20	0.20	1.00	<1	<0.3	0.30
BH 04	2.13	Dry	<0.5	<0.5			18.60	18.60	3.10	2.90	1.00	<1	<0.3	0.10
BH 05	3.07	Dry	<0.5	<0.5			20.10	20.10	0.20	0.20	<1	<1	<0.3	0.20
BH 06	2.56	Dry	<0.5	<0.5			19.60	19.60	1.10	1.10	<1	<1	<0.3	0.20

Typical Instrument Accuracy:

%CH₄ 0-70% +/- 0.5% СО 0-500ppm +/- 2% FS LEL = Lower Explosive Limit %CO₂ 0-60% +/- 0.5% H_2S 0-5000ppm +/- 2.0% FS N/R = No Reading Taken 0-25% +/- 1.0% Flow from borehole +/- 0.3l/h FS = Full Scale

%O₂

Job No.: 14180 **Monitoring Conditions** Barometric Pressure (mb)

Site: Former Tata Site Pontarddulais Sunny On Arrival: 1012 Weather: Monitoring Date: 01.06.23 **During Monitoring:** Ambient Temp: 20 °C 1012

Monitoring Round: 5 Instrument: GA5000 End of Monitoring: 1012

Location	Well Base Level	Water Level	Methane (CH4) %v/v	Methan	e % LEL	Oxygen	(O2) %v/v	Carbon Dioxi	de (CO2) %v/v	Carbon Monoxide (CO)	Hydrogen Sulphide (H2S)	Peak Gas Flow	VOC Vapours
	(mbgl)	(mbgl)	Peak	Steady	Peak	Steady	Peak	Steady	Peak	Steady	(ppm)	(ppm)	(I/hr)	(ppm>background)
BH 01	2.03	1.02	0.10	0.10	2.00	2.00	18.90	18.90	0.60	0.60	1.00	<1	<0.3	0.20
BH 02	1.25	1.13	<0.5	<0.5			19.30	19.30	<0.5	<0.5	1.00	<1	<0.3	0.10
BH 03	7.07	2.23	0.10	0.10	2.00	2.00	19.50	19.50	0.10	0.10	2.00	<1	<0.3	0.20
BH 04	2.13	Dry	<0.5	<0.5			19.50	19.60	3.60	3.50	1.00	<1	<0.3	0.10
BH 05	3.07	Dry	<0.5	<0.5			19.90	20.00	0.10	0.10	<1	<1	<0.3	0.10
BH 06	2.56	Dry	<0.5	<0.5			20.10	20.10	0.60	0.60	<1	<1	<0.3	0.30
		·												

Typical Instrument Accuracy:

%CH₄ 0-70% +/- 0.5% СО 0-500ppm +/- 2% FS LEL = Lower Explosive Limit %CO₂ 0-60% +/- 0.5% H_2S 0-5000ppm +/- 2.0% FS N/R = No Reading Taken 0-25% +/- 1.0% Flow from borehole +/- 0.3l/h FS = Full Scale

%O₂

Job No.: 14180 **Monitoring Conditions** Barometric Pressure (mb)

Site: Former Tata Site Pontarddulais On Arrival: 1004 Weather: Cloudy Monitoring Date: 21.06.23 **During Monitoring:** 20 °C 1004 Ambient Temp:

Monitoring Round: 6 Instrument: GA5000 **End of Monitoring:** 1004

Location	Well Base Level	Water Level	Methane (CH4) %v/v	Methan	e % LEL	Oxygen	(O2) %v/v	Carbon Dioxi	de (CO2) %v/v	Carbon Monoxide (CO)	Hydrogen Sulphide (H2S)	Peak Gas Flow	VOC Vapours
	(mbgl)	(mbgl)	Peak	Steady	Peak	Steady	Peak	Steady	Peak	Steady	(ppm)	(ppm)	(l/hr)	(ppm>background)
BH 01	2.03	1.05	0.10	0.10	2.00	2.00	19.20	19.30	0.50	0.50	1.00	<1	<0.3	0.20
BH 02	1.25	Dry	<0.5	<0.5			19.60	19.60	<0.5	<0.5	1.00	<1	<0.3	0.10
BH 03	7.07	2.28	0.10	0.10	2.00	2.00	18.90	18.90	0.20	0.10	1.00	<1	<0.3	0.10
BH 04	2.13	Dry	<0.5	<0.5			20.10	20.10	2.20	2.20	1.00	<1	<0.3	0.30
BH 05	3.07	Dry	<0.5	<0.5			18.10	18.20	0.20	0.20	<1	<1	<0.3	0.20
BH 06	2.56	Dry	<0.5	<0.5			20.00	20.00	0.50	0.30	<1	<1	<0.3	0.10
·														

Typical Instrument Accuracy:

%CH₄ 0-70% +/- 0.5% СО 0-500ppm +/- 2% FS LEL = Lower Explosive Limit %CO₂ 0-60% +/- 0.5% H_2S 0-5000ppm +/- 2.0% FS N/R = No Reading Taken FS = Full Scale

%O₂ 0-25% +/- 1.0% Flow from borehole +/- 0.3l/h

CERTIFICATE OF ANALYSIS

MULTI-SAMPLE REPORT REFERENCE 2023-07-25-11:25:09

REGISTERED DATE 09/01/2023 - 30/05/2023 **RECEIVED** DATE 30/05/2023

ANALYSIS STARTED 01/06/2023 **ANALYSIS COMPLETE** 07/06/2023

LABORATORY

i2 Analytical Croxley Green Business Park 7 Woodshots Meadow Watford **WD18 8YS**

CUSTOMER

Integral Geotechnique Ltd Integral House 7 Beddau Way Castlegate business Park Cardiff Glamorgan CF83 2AX

Matrix: Gas Bag

		i2 S	ample Number	512338	512343	512344
			Client Code	14180/RJH	14180/RJH	14180/RJH
			Client Site	Tata Steel Pontardulias	Tata Steel Pontardulias	Tata Steel Pontardulias
		Pre P	rinted Barcode	pp897f2	pp897ed	pp897ec
		Sar	nple Reference	BH02	BH03	BH04
Determinand	Technique	LOD	Accreditation			
Media Charge	T385	0.0	None	Unreportable	Unreportable	Unreportable
Pre-concentration	T375	0.0	None	Complete	Complete	Complete

Matrix: 226-10

				i2 Sample Number	584308	584309	584310
				Air Volume (I)	1.019	1.094	1.331
			I	Pre Printed Barcode	pp897f2	pp897ed	pp897ec
	Determinand	Technique	LOD	Accreditation			
Aniline		T582	50.0 ug	None	< 50.0	< 50.0	< 50.0
Aniline mg/m3		T582	0.0 mg/m3	None	< 49.1	< 45.7	< 37.6

Technical Reviewer	Role
Mrs Kathryn Gleaves	Senior Customer Service Advisor
Mrs Jeanette Abbott	Customer Service Manager

Extra Testing Information

Technique Code	Technique Name	Samples
T375	AIR21-1-Prep	512338, 512343, 512344
T385	L108B-RGA	512338, 512343, 512344
T582	AIR27-1-AMINES	584308, 584309, 584310

Testing Location Samples All analysis was carried out at i2 Analytical (Poland), i2 Analytical Limited Sp z.o.o, Oddziat w Polsce, ul. Pionierow 39, 41-711 Ruda Slaska, Poland 512338, 512343, 512344, 584308, 584309, 584310

The results reported relate to samples received in the laboratory and may not be representative of a whole batch.

Tests covered by this certificate were conducted in accordance with 12 Analytical's SOPs.

Note: All assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement of uncertainty can be provided on request. This is a simplified test report

This certificate should not be reproduced, except in full, without the express permission of the laboratory.

APPENDIX M

GROUNDWATER MONITORING RESULTS

Groundwater Quality Monitoring Results Site: Former Tata Site, Pontarddulais Job No: 12846 Light Rain 12.04.23 Date: Weather: RH Name of Engineer: Water level Well Base Level pH (pH Units) Temperature (Ĉ) Total disolved solids Salinity Oxygen Reduction Potential Disolved Oxygen Conductivity Comments (uS/cm) Sample No. (mbgl) (mbgl) (PSU) (mV) (%) (ppm) BH 01 1.01 9.03 8.12 12.10 896 318 0.23 Fast Recharge BH 02 1.08 7.01 8.23 11.78 745 299 0.21 Fast Recharge BH 03 7.07 7.96 822 0.22 Fast Recharge 2.11 11.69 361

BH 05 3.51 9.62 8.13 11.78 458 184 0.21 Fast Recharge BH 06 4.03 8.21 7.82 11.85 478 258 0.22 Fast Recharge

678

312

0.24

Fast Recharge

Notes:

1. Instrument Used:

BH 04

HI Multiparameter

9.23

8.25

12.22

2. Typical Accuracy: Water

2.08

Temperature	+/- 0.15 °C	DO	+/- 1%	PSU	+/- 2% or '+/- 0.01 PSU
pН	+/- 0.01 pH	Conductivity	+/- 1% or '+/- 1uS/cm	Resistivity	+/- 1% or '+/- 1mg/L
ORP	+/- 1m\/				<u> </u>

3. N/R = No Reading Taken

Intégral Géotechnique

Groundwater Quality Monitoring Results Site: Former Tata Site, Pontarddulais Job No: 12846 Date: 03.05.23 Weather: Sunny Name of Engineer: RH Water level Well Base Level pH (pH Units) Temperature (Ĉ) Oxygen Reduction Potential Disolved Oxygen Conductivity Total disolved solids Salinity Comments (uS/cm) Sample No. (mbgl) (mbgl) (PSU) (mV) (%) (ppm) BH 01 1.02 9.03 8.23 11.87 742 326 0.21 Fast Recharge BH 02 1.06 7.01 7.69 11.95 542 307 0.22 Fast Recharge 7.07 7.49 Fast Recharge BH 03 2.2 12.27 810 312 0.25 BH 04 9.23 8.02 596 0.19 Fast Recharge 2.14 12.54 261 BH 05 3.56 9.62 7.48 12.09 526 248 0.23 Fast Recharge

632

311

0.20

Fast Recharge

Notes:

BH 06

1. Instrument Used: HI Multiparameter
2. Typical Accuracy: Water

 Temperature
 +/- 0.15 °C
 DO
 +/- 1%
 PSU
 +/- 2% or '+/- 0.01 PSU

 pH
 +/- 0.01 pH
 Conductivity
 +/- 1% or '+/- 1uS/cm
 Resistivity
 +/- 1% or '+/- 1mg/L

 ORP
 +/- 1mV

3. N/R = No Reading Taken

4.31

8.21

7.41

12.05

Intégral Géotechnique

Groundwater Quality Monitoring Results Site: Former Tata Site, Pontarddulais Job No: 12846 Date: 01.06.23 Weather: Sunny Name of Engineer: RH Temperature (Ĉ) Water level Well Base Level pH (pH Units) Oxygen Reduction Potential Disolved Oxygen Conductivity Total disolved solids Salinity Comments (uS/cm) Sample No. (mbgl) (mbgl) (PSU) (mV) (%) (ppm) BH 01 1.05 9.03 8.12 11.45 658 289 0.23 Fast Recharge BH 02 1.08 7.01 7.95 12.05 621 291 0.23 Fast Recharge 7.07 276 0.22 Fast Recharge BH 03 2.23 7.69 12.09 784 BH 04 9.23 8.36 487 262 0.21 Fast Recharge 2.16 12.23 BH 05 3.59 9.62 7.35 11.58 458 215 0.21 Fast Recharge

591

302

0.21

Fast Recharge

Notes:

BH 06

1. Instrument Used: HI Multiparameter
2. Typical Accuracy: Water

4.36

8.21

7.62

11.88

 Temperature
 +/- 0.15 °C
 DO
 +/- 1%
 PSU
 +/- 2% or '+/- 0.01 PSU

 pH
 +/- 0.01 pH
 Conductivity
 +/- 1% or '+/- 1uS/cm
 Resistivity
 +/- 1% or '+/- 1mg/L

 ORP
 +/- 1mV

3. N/R = No Reading Taken

Intégral Géotechnique

APPENDIX N

SUMMARY OF LABORATORY CHEMICAL TEST RESULTS (SOILS)

METALS AND SEMI-METALS

14180 Site: Former Tata Site, Pontarddulais

Soil Type: Made Ground

Soil Organic Matter: 1%

No.	Location	Depth (m)	Arsenic	Boron	Beryllium	Cadmium	Chromium	Chromium (VI)	Copper	Lead	Mercury (Elemental)	Nickel	Selenium	Vanadium	Zinc
			(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
1	TP02	0.20	37	0.8	0.69	< 0.2	22	< 1.8	72	150	< 0.3	24	< 1.0	30	240
3	TP04	0.20	-	-	-	-	-	-	-	-	-	-	-	-	-
4	TP05	0.40	-	-	-	-	-	-	-	-	-	-	-	-	-
6	TP07	0.10	14	0.4	0.53	< 0.2	62	< 1.8	170	130	< 0.3	8.1	< 1.0	25	63
7	TP09	0.30	32	0.4	0.67	< 0.2	22	< 1.8	94	250	< 0.3	40	< 1.0	28	220
8	TP10	0.40	27	1.3	0.91	< 0.2	20	< 1.8	93	82	< 0.3	26	< 1.0	35	150
10	TP13	0.30	48	0.7	1.9	< 0.2	31	< 1.8	220	180	< 0.3	62	< 1.0	55	320
11	TP15	0.20	38	0.7	0.89	< 0.2	20	< 1.8	110	83	< 0.3	27	< 1.0	26	200
12	TP16	0.20	44	< 0.2	0.47	< 0.2	30	< 1.8	74	110	0.7	14	< 1.0	26	170
13	TP16	0.70	-	-	-	-	-		-	-	-	-	-	-	-
14	TP17	0.20	18	< 0.2	0.46	< 0.2	15	< 1.8	620	110	< 0.3	27	< 1.0	29	170
15	TP18	0.20	77	0.6	2.2	< 0.2	37	< 1.8	490	400	< 0.3	860	< 1.0	45	850
16	TP20	0.50	-	-	-	-	-	-	-	-	-	-	-	-	-
18	WS01	0.20	44	2.1	0.98	< 0.2	18	< 1.8	140	95	< 0.3	37	< 1.0	36	130
19	WS03	0.60	34	1	0.61	< 0.2	15	< 1.8	82	150	< 0.3	25	< 1.0	27	240
20	WS06	0.40	-	-	-	-	-	-	-	-	-	-	-	-	-
	Scre	eening Criteria Value	37.0	290.0	1.7	11.0	-	6.0	2400.0	200.0	1.2	130.0	250.0	410.0	3700.0
		eening Criteria Value	S4UL	S4UL	S4UL	S4UL	-	S4UL	S4UL	C4SL	S4UL	S4UL	S4UL	S4UL	S4UL

INORGANIC CHEMICALS & OTHERS

Job No.: 14180

Site: Former Tata Site, Pontarddulais

Soil Type: Made Ground

Soil Organic Matter: 1%

No.	Location	Depth (m)	Cyanide	Loss on ignition, dried solids	Moisture content at 30 C	Phenol	рН	Water Soluble Sulphate	Sulphate Total as SO4	Sulphide	Total Sulphur	TOC by Ignition in O2	Equivalent SOM	Asbestos in Soil	Asbestos in Soil Identification Name	Asbestos Quantification
			(mg/kg)	(%)	(%)	(mg/kg)	(pH units)	(g/l)	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(%)			(%)
1	TP02	0.20	< 1.0	10.90	25.00	< 1.0	7.70	0.014	830.00	6.90	540.00	4.20	7.22	Not-detected	-	-
3	TP04	0.20	-	-	4.10	-	-	-	-	-	-		<0.1	-	-	-
4	TP05	0.40	-	-	14.00	-	-	-	-	-	-		<0.1	-	-	-
6	TP07	0.10	< 1.0	6.60	5.60	< 1.0	10.50	0.032	440.00	460.00	640.00	4.20	7.22	Not-detected	-	-
7	TP09	0.30	< 1.0	4.20	8.60	< 1.0	8.50	0.038	790.00	13.00	430.00	2.00	3.44		Chrysotile	< 0.001
8	TP10	0.40	< 1.0	5.60	12.00	< 1.0	10.20	0.280	2400.00	55.00	990.00	2.10	3.61		Chrysotile	< 0.001
10	TP13	0.30	< 1.0	11.00	18.00	< 1.0	7.90	0.070	1200.00	15.00	740.00	4.40	7.57	Not-detected	-	-
11	TP15	0.20	< 1.0	9.10	17.00	< 1.0	7.90	0.020	460.00	22.00	480.00	3.90	6.71	Not-detected	-	-
12	TP16	0.20	< 1.0	2.40	6.10	< 1.0	8.50	0.026	310.00	19.00	240.00	1.40	2.41	Not-detected	-	-
13	TP16	0.70	-	-	33.00	-	-	-	-	-	-	-	<0.1	-	-	-
14	TP17	0.20	< 1.0	4.90	15.00	< 1.0	8.10	0.026	450.00	5.10	270.00	1.80	3.10	Not-detected	-	-
15	TP18	0.20	< 1.0	7.80	18.00	< 1.0	8.00	0.017	2000.00	12.00	820.00	3.00	5.16	Detected	Chrysotile	< 0.001
16	TP20	0.50	-	-	18.00	-	-	-	-	-	-	-	<0.1	-	-	-
18	WS01	0.20	< 1.0	9.60	8.10	< 1.0	10.30	1.300	7400.00	57.00	3300.00	3.10	5.33	Detected	Chrysotile & Amosite	0.068
19	WS03	0.60	< 1.0	4.90	12.00	< 1.0	11.30	0.400	6800.00	32.00	2600.00	1.60	2.75	Detected	Chrysotile	< 0.001
20	WS06	0.40	-	-	12.00	-	-	-	-	-	-	-	<0.1	-	-	-
																
		eening Criteria Value	34.0	-	-	120.0			-	-		ļ	-	-	-	0.001
	Source of Scre	eening Criteria Value	ATRISK	-	-	S4UL	-	-	-	-	-	-	-	-	-	IOM

POLYAROMATIC HYDROCARBONS (PAH)

Site: Former Tata Site, Pontarddulais

14180

Soil Type: Made Ground

Soil Organic Matter: 1%

No.	Location	Depth (m)	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthrac ene	Benzo(a)pyrene	Benzo(b)fluoran thene	Benzo(ghi)peryl ene	Benzo(k)fluorant hene	Chrysene	Dibenzo(ah)anth racene	Fluoranthene	Fluorene	Indeno(123cd)py rene	Naphthalene	Phenanthrene	Pyrene
			(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
1	TP02	0.20	0.05	0.13	0.26	2.2	1.9	2.7	0.94	0.91	2.1	0.24	3.2	0.08	1	0.14	1.2	2.6
3	TP04	0.20		-		-	-	-	-			-					-	-
4	TP05	0.40	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
6	TP07	0.10	< 0.05	0.1	0.08		*	0.33	< 0.05	0.16	0.29	< 0.05	0.45	< 0.05	< 0.05	0.23	0.41	0.39
7	TP09	0.30	< 0.05	< 0.05	0.07			0.54	0.18	0.13	0.41	0.05	0.56	0.06		0.14	0.42	0.47
8	TP10	0.40	< 0.05	< 0.05	0.05	0.28	0.24	0.4		0.19	0.37	< 0.05	0.57	< 0.05	0.13	0.17	0.48	0.45
10	TP13	0.30	< 0.05	< 0.05	0.08				0.25	0.36	0.6	< 0.05	0.7	0.06	0.19	0.2	0.6	0.55
11	TP15	0.20	0.06	0.12	0.14	0.77	0.68	0.95	0.31	0.5	0.97	0.09	2.1	0.22	0.28	0.12	2.2	1.5
12	TP16	0.20	< 0.05	< 0.05	0.05	0.09	0.09	0.16	0.11	0.05	0.12	< 0.05	0.17	< 0.05	0.09	0.12	0.14	0.13
13	TP16	0.70	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
14	TP17	0.20	< 0.05	< 0.05	< 0.05	0.1	0.1	0.14	< 0.05	0.07	0.14	< 0.05	0.2	< 0.05	< 0.05	< 0.05	0.21	0.17
15	TP18	0.20	0.39	1.4	1.2	2.6	2	3	1.2	1.1	2.3	0.24	5.5	1.2	1.2	1.1	4.4	4.6
16	TP20	0.50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
18	WS01	0.20	< 0.05	< 0.05	< 0.05	0.27	0.2	0.00	0.14	0.24	0.41	< 0.05	0.51	< 0.05	0.11	0.28	0.58	0.4
19	WS03	0.60	0.05	< 0.05	0.07	0.39	0.43	0.78	0.27	0.31	0.71	0.06	1.2	0.06	0.24	0.13	1	0.9
20	WS06	0.40	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
																	ļ	
	Scre	eening Criteria Value		170.0	2400.0	7.2	2.2	2.6	320.0	77.0	15.0	0.24	280.0	170.0	27.0	2.3	95.0	620.0
	Source of Scre	eening Criteria Value	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL

PETROLEUM HYDROCARBONS

14180 Site: Former Tata Site, Pontarddulais

Soil Type: Made Ground

Soil Organic Matter: 1%

No.	Location	Depth (m)	Aliphatic C5-C6	Aliphatic C6-C8	Aliphatic C8-C10	Aliphatic C10- C12 EPH	Aliphatic C12- C16 EPH	Aliphatic C16-C35 EPH	Aliphatic C35- C44 EPH	Aromatic C5-C7	Aromatic C7-C8	Aromatic C8-C10	Aromatic C10- C12 EPH	Aromatic C12- C16 EPH	Aromatic C16- C21 EPH	Aromatic C21- C35 EPH	Aromatic C35- C40 EPH
			(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
1	TP02	0.20	-	-	-	-		-				-	-	-	-	-	-
3	TP04	0.20	-		-	-		-		-		-		-	-	-	-
4	TP05	0.40	< 0.001	< 0.001	< 0.001	< 1.0	< 2.0	30	13	< 0.001	< 0.001		< 1.0	< 2.0	< 10	< 10	< 10
6	TP07	0.10	< 0.001	< 0.001	< 0.001	< 1.0	< 2.0	99	310	< 0.001	< 0.001		< 1.0	5.1	< 10	170	110
7	TP09	0.30	< 0.001	< 0.001	< 0.001	< 1.0	< 2.0	22	< 8.4	< 0.001	< 0.001	< 0.001	< 1.0	< 2.0	< 10	< 10	< 10
8	TP10	0.40			-		•					-		-	-		-
10	TP13	0.30			-	-						-		-	-		-
11	TP15	0.20	-	-	-	-		-		-	-	-	-	-	-	-	-
12	TP16	0.20	< 0.001	< 0.001	< 0.001	12	36	450	150	< 0.001	< 0.001	< 0.001	< 1.0	< 2.0	< 10	130	21
13	TP16	0.70	< 0.001	< 0.001	< 0.001	3.6	7.3	200	160	< 0.001	< 0.001	< 0.001	2.2	320	26	120	42
14	TP17	0.20	< 0.001	< 0.001	< 0.001	< 1.0	< 2.0	< 10	< 8.4	< 0.001	< 0.001	< 0.001	< 1.0	< 2.0	< 10	< 10	< 10
15	TP18	0.20			-		•					-		-	-		-
16	TP20	0.50			-		•					-		-	-		-
18	WS01	0.20	< 0.001	< 0.001	< 0.001	< 1.0	< 2.0	< 10	< 8.4	< 0.001	< 0.001	< 0.001	< 1.0	< 2.0	< 10	< 10	< 10
19	WS03	0.60	< 0.001	< 0.001	< 0.001	< 1.0	< 2.0	< 10	< 8.4	< 0.001	< 0.001	< 0.001	< 1.0	< 2.0	< 10	< 10	< 10
20	WS06	0.40	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Scre	ening Criteria Value	42.0	100.0	27.0	130.0	1100.0	65000.0	65000.0	0.1	130.0	34.0	74.0	140.0	260.0	1100.0	1100.0
	Source of Scre	ening Criteria Value	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL

SEMI VOLATILE ORGANIC COMPOUNDS

Job No.: 14180 Site: Former Tata Site, Pontarddulais

Made Ground

Soil Type: Soil Organic Matter: 1%

No.	Location	Depth (m)	Aniline	2,4- Dimethylphen ol	2- Methylnapht halene	Dibenzofura n	Carbazole	Anthraquino ne
			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
2	TP03	0.10	-	-	-			-
4	TP05	0.40	-	-	-	-	-	-
6	TP07	0.10	-	-	-	-	-	-
7	TP09	0.30	< 0.1	< 0.3	0.2	< 0.2	< 0.3	< 0.3
8	TP10	0.40	-	-	-	-	-	-
10	TP13	0.30	-	-	-	-	-	-
11	TP15	0.20	-	-	-	-	-	-
12	TP16	0.20	< 0.1	< 0.3	0.2	< 0.2	< 0.3	< 0.3
13	TP16	0.70	-	-	-	-	-	-
14	TP17	0.20	0.5	< 0.3	< 0.1	< 0.2	< 0.3	< 0.3
15	TP18	0.20	0.9	0.4	1	0.5	0.4	0.4
16	TP20	0.50	0.5	< 0.3	0.3	< 0.2	< 0.3	< 0.3
18	WS01	0.20	< 0.1	< 0.3	0.4	< 0.2	< 0.3	< 0.3
19	WS03	0.60	< 0.1	< 0.3	0.2	< 0.2	< 0.3	< 0.3
20	WS06	0.40	-	-	-	-	-	-
	Scre	ening Criteria Value	-	19.0	-	-	-	-
	Source of Scre	eening Criteria Value	-	CL:AIRE GAC	-	-	-	-

METALS AND SEMI-METALS

14180 Site: Former Tata Site, Pontarddulais

Soil Type: Stockpiles

Soil Organic Matter: 1%

N	. Location	Depth (m)	Arsenic	Boron	Beryllium	Cadmium	Chromium	Chromium (VI)	Copper	Lead	Mercury (Elemental)	Nickel	Selenium	Vanadium	Zinc
			(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	TP11a	0.00	29	1.2	0.66	< 0.2	55	< 1.8	130	130	< 0.3	37	< 1.0	57	240
1	7 TP21	0.40	42	0.4	0.76	< 0.2	24	< 1.8	210	510	< 0.3	38	< 1.0	33	530
	5	creening Criteria Value	37.0	290.0	1.7	11.0	-	6.0	2400.0	200.0	1.2	130.0	250.0	410.0	3700.0
	Source of Screening Criteria Value		S4UL	S4UL	S4UL	S4UL	-	S4UL	S4UL	C4SL	S4UL	S4UL	S4UL	S4UL	S4UL

INORGANIC CHEMICALS & OTHERS

Job No.: 14180

Site: Former Tata Site, Pontarddulais

Soil Type: Stockpiles

Soil Organic Matter: 1%

	No.	Location	Depth (m)	Cyanide	Loss on ignition, dried solids	Moisture content at 30 C	Phenol	рН	Sulphate	as SO4	Sulphide	-	In O2	Equivalent SOM	Asbestos in Soil	Asbestos in Soil Identification Name	Asbestos Quantification
				(mg/kg)	(%)	(%)	(mg/kg)	(pH units)	(g/l)	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(%)			(%)
Г	9	TP11a	0.00	< 1.0	6.50	14.00	< 1.0	10.00	0.170	1700.00	100.00	810.00	3.10	5.33	Not-detected	-	-
	17	TP21	0.40	< 1.0	9.80	16.00	< 1.0	6.80	0.130	2200.00	23.00	890.00	4.20	7.22	Detected	Chrysotile	< 0.001
		Scre	eening Criteria Value	34.0	-	-	120.0	-	-	-	-	-	-	-	-	-	0.001
		Source of Scre	eening Criteria Value	ATRISK	-	-	S4UL	-	-	-	-	-	-	-	-	-	IOM

POLYAROMATIC HYDROCARBONS (PAH)

14180 Site: Former Tata Site, Pontarddulais

Soil Type: Stockpiles

Soil Organic Matter: 1%

N	0.	Location	Depth (m)	Acenaphthene (mg/kg)	Acenaphthylene (mg/kg)	Anthracene (mg/kg)	Benzo(a)anthrac ene (mg/kg)	Benzo(a)pyrene (mg/kg)	Benzo(b)fluoran thene (mg/kg)	Benzo(ghi)peryl ene (mg/kg)	Benzo(k)fluorant hene (mg/kg)	Chrysene (mg/kg)	Dibenzo(ah)anth racene (mg/kg)	Fluoranthene (mg/kg)	Fluorene (mg/kg)	Indeno(123cd)py rene (mg/kg)	Naphthalene (mg/kg)	Phenanthrene (mg/kg)	Pyrene (mg/kg)
	9	TP11a	0.00	0.65	0.06	1	3.3	3	4	1.7	1.4	2.9	0.45	5.8	0.54	1.6	0.82	4	5.1
1	7	TP21	0.40	1.7	0.14	1.2	5.9	5.1	7	3.3	3.2	6.2	0.65	11	1.2	3	0.51	7.8	8.5
		Scre	ening Criteria Value	210.0	170.0	2400.0	7.2	2.2	2.6	320.0	77.0	15.0	0.24	280.0	170.0	27.0	2.3	95.0	620.0
		Source of Scree	ening Criteria Value		S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL

PETROLEUM HYDROCARBONS

14180 Site: Former Tata Site, Pontarddulais

Soil Type: Stockpiles

Soil Organic Matter: 1%

ı	lo.	Location	Depth (m)	Aliphatic C5-C6 (mg/kg)	Aliphatic C6-C8 (mg/kg)	Aliphatic C8-C10 (mg/kg)	Aliphatic C10- C12 EPH (mg/kg)	Aliphatic C12- C16 EPH (mg/kg)	Aliphatic C16-C35 EPH (mg/kg)	Aliphatic C35- C44 EPH (mg/kg)	Aromatic C5-C7 (mg/kg)	Aromatic C7-C8 (mg/kg)	Aromatic C8-C10 (mg/kg)	Aromatic C10- C12 EPH (mg/kg)	Aromatic C12- C16 EPH (mg/kg)	Aromatic C16- C21 EPH (mg/kg)	Aromatic C21- C35 EPH (mg/kg)	Aromatic C35- C40 EPH (mg/kg)
	9	TP11a	0.00	< 0.001	< 0.001	< 0.001	< 1.0	< 2.0	29	56	< 0.001	< 0.001	< 0.001	1.8	< 2.0	< 10	30	13
	17	TP21	0.40	< 0.001	< 0.001	< 0.001	< 1.0	< 2.0	120	31	< 0.001	< 0.001	< 0.001	< 1.0	< 2.0	12	54	< 10
		Scre	ening Criteria Value	42.0	100.0	27.0	130.0	1100.0	65000.0	65000.0	0.1	130.0	34.0	74.0	140.0	260.0	1100.0	1100.0
		Source of Scree	ening Criteria Value	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL

SEMI VOLATILE ORGANIC COMPOUNDS

14180 Former Tata Site, Pontarddulais Site:

Soil Type: Soil Organic Matter: Stockpiles

1%

No.	Location	Depth (m)	Aniline	2,4- Dimethylphen ol	2- Methylnapht halene	Dibenzofura n	Carbazole	Anthraquino ne
			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
9	TP11a	0.00	< 0.1	< 0.3	0.5	0.4	0.4	0.4
17	TP21	0.40	0.9	< 0.3	0.6	0.6	0.6	0.8
					-	-	-	
	Screening Criteria Valu		-	19.0	-	-	-	-
	Source of Scre	eening Criteria Value	-	CL:AIRE GAC	-	-	-	-

METALS AND SEMI-METALS

14180 Site: Former Tata Site, Pontarddulais

Soil Type: Topsoil and Natural Soils

Soil Organic Matter: 1%

No.	Location	Depth (m)	Arsenic (mg/kg)	Boron (mg/kg)	Beryllium (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Chromium (VI) (mg/kg)	Copper (mg/kg)	Lead (mg/kg)	Mercury (Elemental) (mg/kg)	Nickel (mg/kg)	Selenium (mg/kg)	Vanadium (mg/kg)	Zinc (mg/kg)
2	TP03	0.10	42	0.5	0.58	< 0.2	18	< 1.8		82	< 0.3	19	< 1.0	30	120
5	TP06	0.50	14	< 0.2	0.94	< 0.2	20	< 1.8	21	19	< 0.3	28	< 1.0	26	83
21	TP02	0.80	-	-	-	-	-	-	-	-	-	-	-	-	-
22	TP03	1.00	-	-	-	-	-	-	-	-	-	-	-	-	-
23	TP04	1.00	-	-	-	-	-	-	-	-	-	-	-	-	-
24	TP15	1.00	-	-	-	-	-	-	-	-	-	-	-	-	-
25	BH01	1.00	-	-	-	-	-	-	-	-	-	-	-	-	-
_															
	Scre	eening Criteria Value	37.0	290.0	1.7	11.0	-	6.0	2400.0	200.0	1.2	130.0	250.0	410.0	3700.0
	Source of Scre	eening Criteria Value	S4UL	S4UL	S4UL	S4UL	-	S4UL	S4UL	C4SL	S4UL	S4UL	S4UL	S4UL	S4UL

INORGANIC CHEMICALS & OTHERS

Site: Former Tata Site, Pontarddulais

14180

Soil Type: Topsoil and Natural Soils

Soil Organic Matter: 1%

No.	Location	Depth (m)	Cyanide	Loss on ignition, dried solids	at 30 C	Phenoi	рН	Water Soluble Sulphate	Sulphate Total as SO4	Sulphide	Total Sulphur	In O2	Equivalent SOM	Asbestos in Soil	Asbestos in Soil Identification Name	Asbestos Quantification
			(mg/kg)	(%)	(%)	(mg/kg)	(pH units)	(g/l)	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(%)			(%)
2	TP03	0.10	< 1.0	10.10	33.00	< 1.0	6.70	0.018	760.00	5.70	460.00	4.10	7.05	Not-detected	-	-
5	TP06	0.50	< 1.0	2.10	6.60	< 1.0	7.60	0.008	110.00	< 1.0	83.00	0.60	1.03	Not-detected	-	-
21	TP02	0.80	,	-	23.00	-	7.60	0.009	-	-	ı	-	<0.1	-	-	-
22	TP03	1.00	,	-	7.30	-	6.90	0.004	-	-	ı	-	<0.1	-	-	-
23	TP04	1.00	,	-	18.00	-	7.20	0.006	-	-	ı	-	<0.1	-	-	-
24	TP15	1.00	,	-	20.00	-	7.50	0.007	-	-	ı	-	<0.1	-	-	-
25	BH01	1.00		-	24.00	-	7.50	0.050	-	-	-	-	<0.1	-	-	-
		•														
	Scre	eening Criteria Value	34.0	-	-	120.0	-	-	-	-	-	-	-	-	-	0.001
	Source of Screen	eening Criteria Value	ATRISK	-	-	S4UL	-	-	-	-	-	-	-	-	-	IOM

POLYAROMATIC HYDROCARBONS (PAH)

14180 Site: Former Tata Site, Pontarddulais

Soil Type: Topsoil and Natural Soils

Soil Organic Matter: 1%

No.	Location	Depth (m)	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthrac ene	Benzo(a)pyrene	Benzo(b)fluoran thene	Benzo(ghi)peryl ene	Benzo(k)fluorant hene	Chrysene	Dibenzo(ah)anth racene	Fluoranthene	Fluorene	Indeno(123cd)py rene	Naphthalene	Phenanthrene	Pyrene
			(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
2	TP03	0.10	< 0.05	0.09	0.08	0.91	1.1	1.4	0.72	0.7	1.3	0.13	1.2	< 0.05	0.71	0.11	0.38	1
5	TP06	0.50	< 0.05	< 0.05	< 0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.08	< 0.05	0.09	< 0.05	< 0.05	< 0.05	< 0.05	0.08
21	TP02	0.80	-	-		-	-	-	-	-	-	-	-	-	-	•	-	-
22	TP03	1.00	-	-	•	-	-	-	-	-	-	-	-	-	-	•	-	-
23	TP04	1.00	-	-	•	-	-	-	-	-	-	-	-	-	-	•	-	-
24	TP15	1.00	-	-	•	-	-	-	-	-	-	-	-	-	-	•	-	-
25	BH01	1.00	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
		•					l											
	Scre	eening Criteria Value	210.0	170.0	2400.0	7.2	2.2	2.6	320.0	77.0	15.0	0.24	280.0	170.0	27.0	2.3	95.0	620.0
	Source of Scre	eening Criteria Value	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL	S4UL

APPENDIX O

SUMMARY OF LABORATORY CHEMICAL TEST RESULTS (WATER)

									,	*	
	Determinand	Unit	BH01	BH02	BH03	BH04	BH05	BH06	MAC-EQS Other Surface Water C4 100 - <200mg/CaCO3	Freshanter AA-EQS >100-150mg/l CaCO3	UK (England and Wales) Drinking Water Standards
	Arsenic Beryllum	ug1	< 0.15 < 0.1	< 0.15 < 0.1	0.8	< 0.15	< 0.15 < 0.1	< 0.15 < 0.1		50	10
	Boron	ugt ugt	26	32	49	46	23	< 10		2000	1000
	Cadmium Calcium	mg1	0.08 11	0.06 31	0.05 170	0.03 42	0.07 26	0.05 22		0.15	5
20	Chromium	ug1	< 5.0 0.7	< 5.0	< 5.0 2.6	< 5.0	< 5.0	< 5.0 1	32	3.4	50 2000
and Non-Metals	Copper Cyanide	ug1 ug1	< 10	0.6 < 10	< 10	0.7 < 10	< 0.5 < 10	< 10	5	1	50
8	Lead Mercury	ugl	< 0.2 < 0.05	< 0.2	< 0.2 < 0.05	< 0.2 < 0.05	< 0.2 < 0.05	< 0.2 < 0.05	14 0.07	1.2	10
Motals a	Nickel	ugl ugl	11	1.4	2.4	4.9	2.4	1.1	34	4	20
ş	pH Selenium	pH Units ug/l	5.9 0.7	6.7 0.6	7 < 0.6	6.5 1.7	6	6.3 < 0.6			10
	Sulphate as SO4	ugil	18600	19100	28100	29400	18200	10800		400000	250000
	Sulphide Vanadium	ug1 ug1	< 5.0 < 0.2	< 5.0 < 0.2	< 5.0 0.3	< 5.0 < 0.2	< 5.0 < 0.2	< 5.0 < 0.2	:	0.25 20	-
_	Zinc	ugli	15	2.1	4.3	5.9	7.6	- 4		10.9	5000
	Acenaphthene Acenaphthylene	ugl ugl	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	:	10	- :
	Anthracene Benzo (a) anthracene	ugt ugt	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.1	0.1	
	Benzo (g,h,i) perylene	ug1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.00082		
	Benzo (a) pyrene Benzo (b) fluoranthene	ug1 ug1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.027 0.017	0.00017	0.01
_	Benzo (k) fluoranthene	ugil	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.017		
PAH	Chrysene Dibenz (a,h) anthracene	ugl ugl	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	:	10 10	
	Fluoranthene	ugl	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.12	0.0063	
	Fluorene Indeno (1,2,3) cd pyrene	ug1 ug1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	:	10	
	Naphthalene Phenanthrene	ugli ugli	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	130	2	
	Pyrene	ug1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		10	
-	PAH, Total Aliohatic VPH >C5 - C6	ugli ugli	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	50	0.00017	0.1
	Alphatic VPH >C6 - C8	ugil	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	50		- 1
	Aliphatic VPH >C8 - 10 Aliphatic EPH >C10 - C12	ugt ugt	< 1.0 < 10	50 50		1					
	Alphatic EPH >C12 · C16 Alphatic EPH >C16 · C21	ug1	< 10 < 10	< 10	50 50	-	1				
¥	Aliphatic EPH >C21 - C35	ug1 ug1	< 10	< 10	< 10	< 10	< 10	< 10	50	:	1
VPHEPH	Aliphatic EPH >C35 - C44 Aromatic VPH >C5 - C7	ug1 ug1	< 10 < 1.0	50 50		1					
\$	Aromatic VPH >C7 - C8	ug1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	50		1
	Aromatic VPH >C8 - C10 Aromatic EPH >C10 - C12	ugl ugl	< 1.0 < 10	50 50		1					
	Aromatic EPH >C12 - C16 Aromatic EPH >C16 - C21	ugl	< 10 < 10	50 50	-	1					
	Aromatic EPH >C21 - C35	ug1 ug1	< 10	< 10	< 10	< 10	< 10	< 10	50		1
pt 32	Aromatic EPH >C35 - C44 Benzene	ugt µgt	< 10 < 3.0	< 10 < 3.0	< 10 < 3.0	< 10	< 10 < 3.0	< 10	50 50	10	1
solitano genate	Toluene Ethylbenzene	uat lau	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	380	74	- :
Ocyc	p & m-xylene o-xylene	ual µgl	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0		30 30	
M G	MTBE (Methyl Tertiary Butyl Ether)	Pgu	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0			
	Chloromethane Chloroethane Bromomethane	pgt pgt pgt	< 3.0 < 3.0 < 3.0								
	Vinyl Chloride Trichlorofluoromethane	Pgų	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0			
	1.1-Dichloroethene 1.1.2-Trichloro-1.2.2-trifluoroethane	ual ual ual	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	:		
	Cis-1.2-dichloroethene MTBE (Methyl Tertiary Butyl Ether)	uat uat	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0			
	1.1-Dichloroethane	pgn	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	i		
	2.2-Dichloroprocane Trichloromethane	hal hal	< 3.0 < 3.0	< 3.0	< 3.0	< 3.0	< 3.0 < 3.0	< 3.0 < 3.0	- :		- :
	1.1.1-Trichloroethane 1.2-Dichloroethane	ugl lgu	< 3.0 < 3.0 < 3.0	- :		- :					
	1.1-Dichloropropene Trans-1.2-dichloroethene	ugt ugt	< 3.0 < 3.0 < 3.0	< 3.0 < 3.0 < 3.0	< 3.0 < 3.0 < 3.0	< 3.0 < 3.0	< 3.0 < 3.0 < 3.0	< 3.0 < 3.0 < 3.0	- :		- :
	Benzene Tetrachloromethane	PΩI	< 3.0 < 3.0 < 3.0	< 3.0 < 3.0 < 3.0	< 3.0 < 3.0 < 3.0	< 3.0	< 3.0 < 3.0 < 3.0	< 3.0	:		- :
	1,2-Dichloropropane Trichloroethene	ugt ugt	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	:		- :
	Dibromomethane Bromodichloromethane	μ <u>ρ</u> (1 μ <u>ρ</u> (1	< 3.0 < 3.0 < 3.0	- :		- :					
	Cis-1,3-dichloropropene Trans-1,3-dichloropropene	Pgų Pgų	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	- :		- :
	Toluene 1,1,2-Trichloroethane	ugt ugt	< 3.0 < 3.0	< 3.0	< 3.0	< 3.0	< 3.0 < 3.0	< 3.0 < 3.0	-		-
0	1,3-Dichloropropane Dibromochloromethane	Pgu Pgu	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0 < 3.0 < 3.0	< 3.0	- :	-	-
VOC	Tetrachloroethene 1,2-Dibromoethane	lgu lgu	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	:	- :	- :
	Chlorobenzene 1.1.1.2-Tetrachloroethane	lgu lou	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	:		
	Ethylbenzene p & m-Xvlene	uat uat	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0			
	Styrene Tribromomethane	ual lau	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0			
	o-Xvlene 1.1.2.2-Tetrachloroethane	uof	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	:		
	Isopropy/benzene Bromobenzene	Pgq Pgq Pgq	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	:		
	n-Progythenzene 2-Chlorotoluene	βgų	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0			
	4-Chlorotoluene	µg1 µg1	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	i i		
	1.3.5-Trimethybenzene tert-Butybenzene	ugt ugt	< 3.0 < 3.0 < 3.0	< 3.0	< 3.0	< 3.0 < 3.0 < 3.0	< 3.0 < 3.0	< 3.0 < 3.0 < 3.0			
	1.2.4-Trimethylbenzene sec-Butylbenzene	ugi ugi	< 3.0 < 3.0 < 3.0	- :		- :					
	1,3-Dichlorobenzene p-Isopropylloluene	ugt lgu	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	- :	:	
	1,2-Dichlorobenzene 1,4-Dichlorobenzene	ugt ugt	< 3.0 < 3.0 < 3.0	< 3.0	< 3.0 < 3.0 < 3.0	< 3.0	< 3.0 < 3.0 < 3.0	< 3.0	:		- :
	Butylbenzene 1,2-Dibromo-3-chloropropane	ugt lgu	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	- :	:	
	1,2,4-Trichlorobenzene Hexachlorobutadiene	ugt ugt ugt	< 3.0 < 3.0	< 3.0	< 3.0	< 3.0	< 3.0 < 3.0	< 3.0 < 3.0	:		- :
\vdash	1,2,3-Trichlorobenzene Aniline	βgų	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		-	
	Phenol 2-Chlorophenol	lgu lgu	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05	:		
	Bis(2-chloroethyl)ether 1,3-Dichlorobenzene	ugl lgu	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	÷		
	1,2-Dichlorobenzene 1,4-Dichlorobenzene	ugt lgu	< 0.05 < 0.05 < 0.05	- :	:						
	Bis(2-chloroisopropyl)ether 2-Methylphenol	ugt lgu	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05	< 0.05	< 0.05	< 0.05	< 0.05	- :	:	
	Nitrobenzene	ugt lgu			< 0.05	< 0.05	< 0.05	< 0.05	- :	- :	
	4-Methylphenol Isophorone	ugl lgu	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	:		- :
	2.4-Dimethylohenol	ual ual	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	:		- :
	Bis/2-chloroethoxylmethane 1.2.4-Trichlorobenzene	ual ual	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	: -	-	==
	Nachthalene 2.4-Dichlorophenol	ual Igu	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
	4-Chloroaniline Hexachlorobutadiene	PQ4 PQ4	< 0.05	< 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05	< 0.05	- :	-	
1	4-Chloro-3-methylphenol 2.4.6-Trichlorophenol	lgu lgu	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	:		==
	2.4.5-Trichlorophenol 2-Methylnaphthalene	pgt lgu	< 0.05	< 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05	< 0.05	:		
	2-Chloronaphthalene Dimethylohthalate	ugl lgu	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05			
SVOC	2.6-Dinitrotoluene Acenaphtiviene	ugt ugt	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		-	
95	Acenaphthene 2,4-Dinitrotoluene	lgu lgu	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
	Dibenzofuran 4-Chlorophenyl phenyl ether	pgt pgt pgt	< 0.05	< 0.05	< 0.05 < 0.05	< 0.05	< 0.05 < 0.05	< 0.05	:	- :	- :
	4-Chicrophenyl phenyl ether Diethyl phthalate 4-Nitroaniline	ugt ugt	< 0.05	< 0.05	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05	< 0.05	< 0.05			
	Fluorene Azoberizene	pgt pgt pgt	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.05			
1	Azoberizene Bromophenyl phenyl ether Hexachlorohenzene	ugt ugt	< 0.05 < 0.05 < 0.05								
1	Phenanthrene Anthracece	ugl ugl			- 0.01						
	Anthracene Carbazole	ugt lgu	< 0.01 < 0.05 < 0.05	- :	- :						
	Dibutyl phthalate Anthraquinone	ual ual	- 0.06	- 0.06	< 0.05 < 0.05 < 0.01	< 0.05	- 0.06	-0.06	- :	- :	-
1	Fluoranthene Pyrene	ual ual	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	- :	- :	
1	Butvi benzvi ohthalate Benzola\anthracene	leu leu leu leu	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	:		- :
1	Chrysene Benzolb/fluoranthene	μαί	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1	Benzo(k)fluoranthene Benzo(a)pyrene	ugl lgu	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	:		- :
1	Indeno(1.2.3-cdlovrene Dibenz(a.h)anthracene	Pgu Pgu	< 0.01	< 0.01	< 0.01 < 0.01	< 0.01	< 0.01	< 0.01	:		
L	Benzo(ghi)perviene 3&4-Methylphenol	hB1 164	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
Г	PCB Congener 28 PCB Congener 52	Ppu	< 0.02	< 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 < 0.02			
åŝ	PCB Congener 101 PCB Congener 118	Pg4 Pg4	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02		-	
PCB	PCB Congener 138 PCB Congener 153	pgt lgu	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	:		
	PCB Congener 180 Total PCBs	184 184	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02			
_		_							_	_	_

	Determinand	Unit	BH01	BH02	Sample BH03	Location BH04	BH05	BH06	MAC-EQS Other Surface Water C4 100 - <200mg/CaCO3	Freshwater AA-EQS >100-150mg/l CaCO3	UK (England and Wales) Drinking Water Standards
	Arsenic Beryllum	ugt ugt	< 0.15 < 0.1	< 0.15 < 0.1	0.56 < 0.1	< 0.15 < 0.1	< 0.15 < 0.1	< 0.15 < 0.1		50	10
	Boron Cadmium	ugit ugit	22	33	55	45 0.03	26 0.06	15 0.02		2000 0.15	1000 5
	Calcium Chromium	mg1	8.2 < 0.2	20	180	46	21 < 0.2	16	32	3.4	50
Weda	Copper	ug1 ug1	1.2	1.5	3	0.9	0.6	< 0.5	-	1	2000
and Non-Metals	Cyanide Lead	ug1 ug1	< 10 < 0.2	5 14	1 1.2	50 10					
als an	Mercury Nickel	lgu lgu	< 0.05 14	< 0.05 1.4	< 0.05 2	< 0.05 8.3	< 0.05 4	< 0.05 0.8	0.07 34	4	20
Metals	pH Selenium	pH Units ug/l	5.8 0.9	6.5 < 0.6	7 < 0.6	6.4	6	6.2 < 0.6			10
	Sulphate as SO4	ugil	17400	16500	23200	26000	16500	8310	·	400000	250000
	Sulphide Vanadium	ugli ugli	< 5.0 < 0.2		0.25 20						
-	Zinc Acenaphthene	ugli ugli	17 < 0.01	3.6 < 0.01	4.8 < 0.01	9.3	< 0.01	3.7 < 0.01	:	10.9 10	5000
	Acenaphthylene Anthracene	ugil ugil	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.1	10 0.1	
	Benzo (a) anthracene	ug1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		10	
	Benzo (g.h.i) perylene Benzo (a) pyrene	ugli ugli	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.00082 0.027	0.00017	0.01
	Benzo (b) fluoranthene Benzo (k) fluoranthene	ugli ugli	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.017 0.017		-
PAH	Chrysene Dibenz (a,h) anthracene	ugil ugil	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		10 10	-
	Fluoranthene	ugit	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.12	0.0063	
	Fluorene Indeno (1,2,3) cd pyrene	ug1 ug1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	-	10	
	Naphthalene Phenanthrene	ugli ugli	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	130	2	-
	Pyrene PAH, Total	ug1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		10 0.00017	0.1
\vdash	Aliphatic VPH >C5 - C6	ugt ugt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	50	-	1
	Aliphatic VPH >C6 - C8 Aliphatic VPH >C8 - 10	ugt ugt	< 1.0 < 1.0	50 50		1					
1	Aliphatic EPH >C10 - C12 Aliphatic EPH >C12 - C16	ug1 ug1	< 10 < 10	50 50		1					
	Alphatic EPH >C16 - C21 Alphatic EPH >C21 - C35	ugt ugt	< 10 < 10	< 10	< 10 < 10	< 10 < 10	< 10 < 10	< 10	50 50		1
WPHEPH	Aliphatic EPH >C35 - C44	ug/l	< 10	< 10	< 10	< 10	< 10	< 10	50 50		1
ΛÞ	Aromatic VPH >C5 - C7 Aromatic VPH >C7 - C8	ug1 ug1	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0	< 1.0	< 1.0 < 1.0	< 1.0 < 1.0	50		1
	Aromatic VPH >C8 - C10 Aromatic EPH >C10 - C12	ugt ugt	< 1.0 < 10	50 50		1 1					
	Aromatic EPH >C12 - C16 Aromatic EPH >C16 - C21	ug1 ug1	< 10 < 10	50 50	-	1					
	Aromatic EPH >C16 - C21 Aromatic EPH >C21 - C35 Aromatic EPH >C35 - C44	ug/l	< 10	< 10	< 10	< 10	< 10	< 10	50		1
108	Benzene	ugi lgu	< 10	< 10	< 10	< 10	< 10	< 10	50 50	10	1
YOUR	Toluene Ethylberizene p & m-xylene	lau lau lau	< 3.0 < 3.0 < 3.0	380	74						
Mono	o-xylene MTBE (Methyl Tertiary Butyl Ether)	Γρη Γρη	< 3.0 < 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0		30	
	Chloromethane Chloroethane	Pgu Pgu	< 3.0	< 3.0	< 3.0 < 3.0 < 3.0	< 3.0 < 3.0	< 3.0 < 3.0 < 3.0	< 3.0 < 3.0	:		- :
	Bromomethane Vinyl Chloride	Pay Pay	< 3.0 < 3.0 < 3.0	:							
	Trichlorofluoromethane 1.1-Dichloroethene 1.1.2-Trichloro-1.2.2-trifluoroethane	lou lou lou	< 3.0 < 3.0 < 3.0								
	Cis-1.2-dichloroethene MTBE (Methyl Tertiary Butyl Ether)	uat	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0			
	2.2-Dichloropropane	PQ4 PQ4	< 3.0 < 3.0	< 3.0	< 3.0 < 3.0	< 3.0 < 3.0	< 3.0	< 3.0		:	
	Trichloromethane 1.1.1-Trichloroethane	Pay Pay	< 3.0	< 3.0	< 3.0 < 3.0	< 3.0 < 3.0	< 3.0	< 3.0	:		
	1.2-Dichloropropene	Pgq Pgq Pgq	< 3.0 < 3.0 < 3.0	:	:						
	Trans-1.2-dichloroethene Benzene Tetrachloromethane	pgi lgu lgu	< 3.0 < 3.0	- 9.0	< 3.0 < 3.0	< 3.0 < 3.0	< 3.0 < 3.0 < 3.0	- 20		-	
	1,2-Dichloropropane Trichloroethene	lgu lgu	< 3.0	< 3.0 < 3.0 < 3.0	< 3.0	< 3.0	< 3.0	< 3.0 < 3.0 < 3.0	:		-
	Dibromomethane Bromodichloromethane	Pgų Pgų	< 3.0 < 3.0 < 3.0	:	:						
	Cis-1,3-dichloropropene	ugt ugt	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	:		- :
	Trans-1,3-dichibropropene Toluene 1,1,2-Trichioroethane 1,3-Dichibropropane	ugl Pgu	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0 < 3.0	< 3.0 < 3.0 < 3.0 < 3.0	:	- :	
90		Pgt Pgt Unit	< 3.0 < 3.0 < 3.0	< 3.0	:	-					
	Tetrachloroethene 1,2-Dibromoethane Chlorobenzene	lgų lgų	< 3.0 < 3.0 < 3.0	:		- 1					
	1.1.1.2-Tetrachloroethane Ethylberizene	ual ual	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0		- :	
	p & m-Xvlene Styrene	ual ual	< 3.0 < 3.0	< 3.0 < 3.0 < 3.0	< 3.0	< 3.0	< 3.0 < 3.0 < 3.0	< 3.0 < 3.0 < 3.0	:	:	
	Tribromomethane o-Xvlene 1.1.2.2-Tetrachioroethane	uat uat	< 3.0 < 3.0 < 3.0	< 3.0	< 3.0 < 3.0 < 3.0	< 3.0 < 3.0 < 3.0	< 3.0	< 3.0			
	Isopropyberzene Bromoberzene	τρη Τριμ	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	:		
	n-Propvibenzene 2-Chlorotoluene	Pgų Pgų	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	:	:	
	4-Chlorotoluene 1.3.5-Trimethylbenzene	ugil ugil	< 3.0 < 3.0	< 3.0	< 3.0	< 3.0 < 3.0	< 3.0 < 3.0	< 3.0	:		
	tert-Butvbenzene 1.2.4-Trimethylbenzene	pg1 pg1	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	:	:	
	sec-Butylbenzene 1,3-Dichlorobenzene p-Isopropyltoluene	Pgq Pgq Pgq	< 3.0 < 3.0 < 3.0			-					
	1,2-Dichlorobenzene 1,4-Dichlorobenzene	lgų lgų	< 3.0 < 3.0	- 9.0	< 3.0	< 3.0	- 20	- 20	:		
	1,2-Dibromo-3-chloropropane	Pgų Pgų	< 3.0	< 3.0 < 3.0 < 3.0	< 3.0	< 3.0	< 3.0 < 3.0 < 3.0	< 3.0 < 3.0 < 3.0			
	1,2,4-Trichlorobenzene Hexachlorobutadiene	Pg4 Pg4	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0 < 3.0	< 3.0	:		- :
\vdash	1,2,3-Trichloroberizene Anline Phenol	µg1 µg1	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 3.0	< 0.06 < 0.06	:		
	2-Chlorophenol Bis(2-chloroethyl)ether	ugt ugt ugt	< 0.05 < 0.05	< 0.06 < 0.06	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05	< 0.05 < 0.06 < 0.06	:	:	
1	1,3-Dichlorobenzene 1,2-Dichlorobenzene	lgu lgu	< 0.05	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06			
	1,4-Dichlorobenzene Bis(2-chloroisopropyl)ether	PQ4 PQ4	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	:	:	
1	2-Methylphenol Hexachloroethane Nitrobenzene	Pgq Pgq Iou	< 0.05 < 0.05 < 0.05	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06		- :	
1	A-Methylphenol Isophorone	Pg4 Pg4 Pg4	< 0.05 < 0.05	< 0.06 < 0.06	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05	< 0.05 < 0.06 < 0.06		:	
1	2-Nitrophenol 2.4-Dimethylphenol	ual ual	< 0.05	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	<u>:</u>		_:
1	1.2.4-Trichlorobenzene	uat uat	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05			
1	Naphthalene 2.4-Dichlorophenol	pot pot	< 0.01 < 0.05 < 0.05	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	:	· ·	
1	4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylohenol	PQ1 PQ1 PQ4	< 0.05	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05	< 0.06 < 0.06 < 0.06	< 0.05 < 0.05 < 0.05		:	
	2.4.6-Trichlorophenol 2.4.5-Trichlorophenol	lgu lgu	< 0.05	- 0.06	-0.06	-0.06	- 0.06	-0.06		<u> </u>	<u>.</u> :
	2-Methylnaphthalene 2-Chloropaphthalene	Pgų Pgų	< 0.05	< 0.06 < 0.06 < 0.06	< 0.06 < 0.06 < 0.06	< 0.06 < 0.06 < 0.06	< 0.05 < 0.05 < 0.05	< 0.06 < 0.06 < 0.06			
SVOC	Dimethylohthalate 2.6-Dinitrotoluene	PQ4 PQ4	< 0.05	< 0.05 < 0.05 < 0.01	< 0.05 < 0.05 < 0.01	< 0.05 < 0.05 < 0.01	< 0.05	< 0.05 < 0.05 < 0.01	:	:	
S	Acenaphthylene Acenaphthene 2.4-Dinitrotoksene	Pgt Pgt Unit	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1	2.4-Dingrotoluene Dibenzofuran 4-Chlorophenyl phenyl ether	Pg1 Pg4 Pg4	< 0.05 < 0.05	< 0.06 < 0.06	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05	< 0.05 < 0.06 < 0.06			
1	Diethyl phthalate 4-Nitroanline	ugt ugt	< 0.05	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06			
	Fluorene Azobenzene	Pal Pau	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	:	:	
	Bromopheryl phenyl ether Hexachlorobenzene Phenanthrene	Pgq Pgq Iou	< 0.05 < 0.05 < 0.01	< 0.05	< 0.06	< 0.06	< 0.06	< 0.06		<u> </u>	
	Phenanthrene Anthracene Carbazole	Pgq Pgq Pgq	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		:	
	Dibutvi ohthalate Anthracuinone	ual ual	< 0.05	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06			
	Fluoranthene Pyrene	ual ual	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1	Butvl benzvl ohthalate Benzo(a)anthracene	Poul Poul Poul	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		:	
1	Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene	PQ1 PQ1 PQ1	< 0.01 < 0.01 < 0.01		:						
1	Benzo(a)pyrene Indeno(1,2,3-cdipyrene	Pgų Pgų	< 0.01	< 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01	< 0.01	< 0.01			
1	Dibenz(a h)anthracene Benzo(chi)perviene	Pgu Pgu	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	: = =	- :	-
H	3&4-Methylphenol PCB Congener 28	µg1 µg1	< 0.10 < 0.02 < 0.02	:	· ·	-					
8	PCB Concener 52 PCB Concener 101 PCB Concener 118	Paq Paq Paq	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02		:	
PCBs	PCB Congener 138 PCB Congener 153	lgu lgu	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02			
1	PCB Congener 180 Total PCBs	hal len	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02			

	Determinand	Unit	BH01	BH02	Sample BH03	BH04	BH05	BH06	MAC-EQS Other Surface Water C4 100 - <200mg/lCaCO3	Freshwater AA-EQS >100-150mg/l CaCO3	UK (England and Wales) Drinking Water Standards
	Arsenic Beryllum	ug1 ug1	< 0.15 < 0.1	< 0.15 < 0.1	0.61 < 0.1	< 0.15 < 0.1	< 0.15 < 0.1	< 0.15 < 0.1		50	10
	Boron Cadmium	ugt ugt	25 0.11	35 0.02	63 0.06	44 0.04	32 0.05	15 0.03	:	2000 0.15	1000
	Calcium	mg1	7.6 < 0.2	25 0.3	200	37 < 0.2	29	19	. 32	3.4	. 50
Meta	Chromium Copper	ugt ugt	3.1	0.6	3.4	1.3	< 0.5	< 0.5		1	2000
and Non-Metals	Cyanide Lead	ug1 ug1	< 10 < 0.2	5 14	1.2	50 10					
g and	Mercury	ugli	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.07		- 1
Metals	Nickel pH	ugt pH Units	13 5.4	0.8 6.6	2.1 6.9	3.5 6.5	2.4 6.8	0.8 6.1	34	4	20
1	Selenium Subhate as SO4	ug1 ug1	0.9 19100	< 0.6 19300	< 0.6 26500	1.9 26100	1.3 23300	< 0.6 14200		40000	10 250000
	Sulphide	ug1	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	·	0.25	
	Vanadium Zinc	ugl ugl	< 0.2	< 0.2 3	0.4 1.7	< 0.2 5.1	< 0.2 3.1	< 0.2 2.5	:	20 10.9	5000
Г	Acenaphthene Acenaphthylene	ugl	<0.01	<0.01 <0.01	<0.01	<0.01	<0.01	<0.01		10 10	- :
	Anthracene	ugl ugl	<0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	0.1	0.1	
	Benzo (a) anthracene Benzo (g,h,i) perylene	ug1 ug1	<0.01 <0.01	<0.01	<0.01	<0.01	<0.01 <0.01	<0.01	0.00082	10	-
	Benzo (a) pyrene Benzo (b) fluoranthene	ugil	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.027 0.017	0.00017	0.01
_	Benzo (k) fluoranthene	ug1 ug1	<0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	0.017		
PAH	Chrysene Dibenz (a,h) anthracene	ugl ugl	<0.01 <0.01	<0.01 <0.01	<0.01	<0.01	<0.01 <0.01	<0.01	:	10 10	-
	Fluoranthene Fluorene	ugt ugt	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.12	0.0063	-
	Indeno (1,2,3) cd pyrene	ugl	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		2	
	Naphthalene Phenanthrene	ug1 ug1	<0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	130	10	
	Pyrene PAH, Total	ugt ugt	<0.01	<0.01 <0.01	<0.01	<0.01	<0.01	<0.01	:	10 0.00017	0.1
Г	Aliphatic VPH >C5 - C6 Aliphatic VPH >C6 - C8	ugl	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	50 50		1 1
	Aliphatic VPH >C8 - 10	ugt ugt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	50	:	1
	Aliphatic EPH >C10 - C12 Aliphatic EPH >C12 - C16	ugt ugt	< 10 < 10	50 50	:	1 1					
	Alphatic EPH >C16 - C21 Alphatic EPH >C21 - C35	ug1	< 10 < 10	< 10 < 10	< 10	< 10 < 10	< 10 < 10	< 10 < 10	50 50		1 1
ИРНЕРН	Aliphatic EPH >C35 - C44	ugt ugt	< 10	< 10	< 10	< 10	< 10	< 10	50	:	1
₩	Aromatic VPH >C5 - C7 Aromatic VPH >C7 - C8	ug1 ug1	< 1.0 < 1.0	50 50	-	1					
	Aromatic VPH >C8 - C10 Aromatic EPH >C10 - C12	ugt ugt	< 1.0 < 10	< 1.0	< 1.0	< 1.0	< 1.0 < 10	< 1.0 < 10	50 50		1 1
	Aromatic EPH >C12 - C16	ug1	< 10	< 10	< 10	< 10	< 10	< 10	50		1
	Aromatic EPH >C16 - C21 Aromatic EPH >C21 - C35	ugt ugt	< 10 < 10	50 50		1					
gn 2	Aromatic EPH >C35 - C44 Benzene	ugi lgu	< 10	< 10	< 10	< 10	< 10	< 10	50 50	10	1 1
mago	Toluene Ethylbenzene	ual ual	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	380	74	-
Dogue	p & m-xylene o-xylene	ual ual	< 3.0 < 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	:	30 30	- :
W S	MTBE (Methyl Tertiary Butyl Ether)	ug!	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0			
	Chloroethane Bromomethane	ugt ugt	< 3.0 < 3.0 < 3.0			- :					
	Viryl Chloride Trichlorofluoromethane	lgu lgu	< 3.0 < 3.0	< 3.0 < 3.0 < 3.0	< 3.0 < 3.0 < 3.0	< 3.0 < 3.0 < 3.0	< 3.0 < 3.0 < 3.0	< 3.0 < 3.0 < 3.0		- :	- :
	1.1-Dichloroethene 1.1.2-Trichloro-1.2.2-trifluoroethane	ual lau	< 3.0	< 3.0	< 3.0	< 3.0		< 3.0			-:
	Cis-1.2-dichloroethene MTBE (Methyl Tertiary Butyl Ether)	ual ual	< 3.0 < 3.0 < 3.0			-:					
	1.1-Dichloroethane 2.2-Dichloropropane	PR4 PR4	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	:	- :	-:-
	Trichloromethane 1.1.1-Trichloroethane	ugt ugt	< 3.0 < 3.0	< 3.0 < 3.0 < 3.0	< 3.0	< 3.0 < 3.0	< 3.0 < 3.0	< 3.0 < 3.0 < 3.0	- :	- :	- :
	1.2-Dichloroethane 1.1-Dichloropropene	μ <u>ρ</u> (1 μ <u>ρ</u> (1	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	- :	- :	- :
	Trans-1.2-dichloroethene Benzene	ugt ugt	< 3.0 < 3.0 < 3.0	:		- :					
	Tetrachloromethane 1,2-Dichloropropane	ugt ugt	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	:		- :
	Trichloroethene Dibromomethane	lgu Igu	< 3.0	< 3.0 < 3.0 < 3.0	< 3.0	< 3.0	< 3.0 < 3.0	< 3.0 < 3.0 < 3.0	:	- :	- :
	Bromodichloromethane Cis-1,3-dichloropropene	ugt ugt	< 3.0 < 3.0 < 3.0	:	:	- :					
	Toluene 1,1,2-Trichloroethane	ugt ugt	< 3.0 < 3.0 < 3.0	:	:	- :					
	1,3-Dichloropropane	ugt lgu	< 3.0 < 3.0	< 3.0 < 3.0	< 3.0	< 3.0 < 3.0	< 3.0 < 3.0 < 3.0	< 3.0			
700	Dibromochloromethane Tetrachloroethene	ugi	< 3.0	- 20	< 3.0	< 3.0	< 3.0				
	1,2-Dibromoethane Chlorobenzene 1.1.1.2-Tetrachloroethane	ugt ugt	< 3.0	< 3.0 < 3.0 < 3.0	< 3.0	< 3.0	< 3.0	< 3.0 < 3.0 < 3.0			
	Ethyberizene p & m-Xylene	ual ual	- 20	- 20	- 9.0	- 20	- 20	- 20	:	:	- :
		ual	< 3.0 < 3.0 < 3.0			- :					
	Tribromomethane o-Xviene 1.1.2.2-Tetrachloroethane	lou lou	< 3.0 < 3.0	< 3.0 < 3.0 < 3.0	< 3.0	< 3.0 < 3.0	< 3.0 < 3.0 < 3.0	< 3.0 < 3.0 < 3.0			-:
	Isopropylbenzene Bromobenzene	PR4 PR4	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	:	- :	- :
	n-Propvibenzene 2-Chlorotoluene	ugt ugt	< 3.0 < 3.0 < 3.0	:	:						
	4-Chlorotoluene 1.3.5-Trimethylbenzene	μ <u>ρ</u> (1 μ <u>ρ</u> (1	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	- :	- :	- :
	tert-Butybenzene 1.2.4-Trimethybenzene	ugt ugt	< 3.0 < 3.0	< 3.0 < 3.0 < 3.0	< 3.0	< 3.0 < 3.0	< 3.0 < 3.0	< 3.0 < 3.0 < 3.0	:		- :
	1,3-Dichlorobenzene	ugt ugt	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0 < 3.0	< 3.0	:		- :
	p-Isopropyltoluene 1,2-Dichlorobenzene	ugt ugt	< 3.0 < 3.0 < 3.0	i	:	Ė					
	1,4-Dichlorobenzene Butylbenzene 1.2-Dihorop-3-chloropropane	pgt pgt pgt	< 3.0 < 3.0 < 3.0	< 3.0	< 3.0 < 3.0 < 3.0	< 3.0 < 3.0 < 3.0	< 3.0	< 3.0			
	1,2-Dibromo-3-chloropropane 1,2,4-Trichloroberzene Hexachlorobutadiene	Pg1 Pg4 Pg4	< 3.0 < 3.0 < 3.0	:		Ė					
H	1,2,3-Trichloroberizene Anline	µgt ugt	< 3.0	< 0.06	< 3.0	< 3.0	< 3.0	< 0.06			
	Phenol 2-Chlorophenol	pgt pgt pgt	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05	< 0.05	< 0.05 < 0.05	< 0.05			- :
	Bis(2-chloroethyl)ether 1,3-Dichlorobenzene	Pg4 Pg4	< 0.05	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06			
	1,2-Dichlorobenzene 1,4-Dichlorobenzene	pg1 leu	< 0.05 < 0.05	< 0.05	< 0.05	< 0.05	< 0.05 < 0.05	< 0.05	:		- :
	Bis(2-chloroisopropyl)ether 2-Methylphenol	lgu lgu	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05	< 0.06 < 0.06 < 0.06	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05	< 0.06 < 0.06 < 0.06	:	:	
	Hexachloroethane Nitrobenzene	µg1 µg1	< 0.05	< 0.06 < 0.06 < 0.06	< 0.06 < 0.06 < 0.06	< 0.06 < 0.06 < 0.06	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05	:	:	-
	4-Methylphenol Isophorone 2-Nitrophenol	pg1 pg1	< 0.05 < 0.05 < 0.05	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06			
	2-Nitrophenol 2.4-Dimethylphenol Bir(2-rhlyrophhynylmethyng	ual ual	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05	< 0.06 < 0.06 < 0.06	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05			
	Bis(2-chloroethoxy)methane 1.2.4-Trichlorobenzene	ual ual	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05			
	Naphthalene 2.4-Dichlorophenol 4-Chloroaniline	pat pat pat	< 0.05 < 0.05		:						
	Mayachlombutadiana	pat pat pat	< 0.05	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06			-:
	4-Chloro-3-methylphenol 2-4-6-Trichlorophenol 2-4-5-Trichlorophenol	ugt ugt	< 0.05	< 0.06	< 0.05	< 0.06	< 0.06	< 0.06			E
	2-Methylnaphthalene 2-Chloronaphthalene	lgu lgu	< 0.05	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06			
SVOC	Dimethylohthalate 2.6-Dinitrotoluene	μ α 1 μ α 1	< 0.05 < 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	:		
SS	Acenaphthriene Acenaphthene 2,4-Dinitrotoluene	ugt ugt	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	- :	- :	
	Dibenzofuran	lgu lgu	< 0.05 < 0.05	< 0.05	< 0.05	< 0.05	< 0.05 < 0.05	< 0.05			- :
	4-Chlorophenyl phenyl ether Diethyl phthalate	lgu lgu	< 0.05	< 0.06	< 0.06	< 0.06	< 0.05	< 0.06	:		- :
	4-Nitroanline Fluorene	pg1 leu	< 0.05 < 0.01	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	:	:	
	Azobenzene Bromophenyl phenyl ether Hexachlorobenzene	ugl lgu	< 0.05 < 0.05 < 0.05	:		- :					
	Phenanthrene	µg1 µg1	< 0.01	< 0.05 < 0.01 < 0.01	< 0.05 < 0.01 < 0.01	< 0.05 < 0.01 < 0.01	< 0.01	< 0.05 < 0.01 < 0.01	:	:	-
	Anthracene Carbazole	µg1 µg1	< 0.01	< 0.06	< 0.06	< 0.06	< 0.01	< 0.06	:	:	-
	Dibutvi phthalate Anthraquinone	ual ual	< 0.05 < 0.05 < 0.01	< 0.05 < 0.05 < 0.01	< 0.06 < 0.06 < 0.01	< 0.05 < 0.05 < 0.01	< 0.05 < 0.05 < 0.01	< 0.05 < 0.05 < 0.01	- :	- :	-
	Fluoranthene Pyrene Butyl benzyl phthalate	ual ual	< 0.01 < 0.01 < 0.05	< 0.01	< 0.01	< 0.01	< 0.01 < 0.01 < 0.05	< 0.01			
	Benzo(a)anthracene Chrysene	pat pat pat	< 0.05 < 0.01 < 0.01								
	Benzo(b)fluoranthene Benzo(k)fluoranthene	ugi ugi	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
	Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	Pg1 Pg4 Pg4	< 0.01 < 0.01 < 0.01								
	Dibenz(a.h)anthracene	ugi ugi	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
\vdash	Benzo(chi)perviene 3&4-Methylphenol PCB Congener 28	pgt pgt	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10			-
	PCB Concener 52 PCB Concener 101	pat pat pat	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02			- :
PCBs	PCB Congener 118 PCB Congener 138	ugi ugi	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	:		
1	PCB Congener 153 PCB Congener 180	pg1 pg1	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<u> </u>		
	Total PCBs	µg¶	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14			

APPENDIX P

METAL BIOAVAILABILITY ASSESSMENT RESULTS

Metal Bioavailability Assessment Tool (M-BAT)

14180 - Former Tata Site, Pontarddulais (Rounds 1 - 3)

	BMPUT DATA										RESULTS (Copper)				RESULTS (Znc)				RESULTS (Mn)				RESULTS (NI)			
ID	Location	Waterbody	Date	Measured Cu Concentration (dissolved) (µg Γ¹)	Concentration C	Measured Mn Concentration issolved) (µg Γ¹)	Measured Ni Concentration (dissolved) (µg Γ¹)	рН	DOC	Ca	Site-specific PNEC Dissolved Copper (µg [¹)	BioF	Bioavailable Copper Concentration (µg I	Risk Characterisation Ratio	Site-specific PNEC Dissolved Zinc (µg I°)	BioF	Bioavailable Zinc Concentration (µg i	Risk Characterisation Ratio	Site-specific PNEC Dissolved Manganese (µg Г	BioF	Bioavailable Manganese Concentration (µg Γ	Risk Characterisation Ratio	Site-specific PNEC Dissolved Nickel (µg Г¹)		Bioavailable Nickel Concentration (µg l'	Risk Characterisation
	3H01 (Round 1)		24.04.2023	0.7	15		11	5.9	0.9	50.5	1.35	0.74	0.52	0.52	17.42	0.63	9.38	0.86	2041.69	0.06			26.80	0.15	1.64	0.41
		Groundwater	24.04.2023	0.6	2.1		1.4	6.7	0.95	116	2.67	0.37	0.22	0.22	19.22	0.57	1.19	0.11	2719.65	0.05			18.92	0.21	0.30	0.07
		Groundwater	24.04.2023	2.6	4.3		2.4	7	5.8	473	24.81	0.04	0.10	0.10	26.56	0.41	1.76	0.16	1521.55	0.08			22.25	0.18	0.43	0.11
4	3H04 (Round 1)	Groundwater	24.04.2023	0.7	5.9		4.9	6.5	1.15	132	2.42	0.41	0.29	0.29	20.30	0.54	3.17	0.29	3448.75	0.04			22.04	0.18	0.89	0.22
5	3H05 (Round 1)	Groundwater	24.04.2023	0.5	7.6		2.4	6	1.15	75.6	1.57	0.64	0.32	0.32	19.15	0.57	4.32	0.40	2458.89	0.05			31.40	0.13	0.31	0.08
6	3H06 (Round 1)	Groundwater	24.04.2023	1	4		1.1	6.3	1.11	59.5	1.73	0.58	0.58	0.58	17.71	0.62	2.46	0.23	2253.79	0.05			29.18	0.14	0.15	0.04
8	3H01 (Round 2)	Groundwater	15.05.2023	1.2	17		14	5.8	0.85	38.3	1.32	0.76	0.91	0.91	16.25	0.67	11.40	1.05	1724.98	0.07			22.87	0.17	2.45	0.61
9	3H02 (Round 2)	Groundwater	15.05.2023	1.5	3.6		1.4	6.5	0.43	83.9	1.24	0.81	1.21	1.21	17.96	0.61	2.18	0.20	2617.91	0.05			21.96	0.18	0.25	0.06
10	3H03 (Round 2)	Groundwater	15.05.2023	3	4.8		2	7	4.51	495	18.76	0.05	0.16	0.16	24.64	0.44	2.12	0.19	1521.55	0.08			20.35	0.20	0.39	0.10
		Groundwater	15.05.2023	0.9	9.3		8.3	6.4	0.71	139	1.47	0.68	0.61	0.61	20.49	0.53	4.95	0.45	3552.39	0.03			30.27	0.13	1.10	0.27
12	3H05 (Round 2)	Groundwater	15.05.2023	0.6	5		4	6	0.61	62.3	1.10	0.91	0.55	0.55	18.16	0.60	3.00	0.28	2323.28	0.05			29.71	0.13	0.54	0.13
13	3H06 (Round 2)	Groundwater	15.05.2023	0.5	3.7		0.8	6.2	0.57	45.2	1.09	0.92	0.46	0.46	16.30	0.67	2.47	0.23	1913.97	0.06			25.14	0.16	0.13	0.03
15	3H01 (Round 3)	Groundwater	13.06.2023	3.1	13		13	5.4	0.38	38.2	1.00	1.00	3.10	3.10	15.88	0.69	8.93	0.82	1729.19	0.07			22.77	0.18	2.28	0.57
16	3H02 (Round 3)	Groundwater	13.06.2023	0.6	3		0.8	6.6	0.54	106	1.53	0.65	0.39	0.39	18.72	0.58	1.75	0.16	3067.30	0.04			19.80	0.20	0.16	0.04
17	3H03 (Round 3)	Groundwater	13.06.2023	3.4	1.7		2.1	6.9	5.18	529	20.64	0.05	0.16	0.16	25.17	0.43	0.74	0.07	1846.56	0.07			22.40	0.18	0.37	
18	3H04 (Round 3)	Groundwater	13.06.2023	1.3	5.1		3.5	6.5	0.75	118	1.72	0.58	0.76	0.76	19.60	0.56	2.84	0.26	3249.07	0.04			21.56	0.19	0.65	0.16
19	3H05 (Round 3)	Groundwater	13.06.2023	0.5	3.1		2.4	6.8	0.82	87.6	2.56	0.39	0.20	0.20	17.81	0.61	1.90	0.17	2240.98	0.05			17.50	0.23	0.55	0.14
20	3H06 (Round 3)	Groundwater	13.06.2023	0.5	2.5		0.8	6.1	0.56	53.8	1.04	0.96	0.48	0.48	17.27	0.63	1.58	0.14	2127.18	0.06			27.71	0.14	0.12	0.03

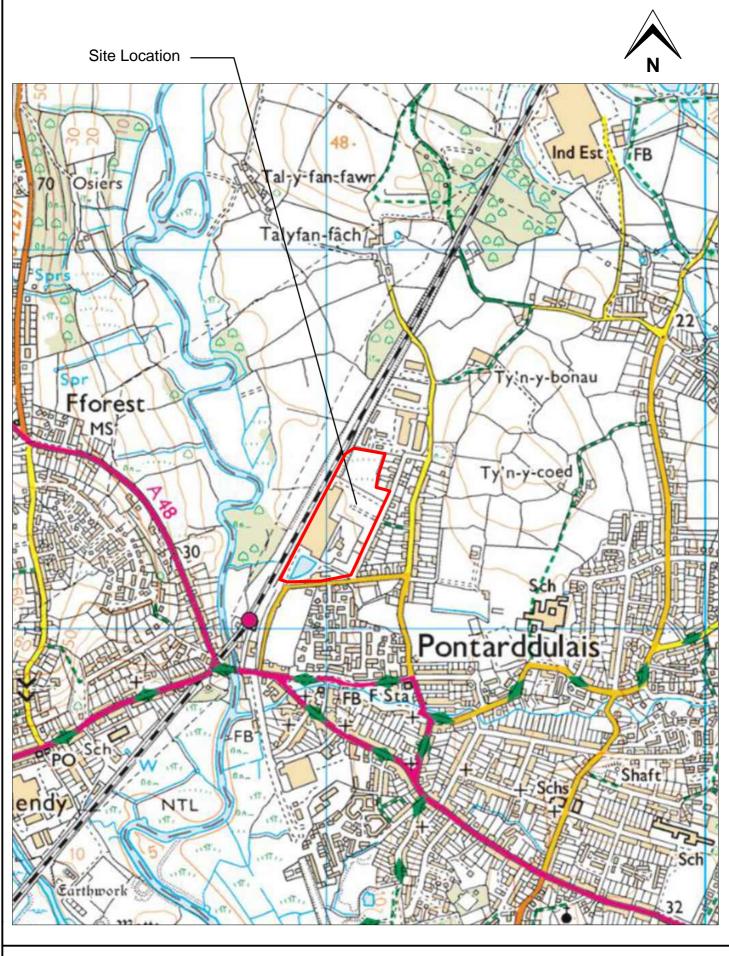


Figure 1: Site Location

Project: Former Tata Site, Pontarddulais	Job no.: 14180
Client: Walters Land Ltd	Scale: 1:10,000 at A4

Intégral 7 Beddau 1 Castlegate Géotechnique CF83 2AX Tel: 029 20

Integral House, 7 Beddau Way, Castlegate Business Park, Caerphilly, CF83 2AX. Tel: 029 2080 7991

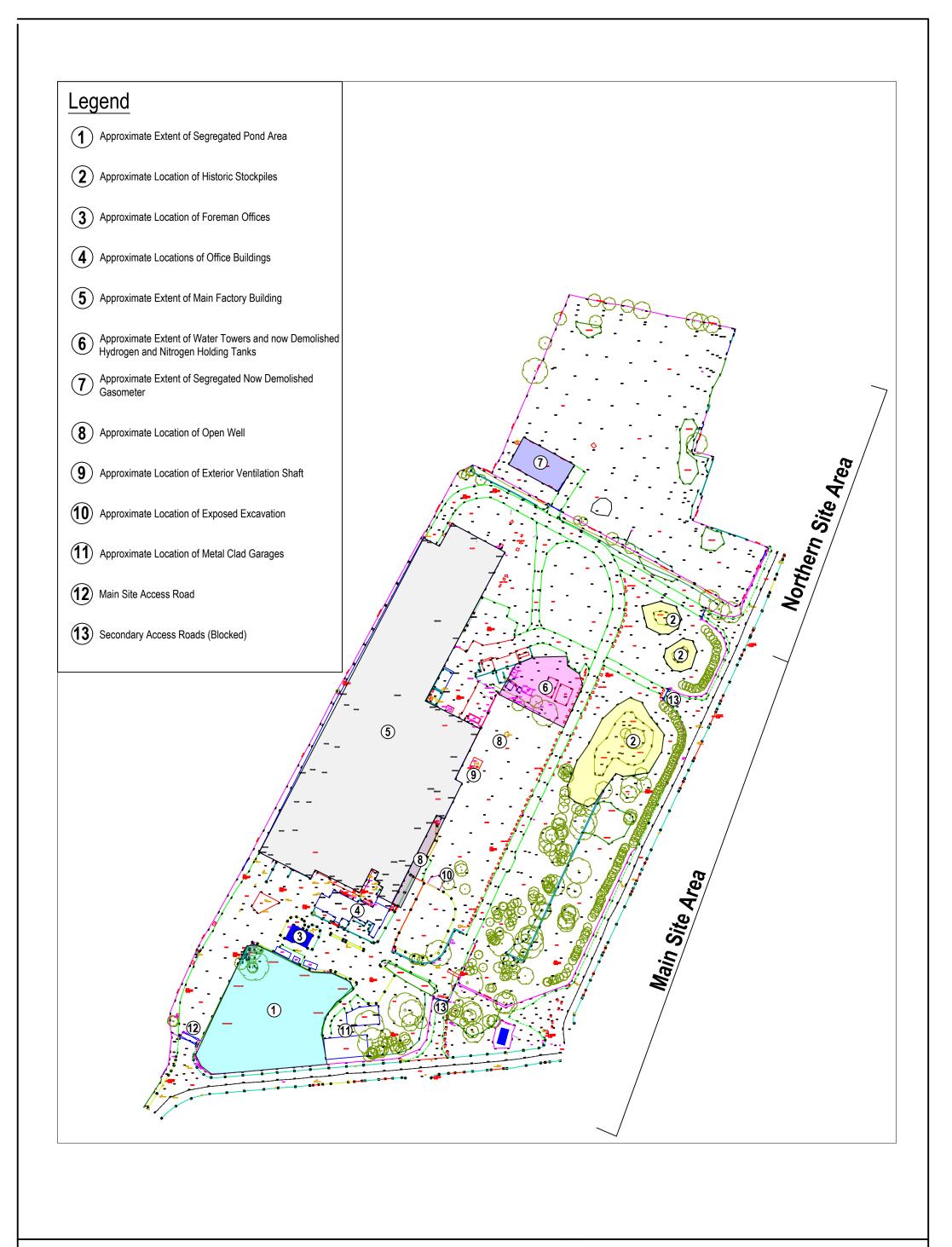


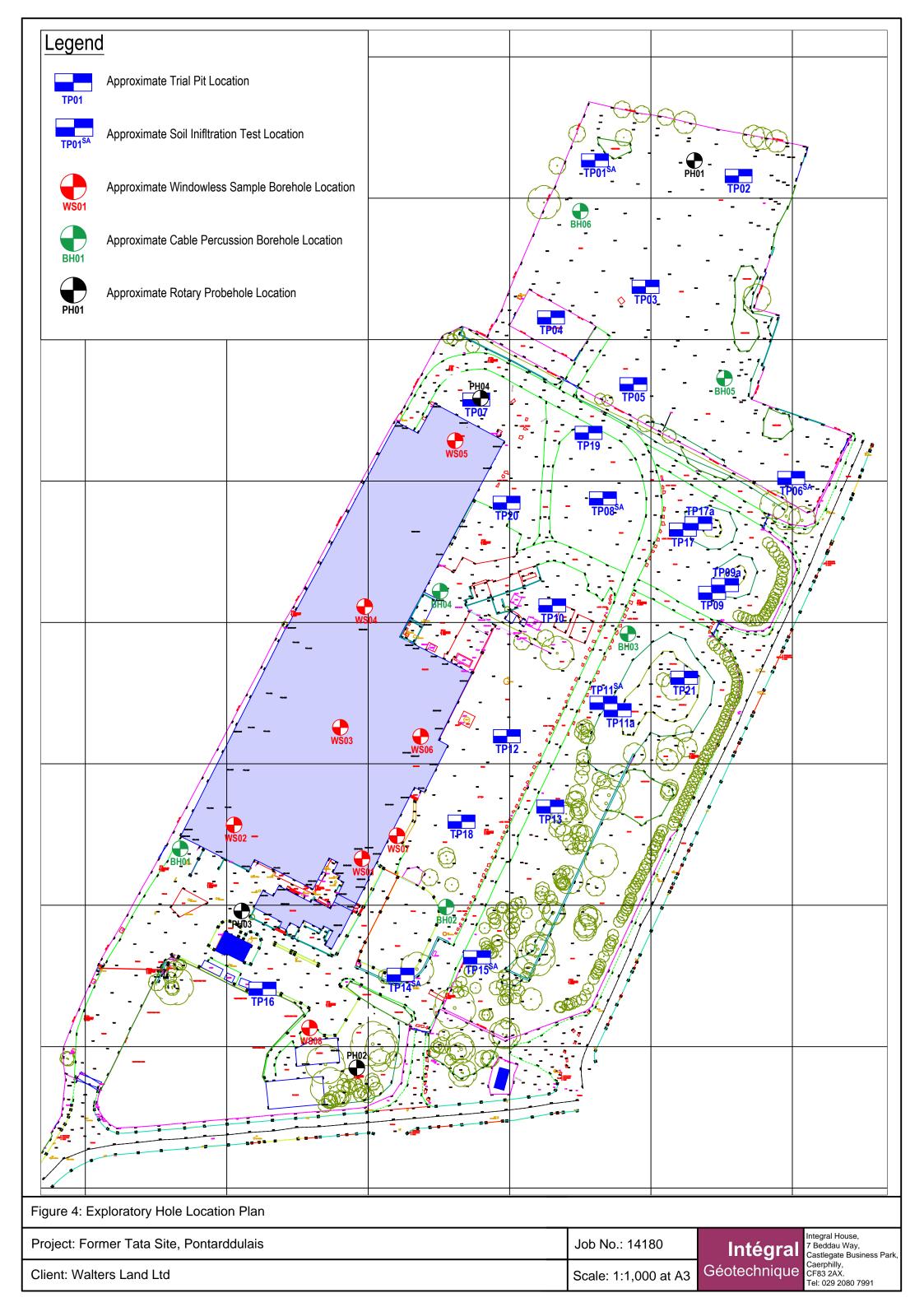
Figure 2: Existing Site Layout

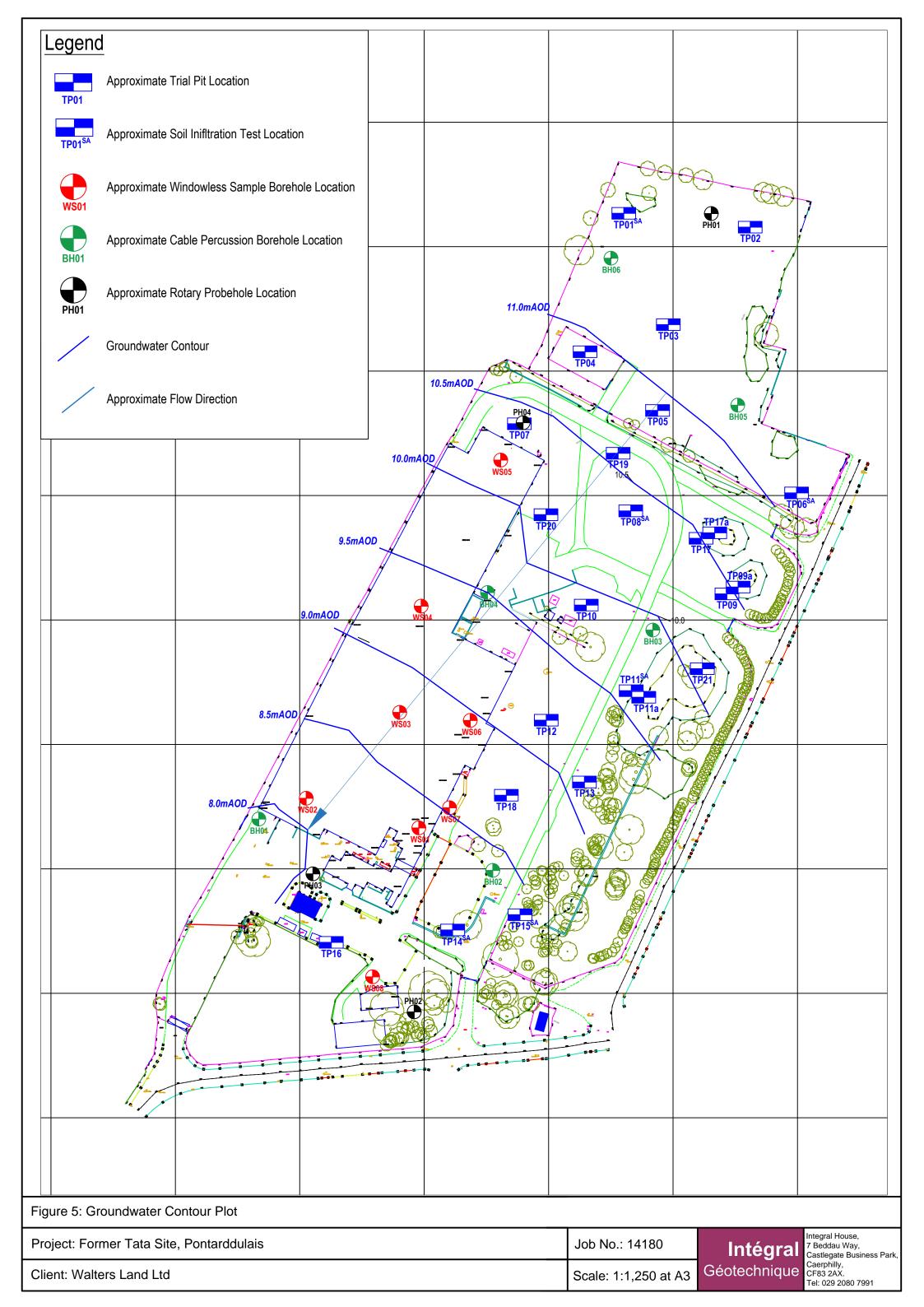
Project: Former Tata Site, Pontarddulais

Scale: 1:1,500 at A3

Job No.: 14180

Intégral Integral House,
7 Beddau Way,
Castlegate Business Park,
Caerphilly,
CF83 2AX.
Tel: 029 2080 7991

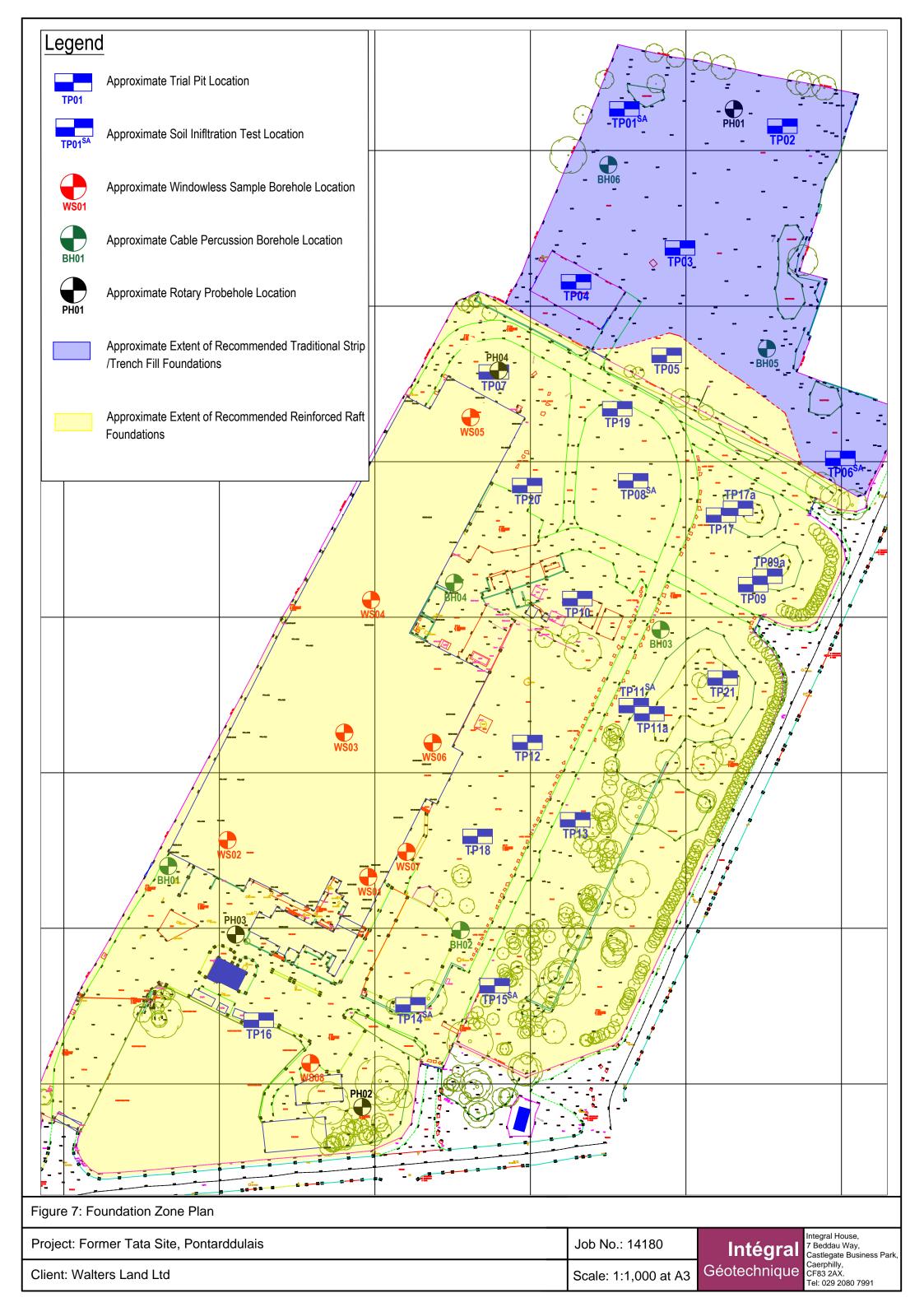

Figure 3: Proposed Development Plan


Client: Walters Land Ltd

Project: Former Tata Site, Pontarddulais Job No.: 14180

Scale: NTS at A3

Intégral House,
7 Beddau Way,
Castlegate Business Park,
Caerphilly,
CF83 2AX.
Tel: 029 2080 7991



Project: Former Tata Site, Pontarddulais	Job No.: 14180
Client: Walters Land Ltd	Scale: 1:1.500 at A3

Intégral House,
7 Beddau Way,
Castlegate Business Park,
Caerphilly,
CF83 2AX.
Tel: 029 2080 7991

